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ABSTRACT

Unguyed spar-trees are commonly used as a part of
skyline cable logging systems.  Finite Element Analysis is
a robust method for determining spar-tree design load
that can include virtually any field condition likely to be
encountered.  The results of Finite Element Analysis over
a range of spar-trees similar in size to those typically found
in second-growth Douglas-fir stands indicates that (1)
some existing guidelines for use of unguyed spar-trees do
not correspond to expected field behavior, and (2) lateral
loads  of a magnitude found in skyline cable yarding
systems dominate the structural behavior of unguyed
spar-trees.  However, the Euler Buckling load which has
been used as a guide to spar-tree capacity, may serve to
normalize the results of Finite Element Analysis in such a
way that simple linear relationships can be used to estimate
spar-tree capacity.
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INTRODUCTION

The environmental benefits of skyline cable logging
have driven a transition from highlead cable logging to
single and multispan skyline logging on steeper terrain in
the Pacific Northwest during the past twenty years.  The
primary environmental benefit derives from the less
extensive road system required to support skyline logging
relative to shorter span highlead logging.  Additionally,
there is less overall soil and site disturbance with skyline
logging.  Skyline logging has also been the system of
choice on more gentle terrain where one or more
intermediate supports may be required to generate
economic payloads.  The increased rigging costs
associated with most skyline systems generate interest in
rigging systems that depart from convention.  In particular,
loggers may use unguyed intermediate support and

tailspar trees in an effort to reduce rigging costs.  The
desire to use unguyed support trees to reduce rigging
costs is always coupled with the necessity of avoiding
support tree failures from both an operational and safety
perspective.  Practical experience has shown that unguyed
trees can be used effectively in some cases; however,
structural analysis considering large displacements is
necessary for defining the limits where they can be used
safely.

The objective of this paper is to examine the structural
mechanics of an unguyed support tree, present an appro-
priate analysis for a typical case, and interpret the analy-
sis results in light of conventional standards for spar tree
behavior.

BACKGROUND

Skyline logging systems can have a number of different
rigging configurations.  Each configuration is intended to
provide a particular advantage suited to the terrain in-
volved and the logs being yarded.  The system illustrated
in Figure 1 shows both intermediate support spar-trees
and a tail spar-tree.  The spar-tree supports are used to
increase the lift available in the center and at the end of
the overall skyline span respectively.  The spar trees may
or may not be topped above the rigging point depending
on local convention and safety requirements.

Load from the skyline or intermediate support line is
applied to the spar-tree through a block that is suspended
from the tree by either a choker or a strap (Figure 2a).  The
choker or strap in combination with the block is intended
to operate as a pure tension element such that the
directions of the skyline and intermediate support line
respectively determine the magnitude and direction of the
load on the spar-tree for a given skyline or intermediate
support line tension.  The geometry of loading illustrated
in Figure 2 is such that: 1) the load applied to an unguyed
spar  tree  will rarely, if ever, be in the vertical direction;  2)
the  load  is applied somewhere between the edge of the
tree cross section and its center, depending on the exact
geometry of the rigging, hence the load will not be axial;
and 3) in most cases, the load strap will produce torsion in
the tree which can be minimized by careful rigging.  The
first two factors in combination produce bending moments
in the spar tree that in turn produce lateral deflection.
This result has been addressed in conventional rigging
practices by (1) specifying cases in which guylines are
required, and (2) by specifying a maximum lateral deflection
of the loaded spar tree at  the rigging point  [9].  As
suggested, torsional loading is addressed by rigging the
load strap so as to minimize torsion.

Historically, guidance on the capacity of spar trees has
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been obtain in the form of the critical buckling load as
computed by the classical Euler Equation [6]:

                                                                                          (1)

where: Pcr = Critical buckling load,

E = Modulus of elasticity of the spar tree,

I = Moment of inertia of the spar cross sec-
tion,

Le = Effective length of the spar tree (two
times the rigging height for an unguyed
spar-tree).

In equation (1),  the critical buckling load, is obtained

Figure 1.  Illustration of a skyline cable yarding system with both intermediate support spar-trees and tail spar-trees.

Figure 2. Detailed illustrations of (a) a choker support
strap, and (b) the load angle sign convention
and eccentricity used in the analysis.
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by solution of the linear differential equation of the elastic
curve of a column.  The linear differential equation is ob-
tained from the more general, non-linear equation by  as-
suming the products of derivatives of small displacements
are approximately equal to zero.  Formulation of the non-
linear equation begins with the assumptions: (1) the col-
umn is of constant cross section, and made up of linear
elastic material, (2) the column is initially straight, (3) the
only load is a compressive load, collinear with the longitu-
dinal axis of the column, and (4) the column itself is weight-
less. The general non-linear differential equation is:

     
                                                                                          (2)

where: r = Radius of curvature of the elastic curve,

n = Lateral deflection of the column,

c= Position along the long axis of the column.

If  , then  , which reduces equation (2)

to:

                                                                                    (3)

The axial load in the column is introduced into Equation
(3) by using the definition of modulus of elasticity and the
bending moment produced by the axial load times the lat-
eral deflection.  The resulting differential equation is:

                                                                            (4)

Adaptations to the solution of Equation (4) allow for
consideration of a limited number of column end condi-
tions and modest eccentricity of axial load (e.g. Gere and
Timoshenko [7]).  Column taper and base stiffness can be
addressed with a numerical solution (e.g. Carpenter [3]).
However, a critical buckling solution to Equation (4) has
its limits: (1) it does not allow the determination of post
buckling displacements; (2) does not directly address a
design stress in the column at which either material non-
linear behavior or an unacceptable probability of material
failure may occur; and (3) perhaps most importantly, does
not consider the effect of the lateral component of the
load.

FINITE ELEMENT ANALYSIS

The Finite Element Method (FEM) offers the analyst
sented by a linear spring with a constant, kbase , (N-m/
radian) that is a power function of dbh (tree diameter in
meters at breast height):

tion into structural analysis.  In the case of a tail spar-tree
or intermediate support spar-tree, this could include:

1. A cross section that tapers with height,

2. Constant or varying modulus of elasticity as appro-
priate,

3. Base stiffness interpreted from tree tests,

4. Load direction consistent with field cases,

5. The effect of load eccentricity and initial curvature,

6. Detail in the modeling that can simulate continuous
behavior, including geometric non-linearity, or the ef-
fect that deflections have on bending moment, and,

7. Interpretation of results in light of a design stress in
the tree.

Tree Taper

For the current study, tree taper was obtained from a
taper equation developed by Kozak [8] for second growth
Douglas-fir.  For any particular field case, a taper equation
that best fits the trees in the stand being considered should
be selected.  We ignored any contribution to structural
behavior from the bark.  Inside bark diameters at breast
height of 30 to 65 cm were considered, these being
representative of dominant trees in second-growth
Douglas-fir stands.  A constant rigging height of 10 m
was used, which allowed the spar tree to vary from quite
flexible for the smallest diameter tree to quite stiff for the
largest diameter.  For the current analysis, all spar trees
were considered to be topped above the rigging point.
This is non-conservative for cases where the trees are not
topped.

Modulus of Elasticity

Pyles et al. [12] found that modulus of elasticity (MOE)
for standing trees and whole logs from those trees was
significantly higher than MOE values from minor speci-
mens sawn from the trees.  However, in the interest of
linking the current work to a standard value for wood, we
elected to use an MOE value of   for northern Douglas-fir
[1].

Base Stiffness

The base of a tree is neither fixed (infinite stiffness) nor
pinned (zero stiffness) but rather, is somewhere in be-
tween.  Pyles [10] suggested that the stiffness of the base
of second growth Douglas-fir trees could be repre-
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   kbase ,N - m/radian = 23.66 (dbh,m)3.65                      (5)

Although we elected to use this relationship, it seems
reasonable that local site conditions will influence base
stiffness, and therefore may need to be considered.

Load Direction

The load applied to the tree will be in the direction of the
load strap (Figure 2a). The direction of the load strap will
be in a plane defined by the rigging point, the skyline tail-
hold, and the carriage in the case of a tailspar.  We elected
to consider a range in load angles from a near vertical of 1
degree to 20 degrees from the vertical (Figure 2b).  In all
cases, it was assumed that tree displacement did not
significantly influence strap angle. This is a reasonable
assumption since the skyline block serves to equalize the
angle of the skyline with respect to the load strap on either
side of the block.  Deflection of the tree will result in small
changes in the load strap angle, but the changes will be
much less than one degree in most cases.  It was also
assumed that the load strap was rigged to eliminate torsion.

Load Eccentricity

An extremely tight choker where the choker line goes
around the spar-tree in a horizontal plane, and then “kinks”
through the choker bell could produce a load eccentricity
near the outer edge of the spar-tree cross section [11].
The more likely case is a load eccentricity somewhere
between zero (load at the center of the cross section), and
an eccentricity equal to the radius of the cross section.
We elected to consider the maximum possible eccentricity
(load at the edge of the cross section; see Figure 2b) for a
limited number of cases since the lateral load component
rather than eccentricity was expected to dominate spar-
tree behavior.  Load eccentricity can also result from initial
curvature of the tree; however, we considered only straight
trees in this general analysis.

FEM Element Type and Number

Different levels of sophistication have been used in
FEM modeling of trees.  The level of sophistication re-
quired depends on the objectives of the analysis.  In analy-
sis of guyed spar trees that considered the path depend-
ant loading produced by sequential tightening of the
guylines, Ammeson et al. [2] used simple beam elements.
Ammeson et al. [2] incorporated tree taper by changing
the cross section of the elements with height, but MOE
was held constant.  In contrast, Franco and Pellicane [5],
who were attempting to predict the failure point on a tree
given defects observable on the surface, used a detailed

solid element model that allowed them to consider the
grain angle and anisotropy. Our analysis used the com-
mercial FEM package by ANSYSÓ .  We selected a simple
three dimensional beam element with isotropic properties
(the ANSYSÓ  Beam 4 three dimensional elastic element)
for the current study based on the work by Conner [4]
who used a similar element to study guyed spar tree
behavior.  This element has two nodes with six degrees of
freedom at each node.  An option for a third node used for
orientation of the element was not used because the tree
cross sections were assumed to be circular, and therefore
symmetric.  Based on the work of Ammeson et al. [2], 10
beam elements were used to model the tree.  The indi-
vidual element cross sections were constant, but the ele-
ment to element cross sections varied to simulate tree
taper in the same manner as Ammesom et al.  [2].  The
deadload produced by the weight of the spar tree was not
included in the analysis because live loads were expected
to be dominant.  Large displacements, expected as a result
of lateral load components were considered.  ANSYSÓ
uses the Newton-Raphson method to model geometric
non-linearity in the system.

Interpretation of FEM Analyses

Interpretation of the FEM results was done from the
perspective that the maximum design load on the tree from
the load strap is limited by the design compressive stress
for the tree.  The design tension for the load strap is de-
fined as the tension in the load strap that will produce a
compressive stress on a transverse cross section, at some
point in the tree, which is equal to the design compressive
stress for the tree. For the analysis performed here, the
value selected as the design stress for the tree must be
within the linear elastic range.  The National Design Speci-
fication [1] value for allowable stress in bending for north-
ern Douglas-fir (1.103*104  kPa) will be used as the design
stress for the tree in this analysis.  No adjustment was
made for duration of load or the other factors that are
normally considered in design of buildings and other civil
structures.  The dominant factors in this case, column
stability and geometric nonlinearity (bending stress am-
plification), are explicitly considered in the analysis.  Both
static and dynamic loads on cable logging systems are of
short duration with respect to normal load duration for
which the National Design Specification values have been
developed.  Short duration of load normally corresponds
to increases in allowable stress, hence, with respect to
duration of load, our interpretation should be  conserva-
tive.

For convenience, the FEM input parameters are sum-
marized in Table 1.

Table 1.  Parameter values used in the FEM analysis.
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• MOE  = 1.103*107 kPa [1],

• Design stress due to bending for northern

• Spring constant for the base of the tree = 23.66
(dbh)3.65 Nm/radian [11],

• Rigging Height = 10m,

• dbh = 30, 35, 40, 45, 50, 55, 60, 65 cm, and,

• Tree strap angle = 1, 2, 3, 4, 5, 10, 15, 20 degrees.

RESULTS

Direct results of the analysis showed the importance of
the horizontal load component and the degree to which
tree displacement at the rigging point might be consid-
ered as a performance criteria for safe spar trees.  Figure 3
shows the computed  design load based on reaching the
design stress in the wood of the spar tree for the eight tree
diameters analyzed as a function of load angle. The mini-
mum line size required for the design tension has been
included as a second ordinate on the right hand side of
Figure 3. The required line size was determined from the
safe working tension (one-third the nominal breaking
strength) reported by the Workers Compensation Board
of British Columbia [13] for improved plow steel (IPS).
This second scale can be read directly as choker size if a
choker is used to hang the block in the spar-tree (Figure
2a).  The dramatic influence of the lateral load component
is evident in Figure 3.  Even a modest 5 degree load angle
reduces the design choker tension to about half of the
value at a 1 degree load angle.  Interpretation of the re-
sults in Figure 3 beyond the line size scale is difficult due
to the wide range in field conditions and operation modes
that can occur.  However, the range of values in Figure 3
do provide results that can easily be compared to the
loads likely to be generated for many yarding and rigging
configurations.

Lateral deflection at the rigging height when the tree
has been loaded to the maximum design stress in the wood
is shown as both an absolute value (Figure 4a) and nor-
malized as a multiple of spar tree diameter at the rigging
height (Figure 4b). The values for only the extreme load
angles are shown in Figure 4.

Figure 3. Computed design spar-tree load (support strap
tension) as a function of load angle and
spar=tree diameter at breast height.

The computed displacement at the rigging height for
the smallest tree (30 cm dbh; 20.7 cm diameter at the 10m
rigging height) was between 0.42 and 0.45 m depending
on strap angle, or just over 2 times the tree diameter at the
rigging height.  The computed displacement at the rigging
height for the largest tree (65 cm dbh; 40.7 cm diameter at
the 10m rigging height) was between 0.19 and 0.23 m
depending on strap angle, or about half of the tree diameter
at the rigging height.  It is clear from Figure 4 that neither
a fixed displacement at the rigging height, nor a rigging
height displacement expressed relative to spar-tree
diameter can describe both a safe performance condition
and the deflection that corresponds to the design load for
unguyed spar trees.

Figure 4. Computed spar-tree rigging-height displace-
ment at design load for a range in spar-tree sizes
(a) in absolute measure, and (b) relative to spar-
tree diameter at the rigging height.



16  ̈ International Journal of Forest Engineering

The influence of load eccentricity is illustrated in Figure
5.  A 40 cm dbh spar-tree was selected for the comparison
since it is on the flexible end of the range used for the full
analysis, where the effect of eccentricity should be quite
apparent.  The assumption of maximum possible eccen-
tricity, load application at the edge of the cross section,
produced a 5 to 36 percent reduction in the design load for
the spar-tree.  The largest reductions corresponded to the
smallest load angles where lateral load does not dominate
the behavior.  Rigging so as to produce the maximum ec-
centricity and at the same time less than a 5 degree load
angle for all yarding cases for a particular spar-tree seems
unlikely, hence the effect of eccentricity is probably less
than 10 percent for the critical load case.

Design Load Relationship

Figures 3 and 4 show systematic behavior as should be
expected for spar trees that vary only in diameter.  The
illustrated behavior indicates that the critical buckling load
computed from the Euler Equation is not an appropriate
measure of the capacity of unguyed spar trees, however,
the desire to have a relatively simple method for estimat-
ing spar tree capacity remains.  A suggestion for such an
approach can be found in the results presented in Figures
3 and 4.  The design loads for each strap angle are a
nonlinear function of spar tree diameter at breast height.
However, the design strap load relationship has a nearly
linear relationship over the range of interest with the criti-
cal buckling load computed by the Euler Equation for fixed-
base, unguyed columns with a constant diameter equal to
the inside bark diameter of the spar-tree at the rigging
height (Figure 6).

In Figure 6, the Euler Buckling load could have been
replaced with the spar-tree diameter to the fourth power
since all other terms in the Euler Equation have been held
constant in the current analysis.  It may be possible to
address changes in the modulus of elasticity and rigging
height if the Euler buckling load is used to normalize the
analysis results. However, more analysis is required to
confirm the applicability of an Euler buckling load as a
normalization term.

Figure 6 also serves to illustrate the degree to which the
Euler equation errs as a means of estimating the design
load of an unguyed spar-tree.  A line that passes through
the origin and has a slope of one on Figure 6 would repre-
sent a load case where the FEM computed design load
was equal to the Euler buckling load.  The results for the
one-degree load angle are essentially on the one to one
line, but the results for all other load cases are signifi-
cantly below the Euler buckling load.

Figure 5. Effect of load-connection eccentricity for a 40
cm dhb spar-tree as a function of load angle.

Figure 6.  Linearization of the computed design load rela-
tionships by the Euler Buckling Load.

CONCLUSIONS

Unguyed spar-trees have been used successfully in
numerous cases in practice.  There is clearly a range of
spar sizes and rigging heights where the spar will have
adequate capacity for a safe and efficient yarding opera-
tion.  Safety codes have attempted to identify this range
by listing limitations on the use of unguyed spar-trees.
Euler buckling analysis has been suggested as a guide to
the capacity of unguyed spar-trees, but the analysis pre-
sented here indicates that Euler buckling calculations do
not adequately represent the structural behavior of
unguyed spar-trees.  FEM analysis is the preferred method
for analyzing unguyed spar-trees because the true field
geometry and spar characteristics can easily be incorpo-
rated into the analysis.  However, FEM analysis requires
considerable computational effort, and does not remove
the desire for simple, easy to use guidelines.  A suggested
form for such a guideline has been presented here, but
additional analysis will be required over a broader range
of field conditions before a final guideline can be achieved.
Notably, a full range in stand conditions that will affect
the taper and possibly base stiffness of the trees should
be examined.  While the range in spar diameters at con-
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stant rigging height produced a range in spar stiffness (or
slenderness ratios), it is not clear that all aspects of spar
stiffness have been identified.
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