A METHOD OF INFERRING THE AMPLITUDES OF THE TIDAL CONSTITUENTS M_{2} AND ($K_{1}+O_{1}$)

by Bernard D. Zetler, U.S. Coast and Geodetic Survey.

In the classification of tides and in many other phases of tidal work, it is important to know the amplitude of the principal diurnal wave, represented by the sum of the amplitudes of the tidal constituents K_{1} and O_{1}, and the amplitude of the principal semi-diurnal wave, as represented by M_{2}.

The constituent amplitudes are usually determined by a harmonic analysis of observed hourly heights. Since there are many series of observations that have not been analyzed, it is desirable to have a method of inferring the amplitudes $\mathrm{K}_{1}+\mathrm{O}_{\mathrm{I}}$ and M_{2} from non-harmonic data.
R.A. Harris describes a method of obtaining $K_{1}+\mathrm{O}_{1}, \mathrm{~S}_{2}$ and M_{2} from non-harmonic quantities on page 168 of Manual of Tides, Part Ill (U.S. Coast and Geodetic Survey publication, now out of print). His formula for $\mathrm{K}_{1}+\mathrm{O}_{1}$ requires the use of tropic inequalities (the largest inequalities which occur at the extreme declination of the moon). His formula for S_{2}, which in turn is needed for M_{2}, requires observed spring and neap ranges. Since tropic inequalities and spring and neap ranges are ordinarily not obtained in the reduction of observations, the required data for his formulas are usually not available.

The method presented here for inferring the amplitudes of ($\mathrm{K}_{1}+\mathrm{O}_{1}$) and M_{2} requires the mean diurnal inequalities, the mean range and two tables which are furnished. DHQ, the mean diurnal high water inequality, is the difference between mean higher high water and mean high water. DLQ, the mean diurnal low water inequality, is the difference between mean low water and mean lower low water. Mn is the mean range. In solving for $\mathrm{K}_{1}+\mathrm{O}_{1}$, which must be obtained before M_{2}, it is necessary to choose between two solutions depending on whether DHQ is greater or less than DLQ.

To obtain $\mathrm{K}_{\mathrm{I}}+\mathrm{O}_{\mathrm{I}}$:
(a) If $\mathrm{DHQ} \geqq \mathrm{DLQ}$,

DHQ
find to one decimal place and obtain factor F_{1} from Table 1.
DLQ
Then $\mathrm{K}_{1}+\mathrm{O}_{1}=\frac{\mathrm{DHQ}}{\mathrm{F}_{1}}$
(b) If DHQ $<$ DLQ.

DLQ
find $\frac{\mathrm{DHQ}}{}$ to one decimal place and obtain factor F_{1} from Table 1.
Then $K_{1}+O_{1}=\frac{\text { DLQ }}{F_{1}}$

To obtain M_{2} :
$2.2\left(\mathrm{~K}_{1}+\mathrm{O}_{1}\right)$
Find $\frac{\mathrm{Mn}}{}$ to one decimal place and obtain factor F_{2} from Table 2.
$\mathrm{M}_{2}=\frac{\mathrm{Mn}}{2.19+\mathrm{F}_{2}}$

DERIVATION OF FORMULAS AND TABLES

The procedures used in the method just described are primarily a reversal of the processes used by the Coast and Geodetic Survey in deriving non-harmonic tidal data from the harmonic constants. The procedures and tables used in that process are given in Special Publication No. 260, Manual of Harmonic Constant Reductions, 1952.

$$
\text { To obtain } K_{1}+O_{1} \text { : }
$$

Table 13 of the Special Publication No. 260 supplies factors F_{H} and F_{L} which, multiplied by the sum of the amplitudes of K_{1} and O_{1}, give the mean diurnal high and low water inequalities, DHQ and DLQ. The arguments used in the table are (1) the ratio of the amplitude $\mathrm{O}_{1} / \mathrm{K}_{1}$, and (2) the phase $\mathrm{P}=\left|\mathrm{n} \pi-\left(\mathrm{MKO}-\frac{1}{2} \mathrm{v}\right)\right|$ for DHQ and $\mathrm{P}=\left|\mathrm{n} \pi-\left(\mathrm{MKO}-\frac{1}{2} \mathrm{w}\right)\right| \pm 90^{\circ}$ for DLQ. n is either 0,1 or 2 ; MKO is one half the phase difference, $\mathrm{M}_{2}{ }^{\circ}-\mathrm{K}_{1}{ }^{\circ}-\mathrm{O}_{1}{ }^{\circ}$; and v and w are the angular changes in the mean high and low water lunitidal intervals introduced by M_{4} and M_{6}.

Since $\left(K_{1}+O_{1}\right) \times F_{H}=D H Q$
and $\left(\mathrm{K}_{1}+\mathrm{O}_{1}\right) \times \mathrm{F}_{\mathrm{L}}=\mathrm{DLQ}$
$\frac{F_{H}}{F_{L}}=\frac{D H Q}{D L Q}$.
Using the theoretical ratio $\mathrm{O}_{1} / \mathrm{K}_{1}=0.7$ and entering Table 13 with this as an argument, corresponding values of F_{H} and F_{L} for each value of P are
obtained

$\left.\mathrm{P}_{\text {(for }} \mathrm{DHQ}\right)$	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
F_{H}	.639	.631	.604	.557	.495	.422	.339	.255	.183	$.151^{\prime}$
$\mathrm{P}_{\text {(for DLQ) }}$	90°	100°	110°	120°	130°	140°	150°	160°	170°	180°
F_{L}	.151	.183	.255	.339	.422	.495	.557	.604	.631	.639

$\frac{\mathrm{F}_{\mathrm{H}}}{\mathrm{F}_{\mathrm{L}}}$ (or $\frac{\mathrm{DHQ}}{\mathrm{DLQ}}$) $4.23 \quad 3.45 \quad 2.37 \quad 1.64 \quad 1.170 .850 .610 .420 .29 \quad 0.24$

$$
\text { Since } \frac{F_{H}}{F_{L}}=\frac{D H Q}{D L Q} \text {, corresponding values of } F_{H} \text { and } \frac{D H Q}{D L Q} \text { can be }
$$

plotted on Figure 1. These points are connected by a smooth curve, making it possible to obtain a value of F_{H} for any ratio $\frac{\text { DHQ }}{\text { DLQ }}$. This solves the problem as $\mathrm{K}_{1}+\mathrm{O}_{1}=\frac{\mathrm{DHQ}}{\mathrm{F}_{\mathrm{H}}}$.

In actual observations, $\frac{\mathrm{DLQ}}{\text { will sometimes be greater than } 4.23 \text { or less }}$ than 0.24 . It is presumed this will be due to a ratio $\mathrm{O}_{1} / \mathrm{K}_{1}>0.7$. From the DHQ
curve in Figure 1, F_{H} is approaching a maximum value at $\frac{\mathrm{DLQ}}{\mathrm{DLQ}}=4.23$ and
DLQ
will not increase for higher values of the ratio.

$$
\mathrm{DHQ}
$$

If we limit the portion of Figure 1 to $\frac{}{\mathrm{DLQ}} \geq 1$, and use the same DLQ
portion of the curve for the solution for F_{L} for any ratio $\frac{\mathrm{DLQ}}{\mathrm{DHQ}}>1, \mathrm{~K}_{1}+\mathrm{O}_{1}$ DHQ DLQ
$=\frac{\text {. In this manner we can avoid the portion of the curve in which } F_{H}}{}$ F_{L}
varies rapidly with a small change in $\frac{\mathrm{DHQ}}{\mathrm{DLQ}}$ and also eliminate the problem of how to handle a ratio $\frac{\mathrm{DHQ}}{\mathrm{DLQ}}<0.24$.

Two solutions are therefore used depending on whether DHQ is greater or less than DLQ.
(a) If $\mathrm{DHQ} \geqq \mathrm{DLQ}$, determine $\frac{\mathrm{DHQ}}{\mathrm{DLQ}}$ and then
F_{H} from Table 1.
$\mathrm{K}_{1}+\mathrm{O}_{1}=\frac{\mathrm{DHQ}}{\mathrm{F}_{\mathrm{H}}}$
(b) If $\mathrm{DHQ}<\mathrm{DLQ}$, determine $\frac{\mathrm{DLQ}}{\mathrm{DHQ}}$ and then
$F_{\text {L }}$ from Table 1.
$\mathrm{K}_{1}+\mathrm{O}_{1}=\frac{\mathrm{DLQ}}{\mathrm{F}_{\mathrm{L}}}$
Table 1 gives values for F_{H} and F_{L} but calls both F_{1}. This requires that the limiting character of the choice of solutions be observed.

To obtain M_{2} :
The formula for mean range (No. 43 on page 10 of Special Publication 260) is

$$
\begin{aligned}
\mathrm{Mn} & =1.02\left(\operatorname{Cos} \mathrm{v}+\operatorname{Cos} \mathrm{w}+\text { Table } 4+\text { Table 5) } \mathrm{M}_{2}\right. \\
& +1.02 \mathrm{M}_{4}\left[\operatorname{Cos}\left(\mathrm{P}_{4}-2 \mathrm{v}\right)-\operatorname{Cos}\left(\mathrm{P}_{4}-2 \mathrm{w}\right)\right] \\
& +1.02 \mathrm{M}_{6}\left[\operatorname{Cos}\left(\mathrm{P}_{6}-3 \mathrm{v}\right)+\operatorname{Cos}\left(\mathrm{P}_{6}-3 \mathrm{w}\right)\right] .
\end{aligned}
$$

If M_{4} and M_{6} are taken as zero, the equation simplifies to
$\mathrm{Mn}=1.02\left(2.00+\right.$ Table $4+$ Table 5) M_{2}.
Table 4 is the theoretical increment in mean range due to the lunar semidiurnal constituents with speeds incommensurable with that of M_{2} and to the solar semidiurnal constituents. Its value is determined by the ratio $\mathrm{S}_{2} / \mathrm{M}_{2}$.

Table 5 is the theoretical increment in mean range due to the diurnal $\mathrm{K}_{1}+\mathrm{O}_{1}$
constituents. Its value is determined by the ratio $-\mathrm{M}_{2}$.
The factor 1.02 is an empirical value which takes account of non-predictable inequalities.

Then $\mathrm{M}_{2}=\frac{\mathrm{Mn}}{1.02(2.00+\text { Table } 4+\text { Table } 5)}$
Using the theoretical relationship of $\frac{\mathrm{S}_{2}}{\mathrm{M}_{2}}=0.47$, the corresponding value in Table 4 is 0.15 .

The denominator becomes
$1.02(2.00+0.15+$ Table 5$)=2.19+1.02$ Table 5
Since the factor from Table 5 is ordinarily small, we let
1.02 Table $5=$ Table 5

Mn
Then $\mathrm{M}_{2}=\frac{}{2.19+\text { Table } 5}$
Table 2 in this paper is the same as Table 5 (Special Publication No. $\mathrm{K}_{1}+\mathrm{O}_{1}$
260). The argument for determining its value is M_{2}. If we approximate M_{2}
$\mathrm{M}_{2}=\frac{\mathrm{Mn}}{2.2}$ and enter Table 2 with the argument $\frac{2.2\left(\mathrm{~K}_{1}+\mathrm{O}_{1}\right)}{\mathrm{Mn}}$, we can solve
for a more accurate value of M_{2}. The factor F_{2} is therefore obtained by entering
Table 2 with $\frac{2.2\left(\mathrm{~K}_{1}+\mathrm{O}_{1}\right)}{\mathrm{Mn}}$ as an argument.
$M_{2}=\frac{M n}{2.19+\mathrm{F}_{2}}$
In the development of the formulas and tables, theoretical ratio $\left(\mathrm{O}_{1} / \mathrm{K}_{1}=0.7\right.$ and $S_{2} / M_{2}=0.47$) are used and it is assumed that M_{4} and M_{6} (overtides of M_{2}) are zero. While variations from the above assumptions are normally to be expected, many such variations are represented by the stations given in Table 3 and the results shown in that table indicate that the procedures for approximating $\mathrm{K}_{1}+\mathrm{O}_{1}$ and M_{2} are ordinarily satisfactory. The inferences of $\mathrm{K}_{1}+\mathrm{O}_{1}$ for Buenaventura and Talara are poor in terms of percentages but the numerical error is less than 0.2 foot. The inaccuracy is due primarily to a ratio $\mathrm{O}_{1} / \mathrm{K}_{1}$ considerably less than the theoretical value. A survey of harmonic constants for places throughout the world disclosed a limited number of other places for which a low value of the ratio $\mathrm{O}_{1} / \mathrm{K}_{1}$ would give inaccurate results. In every case but one (a 15 day series at Obbia, Africa), the amplitudes of K_{1} and O_{1} were less than a foot so that the numerical error in inferring by this method would be small.

TABLE I		TABLE 2	
DHQ			
DLQ	F_{1}	$2.2\left(\mathrm{~K}_{1}+\mathrm{O}_{1}\right)$	F_{2}
DLQ			
$\text { or } \overline{\mathrm{DHQ}}$		Mn	
1.0	. 46	0.0	. 00
1.1	. 48	0.1	. 00
1.2	. 50	0.2	. 00
1.3	. 52	0.3	. 01
1.4	. 33	0.4	. 01
1.5	. 54	0.5	. 02
1.6	56	0.6	. 03
1.7	. 56	0.7	. 04
1.8	. 57	0.8	. 05
1.9	. 58	0.9	. 06
2.0	. 58	1.0	. 07
2.1	. 59	1.1	. 09
2.2	. 60	1.2	. 10
2.3	. 60	1.3	. 12
2.4	. 61	1.4	. 14
2.5	. 61	1.5	. 16
2.6	. 61	1.6	. 18
2.7	. 62	1.7	. 21
2.8	. 62	1.8	. 23
2.9	. 62	1.9	. 26
3.0	. 62	2.0	. 29
3.1	. 63	2.1	. 32
3.2	. 63	2.2	. 35
3.3	. 63	2.3	. 38
3.4 . 63		2.4	. 42
3.53.6	. 63	2.5	. 45
	. 63	2.6	. 49
3.6	. 64	2.7	. 52
		2.8	. 56
		2.9	. 61
		3.0	. 65

为

Place		Series	Observed Values*			Harmonic Analysis		Inferred Values		Error of Inference	
			$\begin{gathered} \mathrm{Mn} \\ \mathrm{ft} . \end{gathered}$	$\begin{aligned} & \mathrm{DHQ} \\ & \mathrm{ft.} \end{aligned}$	$\underset{\mathrm{ft} .}{\mathrm{DLQ}}$	$\mathrm{K}_{\mathrm{f}} \mathrm{ft.}^{+\mathrm{O}_{1}}$	$\begin{aligned} & \mathrm{M}_{2} \\ & \mathrm{ft} . \end{aligned}$	$\begin{gathered} \mathrm{K}_{1}+\mathrm{O}_{2} \\ \mathrm{ft} . \end{gathered}$	$\begin{aligned} & \mathrm{M}_{2} \\ & \mathrm{ft} \end{aligned}$		
Collinsville	1 yr.,	1936-1937	3.20	0.48	0.61	1.28	1.37	1.17	1.43	9	4
Dunbarton Bridge	1 yr.,	1936-1937	6.50	0.58	1.20	2.11	2.98	2.03	2.91	4	2
Avila	1 yr.,	1949	3.58	0.67	1.02	1.89	1.60	1.89	1.56	0	2
Port Hueneme	1 yr.,	1941	3.65	0.78	0.98	1.86	1.62	1.88	1.60		
Santa Monica	1 yr.,	1940	3.72	0.80	0.96	1.83	1.66	1.92	1.63	5	2
Los Angeles	1 yr.,	1940	3.78	0.79	0.96	1.81	1.70	1.92	1.66	6	2
La Jolla	1 yr.,	1940	3.66	0.76	0.94	1.77	1.63	1.88	1.61	6	
San Diego	1 yr.,	1936	4.12	0.76	0.92	1.79	1.79	1.84	1.82	3	2
Salina Cruz	1 yr.,	1941-1942	3.40	0.36	0.13	0.56	1.60	0.58	1.55	4	3
La Union	1 yr.,	1947-1948	8.01	0.32	0.20	0.55	3.90	0.57	3.66	4	6
Puntarenas	1 yr.,	1941-1942	7.48	0.26	0.21	0.47	3.62	0.52	3.42	11	6
Buenaventura	$1 \mathrm{yr} .$,	1941-1942	10.40	0.24	0.32	0.46	4.89	0.62	4.75	35	3
Talara	1 yr.,	1942-1943	4.02	0.21	0.33	0.51	1.90	0.59	1.83	16	4
Callao	1 yr.,	1941-1942	1.79	0.42	0.28	0.71	0.76	0.78	0.79	10	4
Matarani	1 yr.,	1941-1942	2.14	0.51	0.17	0.79	1.00	0.82	0.96	4	4
Valparaiso	$1 \mathrm{yr} .$,	1941-1942	2.99	0.54	0.19	0.84	1.40	0.87	1.35	4	4
Puerto Montt	$1 \mathrm{yr} .$,	1942-1943	13.22	0.73	0.43	1.26	6.15	1.30	6.04	3	2
Punta Arenas	1 yr.,	1942-1943	3.77	0.88	0.71	1.69	1.65	1.76	1.67	4	

