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(Translated from “  Der Seew art”  Vol. 9 & 10 & n  of 1939).

With the introductory work of Dr. Fritz C o n r a d  on “ Modern Navigation” in Vol. 8- 
1937» pages 267-272 of the Seewarte an urgent appeal has happily been made to all who 
are interested in navigation, whether mariners, aviators or scientists, to cooperate fully in 
the further development of navigation; i.e. to discuss and develop the present methods, to 
propose new methods and to report on the experience gained with new instruments, calculat
ing machines etc. In connection with the above it is immaterial whether these reports are 
based on the results of practical experience or theoretical investigations, since both contribute 
in an equal measure towards the attainment of the desired goal.

One problem that now occupies the centre of the stage and towards the solution of 
which much time and energy has been expended, is the simplification of position finding 
from two stars in general and the calculation of the altitude in particular.

In this connection the present writer wishes to elaborate the matter somewhat further. 
We shall not treat here however, such questions as the introduction of the 400 grad division 
in place of the 360°, whether to employ time or angular measure, decimal division of the 
degree, grad time-keepers, aeronautical clocks, the. „Aeronautical edition of the Nautical 
Almanac etc., all of which have to do more or less with the calculation of the altitude of 
the heavenly body. These particular questions have all been treated so thoroughly in the 
work of Dr. F r e ie s l e b e n  that nothing of importance can be added and we have to await 
the final judgment afforded by practical experience.

On the other hand the questions pertaining directly to the computation of the altitude 
and the method to be pursued to obtain a simplification is still so acute and urgent that a 
general discussion of the problem is advisable.

To attain this goal various different and widely divergent paths have been followed. 
Mathematical, tabular, graphic, nomographical and mechanical methods have been proposed 
and developed; but up to the present none of these have shown any appreciable simplification 
over the older methods generally employed by mariners, so that one involuntarily asks 
whether such simplification in the calculation of altitude is actually possible.

Therefore in this connection it seems of interest to investigate how the altitude compu
tation has developed from the most primitive time up to the present day methods and what hope 
can be entertained for a further simplification. In order to avoid excessive material we 
shall deal with the purely mathematical procedure and take the graphical methods into 
consideration only in so far as they are essential towards the comprehension of the mathe
matical, reserving the treatment of the graphical, nomographical, tabular and mechanical 
solutions for another article.

The fact that astronomy was rather highly developed amongst the ancient cultured 
races, the Chinese, Egyptians and Babylonians is well known. However, we do not know 
whether they possessed any methods with the aid of which the altitude of a star could be

determined by means of the factors <p, S  and t.

It has often been assumed — and writings of some of the ancient Greeks vouch for the 
tact —■ that they were aware of graphical methods which permitted a solution of the 
problem. The nucleus of the method employed in that case probably consisted of the ortho
gonal projection of the sphere on the three mutually perpendicular planes; the meridian, 
the vertical and the horizontal circle, as described by the Greek astronomer Claudius 
P t o l e m a e u s  (200 A.D.) in his “  Analemma ” (i.e. as an auxiliary figure).



The orthographic and also the orthogonal or parallel projection, i.e. that projection in 
which the eye of the observed is supposed to be at infinity, is used today principally for 
the representation of the surface of the moon, the sun and the planets, since these can 
generally be regarded as being at an infinite distance. Also in the older text-books they 
are often described and used; for instance, in R u m k e r s  well known “  Handbuch der 
Schiffahrtskunde ” Hamburg, fifth edition of 1850, which we shall have occasion to mention 
later. For those who are not familiar with the orthographic projection we shall give here 
the basic equation for its representation, in order to facilitate the comprehension of what 
follows :

x =  r. cosX. cos (p
• m ( l )y  =  r. sin 9

We shall then turn to the methods described by P t o l e m a e u s  in his “  Analemma ” fo r  

the determination of h from <pj $  and t.

With a radius equal to r  we describe about O the circle S.KZ.N .N a. which represents 
the local meridian.

The straight line Z O Na represents the prime vertical and the perpendicular to it

through O, or S O N is the horizon. From O N the angle N O P  equal to <p is laid off 
which gives the straight line P O P ’, or the world axis, and at right angles thereto passing
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through O the celestial equator, E  O Q. If we lay off from O to E  O the angle E  O D
equal to $  , then the line drawn through D parallel to E  O Q represents the declination 
parallel. In order to determine the point on this parallel occupied by the star at the instant 

the following construction is necessary. From E  O we lay off the angle E  O K  equal 
to “  t ”  and drop a perpendicular from K  on the E  O Q, which gives the point G’. i.e. 
the intersection of the hour angle circle with the equator. I f  from O we describe a circle 
with radius O G’, which intersects the straight line O D at K ’, then by means of a per
pendicular from D D’ dropped on to K ’ the point G is determined, or, the locus of the 
star at the instant “  t A  line drawn through G parallel to S O N intersects the local 
meridian at F. The angle F  O S then gives the required altitude of the star. The proof 
of the correctness of this construction is easily found from the basic equations representing 
the projection (1).

The first application of the direct mathematical determination of the altitude from the

magnitudes <p> ^ and t comes from the Indians. These people, who were as talented in 
mathematics as the Greeks and were also gifted with an equally good foundation in geometry 
understood how to derive a mathematical method from the above described graphical method 
given in the “ Analemma” .



In the most ancient work from the Indians, now extant, the Surya-Siddhanta, or the 
"certain Truth, revealed by the sun” (about 400 A.D.) there is treated in verses 34, 35 
and 36 the problem of determining the altitude of the sun at any desired hour of the day 
by means of the declination and the elevation of the .pole. The rule reads : “  When we 
augment the radius by the sine of the ascension difference, in the case of north declination, 
or diminish in the case of southerly declination, then we obtain the measure of the day; 
this then diminished by the versed sine of the hour angle, then multiplied by the radius 
of the daily arc and divided by the radius (of the sphere) gives the divisor; the latter is 
then multiplied by the sine of the complement of the latitude and divided by the radius 
which gives the sine of the altitude” .

This rule can easily be proven by means of the orthogonal projection (Fig. 2).

N

F ig . 2 .

By construction we have

therefore
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and also

sin h
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As expression for A  G we obtain :

A  G
A ' G ’ . B D
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from Fig. 2, further

E  H =  s in  (90° —  cp )

consequently

. . (versin t0 — versin t) . sin (90° — '?) . B D ,
sm n =  —------------------------------------------ --------------- ------------  \2) 

r . r

which formula corresponds exactly to the reading of the verse quoted. I f  we put B D equal 

to cos 6 , r equal to 1 and consider that — cos t0 =  tang <p tang 8 then after a 
simple reduction, we obtain :

sin h =  sin <p. sin Ö -f- cos <p. cos cos t.

This shows that even amongst the anciens Indians there were indications of the beginn
ings of the science of nautical astronomy O).

The celebrated Arabian scientist A l -B a t t a n i  devised a similar rule in his work “  On 
the Stars ” (about 880 A .D .) with the aid of the projection method which, written in 
mathematical form is as follows :

sin  h =  ( versin  to —  versin  * )• sin (90° —  1?  —  d] ) (3)
versin t0

which, as well as formula (2), can be directly derived from the Fig. 2.

The same method served A l - B a t t a n i  for the solution of a number of other problems, 
of which we shall quote one, namely the determination of the sun’s azimuth from the 
declination, altitude and latitude. The rules laid down by him give us the following formula 
in our notation :

r. sin (90° —  Ö) sin h. sin cp 

. sin  (90° —  cp) sin  (90° — cp) (4) 
sin (90 —  a) =     ~  7T  

^ sm (90 —  h)

a formula, which with r =  1 and the introduction of the cosines passes directly into our 
spherical cosine formula. Regarding this B r a u n m ü h l  (2> : “  We have here the most ancient 
place in the literature available to us in which our second fundamental law of spherical 
trigonometry appears in its integral form. But we do not believe that we are therefore entitled 
to acclaim A l -B a t t a n i  as the discoverer of this law, as has been done by others. Then, 
just as the Indians, A l -B a t t a n i  had no idea that with this projection method he had dis
covered a trigonometrical law which would be applicable to any desired triangle ” .

This determination was made only several centuries later by the German scholar Jofo 
M ü l l e r , better known under the name of R e g io m o n ta n  (1436-1475). The words in which 
R eg io m o n t a n  clothed his rule are expressed by the following nautical-astronomical formula 
which applies to the basic triangle P  Z G :

versin t : (versin z. — versin [9 — 8])
— r : sin (90° —  cp ). sin (90° —  8 ). ^

It is of interest to know that this same formula was given about 400 years later in a 
nautical manual. In the above mentioned “  Handbuch der Schiffahrtskunde ” of R ü m k e r  
we find on page 39 under the methods described, for the calculation of the angle of the 
spherical triangle from the three sides, the following rule:— From the natural versed

(1) According to H. Z e u t h e n , math. I. 1900 — p. 20-27 the mathematical treatment 
here ascribed to the Indians can be found in principle in the Analemma of Ptolemaeus.

(2) Von B r a u n m ü h l , Vorlesungen über Geschichte der Trigonometrie I. T eT il S . 53 
Leipzig 1900.



sine of the side opposite the angle sought, substract the natural versed sine of the difference 
between the sides bounding the angle sought: to the logarithm of the balance and the log 
cosecant of the bounding sides, the sum of these three logarithms is the log of the rising 
time of the angle sought.

i  K

In the same manner as R e g io m o n t a n , R u m l e r  uses the orthographical projection for 
the proof of this formula as well as other nautical problems given in his Manual. The 
proof of these rules by means of this method is given below.

In the triangle Z P G (Fig. 3) we have the three given sides Z G, P  G, Z  P ;  let 
Z P G be the angle sought, which is measured by the arc O G\ We shall imagine the 
semi-circle E  O Q, which is perpendicular to E  P Q, turned through 90° about the 
common axis E  Q so that it coincides with the latter; then G’ will fall at K  and KG ' 
becomes the sine, G ’ E  the versine of the arc E K  =  arc G’ E  =  angle E  P  G\

< ) F ’ D G  =  <3 E O Z  =  arc Z E  =  90° —  P  Z  

B D =  sin P D =  sin P G 

D F ’ =  Z M  —  Z N  =  versin Z C —  versin (ZD  =  P G  —  Z P )  

rad : D F ’ =  sec F ’ D G : D G 

B D : rad =  D G : E G ’ 

B D : D F ’ =  sec F ’ D G : E  G\
from  this it follow s by the substitution o f the above values :

sin P G : versin Z G —  versin (P G —  P Z) 

=  cosec P Z : versin Z P G
or :

versin Z P G =
(6)

(versin Z  G —  versin [P  G —  P Z ]. cosec P G. cosec P  Z
which, as m ay readily be seen, is identical w ith the R e g io m o n t a n  formula.

By introducing the relations in the basic nautical astronomical triangle and by trans
formation of the equation we obtain :

versin z =  versin [<p —  §) -j- cos '-p. cos 5. versin t



or :

cos 9. cos versin t =  D F ’

versin (cp —  8) - f - D F ’ =  covers h 
in which form it appears on page 188 in the R u m l e r  Manual and is recommended for use 
for obtaining the altitude. We see that it is practically identical with the formula used at 
sea today viz.:—

hav y =  cos <f>. cos hav t ^

hav z =  hav (<p —  +  hav y 
From this it is evident that the most modern equation used for the determination of the 
altitude of the heavenly body can be traced back 500 years. It is noteworthy that R e g io - 
m o n t an  used his formula simply for the determination of the angle from the three sides

of the spherical triangle. For the calculation of the altitude from the magnitudes 8
and t (according to Prof. A. W e d e m e y e r  (3)) he made use of a formula which in accordance 
with present-day terms would be expressed as follows :—

tan x  =  cos t. cotan cp 
sin h — sin cp sec x. cos (d —  x) (8) 

d =  (90° —  8 ).
I f  we investigate the previously known rules somewhat closer we find they are apparently 

not much more complicated in form and in content are about as comprehensive as our modern 
formulae. In those days the calculations were much more laborious and difficult since there 
were no logarithm tables or calculating machines available as auxiliaries and every multi
plication and division had to be carried out in full as written. No wonder therefore that 
even fn those days much trouble and pains were taken to discover some simpler solution.

The first efforts to obtain this were due to the Nuremburg pastor Johannes W e r n e r . 
(1468-1528) through the invention of the so-called “ prosthapharetic method” (4). This pecu
liar word, formed from the Greek words meaning to give to and to take away, ,means an 
addition and subtraction method:— It consists essentially in the use of the trigonometrical 
formulae :

sin a. sin (3 =  1/2  (cos [a —  [3] —  cos (a -f- (3]) 

cos a. cos (3 =  1/2  (cos [ a _  |3] + c o s ( a  +  (3j)
I f  the product of two numbers (less than x) is to be found, then from the trigonometrical
tables of these numbers we find the angles CL and (3 of which they were the sines or 
the cosines. Then from the sum or the difference of these angles one has again to find the 
equivalent cosines and to divide the sum (or difference) by two.

The process is much more cumbersome than the logarithmic calculation, but it is based 
on the same fundamental idea and is replaced today by the concept of trigonometrical 
functions as exponential functions with imaginary exponents for the logarithms with which 
it stands in direct relation.

With the aid of the “  prosthapharetic method ” the R e g io m o n t a n  cosine formula was 
transformed into the following form by W e r n e r .

cos z =  sin (90° —  cp _|_ 5)

+  versin t ( 1/2  sin [ 90 —  ?  +  ^] +  1/2  sin [90 —  <p —  S] ^  
where, with respect to the R e g io m o n t a n  form ula there is only one place requiring three 

multiplication processes.

In order to avoid this last multiplication, the Swiss mathematician Jobst B u r g i (1590) 
proposed the following :

sin h =  1/2  (cos[<p —  $] —  cos [9 +  8] -[- 1/2  [cos[x —  t] 
+  cos [x +  t]])

(3) A. W e d e m e y e r , “  Zu r Höhenberechnung. ” , Ann. d. H ydr., 1903, S. 366.
(4) Von B raunmühl, “ Beitrag zur Geschichte der prosthaphäretischen M ethode” . 

Bibliotheca Mathem. 1896, p. 105-108.
addition and substraction method:— It consists essentially in the use of the trigonometrical



from which the auxiliary angle x  is calculated from the following :— 

cos x =  1 / 2  (cos [9---  Ô] -f- COS [<p -}- ^j)

The Italian mathematician, Giovanni Antonio M a g in i  in 1609 gave the following form 
to the basic equation in his work which appeared in Bologna known as “  Prim um  mobile 
duo decim libris contentum ”  :

versin z =  versin ( 9  —  8 ) 

-j- versin t ( 1 / 2  cos [9 —  8 ] -f- cos [9 +  ^]J)  ̂ ^

While the mathematician Bartholomacus P it is c u s , born in Silesia wrote the equation in 
his “  Trigonometria” in iqoo as follows :—

cos z =  cos ( 9  —  8 ) -f- versin t  ( 1/2  [cos [9  —  8] - ( -  cos [9  +  & ]] )  ( 12)  

w h ich  agrees  w ith  th e  fo r m  a lrea d y  g iv e n  it b y  W e r n e r .

Even after the invention of logarithms the prosthapharetic method remained in use for 
quite a long time and even in the nautical manuals the cosine law appeared frequently in 
its prosthapharetical form. Thus, for instance in 1903 there appeared in the Italian Mari
time Journal “  Rivista Marittima ”  the following formula by P e s o  :—

cos z =  I / 2  (cos [ 9  — 8] — cos [ 9  +  8] +  cos [ 9  — 8] 
-f- cos [9 +  ]̂ ) cos t.

A  particularly elegant form was developed by E u l e r  in the “ Mémoires de l’Académie 
Royale des Sciences et Belles Lettres ” , Vol. IX , page 253, Berlin 1753. He writes :

COS Z =  1 / 2  COS ((p----8) -----  1 2  COS (<P +  à )  - f -  1 / 2  COS (9 +  8 - f -  t)

-f- 1/4  cos (9 -J- à —  t) -f- 1/4  cos ( 9 —  8 -j-1) -f- 1/2  cos (9 —  8 —  t)

In  th is  case, as w ith  the B u r g i fo rm u la , a ll m u ltip lica tio n  is a vo id ed .

In the form to which we are accustomed today the cosine law is first found written 
by the great French mathematician of the 16th  century Franciscus V ie t a .  The rule which 
he proposed is written in our present day notation as follows (s) :

(cos 9 .  COS 8) : (sin h —  sin 9* sin Ô) =  i : cos t l5i (15)
Exactly as did R e g io m o n t a n , V ie t a  used his formula for the calculation of the angle 

from the three given sides of the spherical triangle. For the calculation of the altitude he 
made use of, a new formula :

(sec 9 .  sec ô) : (cos t -f- tan 9 .  tan 8) =  1 : sin h. (16)
which is readily derived from equation (15) :

Unfortunately V ie t a  did not give any derivation of these formulae, but it may be 
assumed that with the aid of the stereometrical method invented by Nicolaus C o p e r n ic u s , 
i.e. with the aid of the solid angles, as is done today, this result was achieved.

The 17th and the first half of the 18th century brought little that was new towards 
the development of the formula for altitude. The rules are given in general in the form of 
short sentences or analogies, although many scholars sought to introduce in these formulae 
a formal method of notation for the sake of brevity. This was done at one stroke however 
as soon as that most prolific of all mathematicians E u l e r  began to busy himself with tri
gonometry. Even as early as 1729, in his treatise “  Solutio prolematis astronomici etc. ” 
Comm. Ac. Petr. IV . E u l e r  wrote the cosine formula for the triangle A  B C as follows :—

cos B C =  cos A  B . cos A C +  cos A . s A  B . s A. C
in a manner which no previous mathematician had adopted. In this formula there is only 
lacking the more convenient designation of the sides and the abbreviation “  sin ” in place 
of “ s ” .

(S) Opera, p. 407, N° XV.



Twenty four years later, in the paper which E u l e r  presented to the Berlin Academy 
entitled •“  Principes de la Trigonométrie sphérique, tirés de la méthode des plus grands et 
plus petits” 1753; there appeared all at once all the formulae, proportions etc. in the 
notation in use today. Here there appeared for the first time the basic formula which is so 
important for all nautical purposes in its usual form :

sin h =  sin 9* sin S -j- cos 9* cos d.  cos t 
which has been preserved until today and which will continue to be used.

A  development of more, than one thousand years lies behind us in this formula. We 
have seen how the form of the equation was changed when the effort was made to avoid 
multiplication. With the invention of the logarithms multiplication lost its terrors. From 
then on efforts were directed towards giving the equation a form which would make the 
logarithmic process applicable and practical. These transformations and similar efforts to obtain 
greater simplification in the calculation of the altitude, will be treated later on.

'Considerable progress was made in the simplification of the numerical calculations with 
the discovery of logarithms by John N e p e r  (Lord Napier of Merchiston 1550-1617) whose 
numerical logarithm Tables “  Mirifici logarithmorum canonis descriptio ” appeared in 1614 
in Edinburgh. A few years earlier the Swiss mathematician Jobst B u r g i, or B y r g i , (1552- 
1632), who lived mostly in Kassel, had prepared similar tables for his own personal use, 
but these were first published in Prag in 1620 under the title “  Arithmetische und Geome
trische Progresstabulen, sambt gründlichem unterricht, wie solche nützlich in allerley Re
chnungen zu gebrauchen und verstanden werden sol ” . Napier’s friend, Henry B r ig g s  (1556- 
1630) improved the logarithms considerably by giving them the base ten of the decimal 
system. B r ig g s  and his successor Adrian V la cq , calculated the logarithms of all numbers 
from i to 100,000 to ten and fourteen decimal places. (6)

With this discovery of logarithms the practical calculations involving multiplication 
and division received their final form. Although before this time all efforts had been 
directed towards the avoidance of all multiplication and division and the formulae trans
formed in such a manner that only addition and substraction need be carried out, as evidenced 
by the development of the prosthapharetic formula mentioned above, now however the 
idea was to transform the equation in such a manner that the plus and minus factors no 
longer appeared, and the equations thus be better adapted for logarithmic calculations.

In order that the altitude of a star should be determined by purely logarithmic calcu
lations a transformation of the basic equation

sin h =  sin 9 .  sin ô cos 9 .  cos Ô. cos t (17)
is not absolutely essential, since by the partition of the basic astronomical triangle into two 
right triangles a set of formulae can be derived which permit of pure logarithmic calcu
lation. This is exemplified by the two systems which were already known to R e g io m o n t a n  •

tang 9 =  cotang 9 .  cos t j

,^>Fig. 4. sin h =  sin 9 .  sec Ô. sin (Ô- f - G )  j

tan 0 —  cotan d.  cos t.

sin h =  sin sec ci >. sin ( 9 + ^ )  \

(18)

(19)

Fig. 5- which can be deduced directly from the Fig. 4 and 

Fig. 5 reproduced herewith.

(6) H. B r ig g s, “  Logarithmorum Chilias prirna ” , London 16 17 ; “  Arithmethica Loga- 
rithmica ” , 1624 (14 place), completed by the 2nd. Edition, Gouda 1628 of Vlacq (10 place 
tables).



However, the calculation for the altitude of a star did not become of practical im
portance in applied navigation until towards the end of the 18th century when the tables 
of lunar distances finally attained sufficient accuracy and the sextants had been improved 
to such an extent that the measurement of lunar distances was feasible and an accuracy 
to within several minutes of longitude was obtainable. (7) Therefore it is not surprising 
that since that time the text-books on navigation have devoted considerable space to the 
calculation of the altitude of a star. In practice equations 18 and 19 described above have 
enjoyed great popularity and for a long time they served as the principal formulae. For 
instance, the manual on navigation brought out by the Imperial German Navy in 1879 (1st 
Edition, 1881, 2nd. Edition 1881 and 3rd. Edition 1891) contains simply the altitude formulae 
of group 18, which however is not obtained by the decomposition of the basic triangle but 
is deduced by analytical means from the basic equation, as shown by Euler (8).

In the reduction of the lunar distances the calculation of the altitude plays a subordinate 
role, since it can often be avoided by observation of the star’s altitude. The importance of 
altitude calculations of the star first came to be realized when A. Blond de Marcq St. 
Hilaire, invented the line of position method which has been named after him. In this 
treatise entitled “  Calcul du point observé ” in the Revue Maritime et Coloniale, of July 
1875, in which he expounded his method in more detail, on page 346, regarding the calcu
lation of the altitude he recommends equation (19) supplemented by a third equation for 
the calculation of the azimuth. Viz :—

tan cj> =  cotan <5. cos t 

sin h =  sin sec cj>. sin (9 -f- cf>) (20) 

cos a — tan h. cotan ( f  -J- <J>)
On page 363 he introduces also another formula for altitude

sin h =  cos (9 — S )  — cos <p. cos versin t.
Which we shall have to examine later in more detail. The system (20) was widely adopted

in practice in America and Holland. In the Netherlands it is known as the “  Netherlands <J> 
formula” and is written :—

tan cj> =  cotan cos t 

sin h =  sin sec cj>. sin (<p -j- <i>) (21) 

cotan a =  cotan. t. cos (9 -f- <t>). cosec cf>.
As may be seen they employ a somewhat different formula for the azimuth computation. 

The same notation is employed in the American text-books such as J.H .C. C o f f i n s , “  Navi
gation and Nautical Astronomy” New York, 1890 and M u i r s  “ A  Treatise on Navigation 
and Nautical Astronomy”  Annapolis 19 11.

In the work of V il l a r c e a u  et A v e d  d e  M agnac  “ Nouvelle astronomie Nautique” 
Paris 1877, the following group of formulae is given for the altitude computation.

tan cj> =  cotan. S. cos t 
tan a = t a n  t. sec ( f  +  4>). sin (22) 

tan h =  tan (? +  <!>)• cos a
which is used principally in the nautical manuals of France, Italy and Germany. The well- 
known text-book of A l b r e c h t  und V ie r o w  (9) still retains this group of formula in its 
tenth edition brought out in Berlin in 1913.

In recent times this group of formulae has been recommended to aviators with a some
what different notation. For instance, in the “  Aeronautischen Tafeln zur astronomischen 
Ortsbestimmung ” , 1934, by H. G a d o w  which however, has not yet appeared in print, the

(7) A  table of pre-calculated lunar distances was first included in the Nautical Almanac 
of 1767.

(8) E u l e r , Hist. Mem. A c., Berlin 1753.
(9) “  Lehrbuch der Navigation und ihrer Mathematischen Hilfswissenschaften ” .

!



group of formulae is given as follows :■— .

cotan c|> =  cotan 8 . cos t. 

cotan a =  cotan t. sec cj>. sin b . .
(23)

cotan z — cotan. b. cos a 

b =  ({)’ — 9
The “  Aeronautische Tafel ” 1935 which is being brought out by the Deutsche Seewarte, 

at the instigation of the Reichsluftfahrtministeriums (Reich Air Ministry) employs another 
transformation of the formula viz :—

cotan y — — cotan 8 . cos t  

cotan a — cotan t. c o s  Y. sec y (24) 

cotan h =  — cotan Y . sec a.
Where Y  — 90 — 9  +  y when 9  and & are of the same name and Y  =  90° — 9

— y when 9  and 8 are of opposite names. The systems (22) to (24) are very well adapted 
for the calculation of altitude and azimuth. An investigation which I made regarding 
the accuracy of system (24) showed that the calculations carried out with four-place loga
rithms would always yield an accuracy within 2’. The disadvantage is that the rules for 
the signs must be carefully regarded and that when near 90° an interpolation is necessary 
for y and a respectively to guarantee the accuracy of 2’. However, this interpolation can 
be made at a glance and consists in the fact that one takes the log sec. differently by 
as much as the log cot. differs from the next value given in the tables.

The American Naval Lieutenant A. A g e to n  0 °)  believes that by the use of the system:

cosec m =  cosec t. sec 8 . 
cosec y =  cosec 8 : sec h , ,

J (25)
cosec h =  sec (y —  9)- sec m.

cosec a =  cosec m : sec h 
the calculations for altitude and azimuth can be simplified, and he published the correspond
ing tables. An investigation of the accuracy showed however that this system is somewhat 
unfavorable since it is necessary to employ six-place logarithms if an accuracy of 2’ is to 
be obtained under all conditions. Further, interpolations are necessary as soon as y approa
ches 90°.

However, with systems which had been derived up to now by a decomposition of the 
basic triangle into two right spherical triangles to facilitate the logarithmic solution of 
the altitude calculation, neither mathematicians, mariners nor astronomers were satisfied. The 
tendency was rather towards a transformation of the basic equation which would permit a 
purely logarithmic solution. This was obtained by the introduction of auxiliary factors. 
Several of these transformations, which are of historical interest will be examined here.

Johann Heinrich Lambert 0  0  a well known mathematician of the time of Frederick the 
Great, who always had in mind the practical application of a formula obtained a parti
cularly beautiful transformation of the basic equation, by putting

sin h =  sin 9. sin 8 -J- cos 9 * cos 8 . cos t. 
cos t =  1 — 2 sin2 1/ 2

and

. p ft , cos (9 — 
sin 2 0 /2  =  — ------- u -------- r—

2 COS 9 * cos

(10) A . A g e to n , “ Dead Reckoning Altitude and Azimuth T ables", H.O. 2 1 1 ,  W ash . 

I934-
(11) J.H . L am b er t , “ Beiträge zur Mathem atik” , 1765, p. 415-417.



whereby he obtained the elegant formula :

sin h =  2. cos 9. cos S. sin 1/2  (9 +  t). 1/2 sin (0 —  t) (26)
A  somewhat different transformation was given by W. G r o s w e l l , instructor in navigation, 

in a rule printed by the American Academy of Arts and Sciences, II, 1780, published 1793, 
page 18-20.

In his work entitled “  Cose trigonometriche ” , 1786, Antonio C o g n o li gives the for
mula :

, sin 1/2 (9 — &)
sin z/2 = ------- --------t -------L  (27)

cos 0
where

rpa 0/2 =  cos 9. cos S. sin-1/2 
sin2 1/2 (9 — S)

and

sin z/2 =  sin 1/2 (<p — 8). t /  1 +  
* sin2 1/2 (9 —  S)

which is also found in a large number of the older text-books. B o lt e  also recommends it 
in his manual entitled “  Neuen Handbuch der Schiffahrtskunde ” , Hamburg 1899, but 
puts however

„ cos 9. cos S. sin2 1/2Enifw=̂ / r ( ^ r  <»
sin2 z/2 =  sin2 1/2  (9 —  S). sec2 w for w <  450 

sin2 z/2 =  sin2 1/2  ( 9  —  8). tan2 w. cosec2 w. for w >  45
In R i d d l e s  “ Treatise on Navigation” , 1842 the formula :

cos z/2 =  cos 1 / 2  ( cp —  x). COS X  
where : (29)

sin x =  sec 1/2 (9 —  8) - \ J  cos f .  cos 8. sin2 t/2
is recommended for the altitude computation. It may readily be seen however that this 
formula is poorly chosen since the factor z/2 is determined by the cosine, which function 
changes very slowly at small angles.

R u m k e r  in his “  Handbuch der Schiffahrtskunde ” 1844, gives the formula : 

sin h =  2. sin 1/2 [x -f- (9 — 8 ) ] .  sin 1/2 [x — (9 — 5)J
(30)

cos x =  cos 9 .  cos 8. versin t.
A  similar equation is found in B r e u s in g s  “  Kleine Steuermannskunst ” , Bremen 1852 :

sin2 z/2 =  cos [1/2 (9 +  ^) +  x]. cos [1/2. ( 9  -f- S') —  x] 
where (31)

sin x =  cos t/2. y /  cos S. cos 9 .  

and in R a p e r s , “  Practice of Navigation ” 1840 in which the altitude formula is written :

hav. z =  cos 1/2  ( 9  +  S -f- x) . cos 1/2  ( 9  +  S —  x)

hav. x =  cos 9* cos hav t’ (32)
t’ =  ( i2 h —  t).

Among the altitude formulae contained in the older text-books there is one which must 
be mentioned, not because it allows of easy calculation by logarithms but because it was 
widely used in practice. We mean the D o u w e s  formula :

sin h =  cos ( 9  —  S) —  cos 9 .  cos S. versin t (33)



In his treatise: “  Verhandling om buiten den Middag op zee de waare middags Breedte 
te vinden” Haarlem 1747, Cornelius D o u w e s , who was appointed by the Statthalter of the 
Netherlands, Willem IV , Head of the newly founded “  Zeemannscollege ” , gives a very clear 
derivation of this equation from the orthographic projection of the sphere.

In the Fig. 6, let Q Q’ represent the equator, D D’ a parallel t>f declination, D the 
position of the star at noon and G the position of the star at the time t. F  G a parallel 
of altitude. By construction we have

The derivation of a formula by means of the projection method which, as was shown in 
the first part of this treatise, was known to the Indians (about 400 A.D.) and probably 
also to the ancient Greeks, appears to us today a trifle cumbersome. However, in most

through his work “  Principes de la Trigonométrie ” , Berlin, 1753 which gave the basis of 
the analytic treatment of the spherical trigonometrical problems, because of the clarity of 
the demonstration.

It is noteworthy also that in his writings where he solves the nautical problems D o u w e s  
makes use of five-place logarithms. The log versine t he calls the “ logarithmus rijzing ” 
(Logarithmus Steigezeit), (logarithm of the rising time) a designation which has been 
retained in English text-books on nautical astronomy to the present day. (12)

___ I

F H  =  GR =  sin h

and

FH  — D E —  DC.

Further, as may be seen from Fig. 6,

D E

F ig . 6.

and therefore :

sin h =  cos (<p — 8) —  DC.

By construction, further

D B =  COS

GB =  cos S. cos t,

DC =  DG . cos <p
and therefore

D C  =  cos 9, cos S .  versin t 
B y substituting this in formula (a) we obtain

versin t

manuals of navigation it was retained even long after the Euler principles had become known

(12) J.W . N o r ie , “ A  complete set of Nautical T ables” , London 1920.



(35)

Amongst the earliest known trigonometrical functions the versine was known to mathe
maticians as well as the sine. It is encountered in the most ancient work of the Indians 
now extant, namely the Sürya-Siddhänta (about 400 A.D.) and the somewhat later work of 
Arjabhata (560 A.D.) who calculated a table of these functions. The Indians, who called 
the sine “ jy a ” or “ jiv a ” (chord) designated the versine as ’’ utkramajya” or “  uttrmadjya ” , 
which means the reversed sine. The Arabs used the designation “  sahem ” (arrow) for this 
function, from which we have the latin “  sagitta ” , as the versine is known today in many 
text-books on trigonometry. According to R . W o lf , “ Handbuch der Astronomie, ihre Ge
schichte und Litteratur ” , Zürich, 1890-1893, the designation versine was introduced by Apian. 
Today this designation has disappeared and in its place we find the haversine (hav. x  =  1/2 
versine x).

The Douwes formula is well adapted for the calculation of the altitude. With the use 
of a five-place logarithm table it gives an accuracy of 2’ without any interpolation from 
altitude to altitude up to 8o°. It may be found in most text-books both in Germany and in 
most foreign countries. Albrecht und Vierow give it even as late as the tenth edition of 
their text-book in 1913. Further, a great number of nautical tables adapted to this particular 
formula have been published. Amongst others we cite here only the “  Taboa Polytelica ” 
of Jose Nunez da Matta, Lisbon 1906 and the “  Zeevaartkundige Tafelen” by R. Peaux, 
Rotterdam 1912.

In recent times however, it has been replaced by other formulae, such as the so-called 
naval formula :

hav. x =  cos 9 • cos Ö . sec (9 —  8 ) hav t
1 <34)sin h =  cos (9 —  v) • cos 1

taken from the Bolte system (28) and from the formula : 

hav. y =  cos 9 . cos &. hav. t

hav. z =  hav. (9 —  S) -)- hav. y.
A s I have already shown in the first part of this work, this formula (35) is to be 

found in the work of R eg io m o n t a n  and was first taken up again in the last two decades. 
Albrecht und Vierow bring it out first in their 1925 edition. In Breusings “  Steuermanns
kunst ” , it was first given in the 1932 edition. The English and American Mariners appear 
to have made use of it somewhat earlier, since in the tables published by Johnson in 1900, 
entitled “ Short Tables and Rules for finding Latitude and Longitude” we encounter it in 
the form :

versin 0 =  versin t : sec 9 . sec &
/ a 06)versin z =  versin (9 —  &) -f- versin Ö

Tables which are specially adapted for the solution of formula (34) are those of 
Davis, “  Requisite Tables ", London 1905; those of G. Pe s , “  La Rette di posizione ” , Genoa 
1921, the Tables of Yonemura, Tokio 1920, the Fulst Tables, widely used in Germany and 
the “ Altitude Azimuth and Line of Position Tables” , H.O. N° 200, Washington, ist 
Edition, 1913. All witness to the wellnigh international acceptance of this formula.

Professor W e d e m e y e r  called my attention to a similar formula which can be derived 
by a transformation of the Douwes formula. I f  we put

sin h =  cos (9 —  $) —  cos 9* cos d. versin t 

cos x =  cos 9 • cos 8 . versin t
then we have

sin h  =  cos (cp — 8) — cos x, (37)

which gives a formula coinciding with the hav z formula in so far as form is concerned.
I hope very shortly to be able to publish in der Seewart an investigation on the accuracy 
of this formula.

Another formula which has attained a certain importance in nautical astronomy, is the 
following, derived from the Delambre equation :

sin2 z/2 =  sin2 1 /2  (<p — 8). cos2 t/2 -j- cos2 1/2  (<p_|_S). sin2 t/2, 
(38)



to which Wedemeyer called attention in 1903 on account of its great arithmetrical accuracy 
in calculation. From this time onwards there appeared* quite a number of different arithme
trical methods in the various countries, based on the above cited equation. Thus we have 
the “  Hôhentafel ” of Soeken in 1914, the “  Taboas de Altura Para Càlculo Da Recta 
Marcq. St. H ilaire” of Braga in 1924 which, in their arrangement and content, are very 
similar to the Soeken Tables. Further Teege in 1919 brought out a table (*3) which was 
supposed to facilitate the solution of this equation, as did also Caric in 1932 (r4). Both 
make use of the addition logarithms. I f  in equation (38) we put the greater of the products 
on the right hand side equal to m, and the smaller equal to n, then we have

The Teegesch Tables contain the four-place logarithms of sin x /2 ; cos X/2 from o° to i8 if 
and of sec2 x/2 and tang2 x/2 from o° to 90° progressively from minute to minute. C a r ic  
uses the same method but writes :

In England and America it appears that the work of W e d e m e y e r  has remained un
known, since as late as 1910, H.B. G o o d w in  published in the Nautical Magazine and in 
the “ Proceedings of the U.S. Naval Institute” an article entitled “ The Haversine in 
Nautical Astronomy” in which the formula

hav z =r hav (p —  c) +  [hav (p +  c) —  hav (p —  c)j . hav t (39)

was deduced. In this G o o d w in  thought that he had discovered a new altitude formula but, 
as may readily be seen, it is identical with the Delambre formula (38). Only a year later 
did G o o d w in  come upon the identical Delambre formula in the equation

it and praised it highly in an article published in November 1921 in the “  Revista Marit- 
tima ” . In the year 1926 in the Nautical Magazine we find quite a number of articles 
dealing with the various methods of solving equation (40), among them being the proposed 
use of the addition logarithms. A  nomogram, based on this formula was published by 
L i t t l e h a l e s  in the “  Proceedings of the U.S. Naval Institute ”  in 1917 . L i t t l e h a l e s  had 
the following to say about this formula :— “  Because this formula (39) if successfully 
represented in graphical form, might provide the aerial navigator with the equivalent of a 
volume of Nautical Astronomy in a form simple enough to fulfil the instant needs oi 
flight ” . This judgment is somewhat exaggerated because the nomogram on the scale drawn 
by L i t t l e h a l e s  was too small to permit of the accuracy desired for anything like exact 
navigation.

(13) T eege , “  Vierstellige logarithmische Tafel sur Berechnung der Höhe eines Ges
tirns ” , Reichs-Marine-Armt., 1919.

{14) C a r ic , “ Tavole Nautiche” , Cattaro, Jugoslavia, 1924.

or for : 4. a / ntan"' x/2 =  —
'  TVlm

sin 2 z / 2 =  m  ( 1  -j- tan  x / 2 )  =  m . sec2 x / 2 .

lo g 2 sin  z / 2  =  lo g  m  -f- A ,

i.e. here one employs the difference

lo g  m  —  lo g  n =  B .

as argument to enter the addition logarithms A  given on the page and a half of the table.

hav z =  hav (p —  e) . (1 — hav t) -f- ha\ (p -f- c) hav t (40)

He wrote this discovery to the well-known Italian navigator Capt. A l e s s io  who discussed



For the determination of the position by the altitude method it is not absolutely essential 
that the altiude at the dead-reckoning position in question be known. It is much more 
essential that the difference between the observed and computed altitudes at the D.R. position 
be known. In practice this will hardly ever exceed 30’ . In the altitude problem therefore it is a 
question in reality of the calculation of not more than 30 different positive or negative numbers. 
F u l s t  has shown in the Annalen der Hydrographie 1900 page 320 how this difference can 
be found without resorting to the calculation of the altitude proper. Later formulae were 
published by R e u t e r ,  W e d e m e y e r ,  which also showed the manner of calculating this alti
tude difference directly. Several of these formulae are given herewith :—

F u l s t , Annalen der Hydrographie, 1900, page 320

S  =  co lo g  co s2 t / 2  -f- lo g  sec cp +  lo g  sec 8 +  lo g  cos 1 / 2  ( z x cp 8 ) 

-j- lo g  cos 1 / 2  ( z 1 —  cp —  8 ) 

S 
dh =  -—  

m
in which 2 m =  D ±  d, D is the minute difference of the log cos 1/2

(z. +  <P +  3 ) ,  d is that of log cos 1/2 (z< —  <p —  &) The upper sign is valid when z

>  9  +  ^ anc* the lower when z <  cp -(- 8 .
R e u t e r  : Annalen der Hydrographie, 1902, p. 37

^  2 - cos cp . cos 8 . s in 2 t / 2  —  2 . sin  ( z t -f- cp —  8 ). sin  ( z t —  cp 8 ) 

s in  z x . sin  1’

W e d e m e y e r  : Annalen der Hydrographie, 1902, page 399.

dz’ =  k ’ d (log  hav t). sin 1/2  (z -f- 9  +  ^)- sin  1 / 2  (z —  ?  +  ^)- cos^c z > 
where 

2. sin  1 ’ 
k ’ =

m od
T e e g e  : Annalen der Hydrographie, 1903, page 154.

2 . COS ( p .  COS 8. COS2 t / 2  +  2 . COS l / 2  (z x_ | _ c p -f-5 ) COS l / 2  (z1- - - C p- - - 8) 
sin  z 1 . sin  1 ’

None of the above formulae have been adopted in the practice of navigation. The 
same may be said of the calculation of the altitude by means of the Mercator functions, 
as has been repeatedly proposed by mariners at the end of the last century and the beginning 
of the present century. The mercator function is defined by

f  ( ? )  =  ? ■  y  .

n  a f
where y — I  -------- —  I n tan (4 50 -}- ¥ / 2 )

J 0 cos ¥
and p is equal to the arc of a circle which is equal to the semi-diameter

1 8 0 X 6 0  
or : P =  u  =  3437  *7

The numerical value of this function is found in the table of meridional parts or the 
tables of increased latitudes, given in every collection nautical tables. “ B o r g e n ”  O s ) pro
posed the name “  Mercator function ” in memory of the great geographer Gerhard Mer
cator, the inventor of the Mercator Chart projection, As may readily be seen this table 
is simply a table of logarithmic tangents, calculated for the base e and multiplied by a 
constant. In the logarithmic calculation the base of the chosen system is of no importance 
and the multiplication by a constant factor remains without influence on the result.

(15) B o rgen  : “  Uber die Auflösung nautisch-astronomischer Aufgaben mit H ilfe der 
Tabelle der Meridionalteile” . A u s dem A rch iv  der Deutschen Seewarte, 1898.



Therefore it is not surprising that the problems of nautical astronomy can be solved 
with the aid of a table of meridional parts. The solution of similar problems with the 
aid of the tangents was also known to the Arabian mathematicians in the early Middle 
Ages. One formula, making use of the Mercator functions for the calculation of the altitude 
and azimuth reads as follows :—■

f ( x j  =  f ( ? ) + ( « )  
f (x2) =  f ( 9 )  —  f (d) 

cof (a +  q) =  —  cof ( x j  +  cof (t) 

cof (a —  q) =  cof (xa) —  cof (t)

f (x ’) =  cof (a) +  cof (q)

cof (z) =  cof (x ’) —  cof (9 3)
in which q represents the parallactic angle. The fact that the attempt to introduce such 

, complicated systems into practical navigation was doomed to failure could have been predicted. 
How much more then must we be astonished that despite this fact, these were later proposed 
for aerial navigation, for instance by M a r c u s e  in his book “  Astronomischen Ortsbestimmung 
im Ballon ” , Berlin 1909. It seems however that frequently, many systems which have been 
rejected by mariners as impracticable have now been proposed to aerial navigators as 
“  elegant new methods ” . Therefore a thorough study of nautical astronomy might also be 
recommended for aerial navigators.

Of the many transformations of the 1st cosine equation, the basic equation of nautical 
astronomy, I have given only a few, but these are the most important. An almost complete 
collection of the various transformations hitherto known may be found by those interested 
in the subject in the work of A. W e d e m e y e r  entitled “  Zur Hohenberechnung ” Ann. der 
Hydro. 1903, p. 2 11, page 248 and p. 263.

Now I should like to answer briefly one question :—

Which formula or system of formulae is best adapted for the calculation of the altitude ? 
In my opinion for the pure logarithmic calculation of the altitude and azimuth in one series 
of calculations, the best system is number (24).

cotan y — —  cotan 8 . cos t 

cotan a — cotan T. cos Y. sec y 

cotan h =  —  cotan Y. sec a.

which forms the basis of the Seewarte Tables. This is probably the only system which 
permits of the calculation of altitude and azimuth with four-place logarithms which will 
insure an accuracy of 2 ’ in every case. Further, the altitude can be calculated by the De- 
lambre formula with four-place logarithms to within 2’ by means of the Delambre equation 
(38)
sin2 z/2 — sin2 1 / 2 ( 9  —  & ). cos2 t/2  cos2 1 / 2 ( 9  -\- 6 ). sin2 t/2. 

With five-place tables we recommend the following formulae : 

hav. y =  cos 9 • cos 8 . hav t 

hav. z =  hav. (9 — 8 ) .  -|- hav y
and

cos x =  cos 9 • cos S . versin t 

sin h — cos (9 —  —  cos x -
The favorite formula at the moment is probably (35) which, in the 1933 edition of 

the German Admiralty’s Book, “  Nachtrag zum Lehrbuch der Navigation ” has been given 
preference and which well deserves the designation “  international altitude formula ” , be
cause it is used to calculate the stars’ altitude not only by the Germans but also by the naval 
and merchant marine officers in England, America, Italy, the Scandinavian countries, Japan 
and many other nations. The four formulae given above are the best and I doubt very 
much if with the mathematical aids available today we can find any which will better

(35)

(37)



serve the purpose; i.e. we must be content with the progress we have made. The question 
then remains, “  How can the calculation of the altitude be still further simplified ? ” . For 
this there are several possibilities. Thus by means of tabular, graphical or mechanical aids 
we may partially or entirely avoid the arithmetical calculation. To what extent this is 
possible, I should ,like to discuss in a subsequent work. There remains, however, still another 
way; i.e. the use of calculating machines. This most modern of all aids to arithmetical 
calculation has practically replaced the use of logarithms on shore. On the other hand 
its aid in the solution of the nautical astronomical problems has hardly been sought. For 
the calculation of the altitude by means of a commercial calculating machine it would be 
necessary to transform the basic equation in such a manner that accurate results to five 
places can be obtained which would not only give the requisite accuracy for navigation but 
would insure a smooth and easy solution.


