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ABSTRACT

For hydrographic surveys conducted by the U.S. Naval Oceanographic 

Office, the position of a sounding vessel is determined by applying the method of 

adjustment by variation of parameters. Three types of navigational aids are used: 

ranging, azimuthal, and hyperbolic. Given data from any combination of at least 

two navigational aids, a fix may be obtained using an iterative method, which 

applies successive adjustments to an approximate location and forces it to 

converge to the most probable position. The magnitude and direction of each 

adjustment is determined from a least squares solution that minimizes the residual 

differences between actual navigational observations and imaginary observations 

calculated as if the ship were at the approximate location.

I. INTRODUCTION

The U.S. Naval Oceanographic Office conducts hydrographic surveys using 

three types of navigational aids (navaids): range, azimuth, and hyperbolic. From 

each navaid of hyperbolic pair is obtained a line of position; the intersection of 

lines of position determine the ship position. If there are more than two lines of 

position, the intersection generally is not a point, and the vessel location is 

determined by taking the precision of each navaid into consideration.

The method presented here differs from other published work in that 

combinations of different navaid types are used to obtain a fix.

(*■) U.S. Naval Ocean Research and Development Activity, NSTL, Ms. 39529-5004, USA. 

(**) U.S. Naval Oceanographic Office, NSTL, Ms. 39529-5001, USA.



II. ADJUSTMENT BY VARIATION OF PARAMETERS

Given at least two lines of position, the most probable position may be 

determined by the following iterative method. First, the approximate position of 

the vessel is estimated. This position is adjusted in such a way that it becomes 

closer to the as-yet undefined most probable position. Successive adjustments 

force the approximate position to converge to the most probable position.

The most probable position is the location where the weighted sum of 

squares of residual differences is a minimum. Here the residual difference is 

defined as the difference between the actual navaid observations and the values 

computed at that location from geodetic formulas. Computed navaid values are 

herein referred to as imaginary observations. It is important to distinguish between 

an actual observation, which is a measurement from a navaid, and an imaginary 

observation, which is a value that one would expect to measure at a given 

location. Imaginary observations are often referred to as ‘computed observations’ 

because the source of the ‘observations’ is a calculation that uses geodetic 

formulas to compute a given range, range difference, or azimuth.

A  The general model of variation of parameters

Derivations of the general model for variation of parameters may be found 

in E w in g  and M it c h e l l  (1970) and M ik h a il  and G r a c ie  (1981). Input data 

consists of the approximate position (x, y) and the actual navaid observations (1,). 

The first step is to calculate the imaginary observation (/,-,-) using geodetic 

formulas (e.g. the Sodano inverse method; C a m p b e l l , 1964). Im aginary 

observations depend on the approximate location.

l j =  F;(x, y ) (1)

The subscripts i  and j  are navaid number and iteration number, respectively.

The goal is to calculate the appropriate adjustment that will ‘move’ the 

approximate location closer to the most probable position. After each adjustment, 

a new set of imaginary observations (/,-j+j) may be calculated. The quantity / lff, 

may be expressed in terms of the previous set of imaginary observations (/,^ and 

a small change in these values (dl^),

l . j + l  =  I i j +  d ly  (2 )

or in terms of the actual observations (1,) and the deviation from actual 

observations (v,).

hi+i =  - v- (3)

The quantity v, is defined as the residual difference, the difference between an



actual observation and its corresponding imaginary value computed on the next 

iteration. The difference between an actual observation, and its corresponding 

imaginary observation computed during the current iteraction, is the misclosure (/,)

/= 1 ,- / ,,  (4)

Rearrange Equation (3) to yield

v,-= 1 ,- / , , . , .  (5)

Now, substitute values of Ihh, and 1, from Equations (2) and (4)

v, =  /, d l,r  (6)

Expand the d l;j term:

_  <9F;(x , y ) dF ,(x , y ) 

d l„ --------2 - ------ dx  + -------3 5 T -  d y - (7)
Substitute this expression for d l;j into Equation (6).

f dF) , JF, j
v, =  t ,----—  d x ------—  dy  (8)

ox dy

This is the observation equation, and there is one for each navaid. The set of 

observation equations may be expressed concisely in matrix form as follows.

v =  f  - B A ,  (9)

where

v , /,
v 2 4

A = dx
V  — /  =

dy

V n /„

dF, dF,

dx dy

ÛF, dF2

dx dy

JF n dFn

dx w

The next task is to find an expression for the sum of squares of residuals 

For observations of equal precision,

(10)

but this is rarely the case. More generally observations are of unequal precision 

and are weighted accordingly.



In matrix form, this equation is

where

¢  =  X w iVi*

(f) =  v1 W  v

(ID

(12)

W'_

Wt
0

u

0

W2

u

0

0

Now, substitute the value of v from Equation (9).

cp =  ( f -  B A /  W(f -  BA) =  ( f * -  A 'B 1)  W (f -  BA ) =  (f*W  ~ A’B'W ) ( f  -  BA ) 
=  f 'W f- A 'B 'W f- f'W BA  + A*B?WBA (13)

Since <£ is a scalar, each term on the right side of Equation (13) is also a scalar. 

The transpose of a scalar is equal to itself. Therefore, the second term is equal to 

the third.

A,B ‘ W f=  ( A 'B 'W f / ^  f ’ WBA 

So Equation (13) reduces to

<j> =  f 'W f-  2f'W BA  + AW W BA.

(14)

(15)

To find the appropriate adjustment A that yields the minimum value of 4>, set the
J  i

partial derivative equal to zero and solve for A. This is done in Equations
dA

(16)-(20). See M ikhail and Gracie (1981, pp. 73 and 322) for calculation of the 

following derivative.

d cb
—  =  2 f ‘W B  + 2A '(B 'W B ) =  0
dA

(16)

Rearrange and divide by 2.

A t( B 'W B ) = f ‘W B  (17)

Again, since each side of the equation is a scalar, each side may be transposed.

(B 'W B)* A =  B ‘W ‘f  

& W B A  =  B ‘W f



Now, let N =  B‘ WB (18)

and t =  B'W f, (19) 

then, TVA =  t

and A =  AH f .  (20)

Equation (20) yields the adjustment applied to the approximate position at 

each iteration. To solve Equation (20), one must be able to evaluate the B, /, 

and W^matrices.

B. Derivation of formulas for the B, /, and W  matrices

Expressions for each matrix must be derived separately for each navaid 

type. These derivations closely follow the work of H ein zen  (1977).

1. B matrix

We start with X) and derive expressions for antj d F  _ Here, (f>

and X are latitude and longitude, respectively, and replacé y  and^ x previously 

used. We will derive expressions for range, hyperbolic, and azimuth navaids.

a. Range

Here F(<j>, X) =  s, the distance from the navaid to the ship. The shape of 

the earth is approximated by a sphere, and the geometry can be illustrated by the 

spherical triangle of Figure 1. The subscript 0 indicates ship; 1 indicates navaid. 

We will switch back and forth between the two sets of notation in Figure 1.

Start with the law of cosines. 

cos a =  cos b cos c + sin b sin c cos A

cos s0I =  cos(90 — ¢ , )  cos(90 — <f>0)+ sin(90 — <t>i) sin(90 —<j>0) cos(X, — A0) 

cos s0I =  sin <f>, sin <j>0 +cos (f>, cos <p0 cos(X, — A0) (21)

Note that s0l is an angle here. Next, differentiate

—sin s0I ds0I =  cos cf>, sin <f>0 dcp,+ sin <j>,cos <j>0 d(f>0—sin 4>, cos <j>0 cos(X ,—X0) d<$>t

— cos 4>j sin 4>0 cos(k! — A0) d<p0 ^  cos cos <f>0 sinfX, — X0) d(X} — \0). (22)

In the above equation (<p,, Aj) is the location of the transponder (or shore 
transmitter), which is invariant. Therefore,



A (NORTH POLE)

010 =  center of earth a = s, 
A =  North Pole b = 9 0 - ^  
B = Ship c = 90 — 4>0 
C =  Navaid A = A1 -  A.( 

4>0, A0 =  latitude, longitude of ship B = 
At =  latitude, longitude of navaid C - a

*01
10

FlG. 1.— Spherical triangle used in derivation, of B matrix expressions. Note that arcs AB and AC are 
meridians; therefore, b — 90 0 /. c =  90 — <fig, and A — \ j-  kg.

d<f>i =  dk j =  0

— sin s01ds0] =  [sin <f>j cos 4>0— cos <f>, sin <f>0 c o s ( k k 0)]d4>0 

+ cos 4>, cos 4>o s in (k } — k 0) dA0. (23)

The first term on the right, ignoring the d<(>0 factor, is

sin <j>1 cos 4>0 — cos <j>i SJJ7 4>o cos(k j— X0). (24)

Using the following identity

cos b sin c — sin b cos c cos A  =  sin a cos B,

Equation (24) can be written as

cos(90  — <f>i)  sin(90 — ¢ 0) — sin(90 — <fi,) cos (90 — <f>0) cos(X ,— k 0)

=  sin sol cos a 0]. (25)

The second term on the right of Equation (23), again ignoring the dk0 factor, is



cos <f>t cos 4>0 sin(X , — X0)  =  sin(90  — <fi,) sin(90 — <p0) s in (k , — A0)

=  sin b sin c sin A . (26)

From the law of sines we know

sm a =  sm c and sin c sin A  =  sin a sin C. 
sin A  sin C

Therefore, Equation (26) may be written as

sin b sin c sin A  — sin b sin a sin C =  sin(90 — <fi,) sin s01 sin ctI0

=  cos 4>i sin s0i sin a l0. (27)

Substituting Equations (25) and (27) into Equation (23) yields

— sin s0, ds0I =  sin s01 cos ct01 cos ¢), sin s01 sin a l0d k 0

dsQi =  — cos a 0l d<t>0— cos (px sin a w dk0. (28)

To convert the angle s0, into distance s (arc length), multiply by radius of the 

earth. Accordingly, using a spheroid approximation, the radius in the north-south 

dimension is the mean radius of curvature (p0) in the plane of the meridian; in 

the east-west dimension it is the radius of curvature in the prime vertical (v0).

ds =  — p 0 cos a 01 d<fr0 — v0 cos <f>} sin a  10 d k 0 (29)

Therefore,

ds

d<fi0

ds

d k0

=  — p0 cos a 01 (30a)

=  — v0cos<t>j sin ct10. (30b)

The line connecting the ship and the navaid is a geodesic line. Therefore, the 

azimuth a g, (navaid observed from ship) and back azimuth a 10 (ship observed 

from navaid) are related as follows :

cos 4>0sin a 0I =  cos <f>i(— sin a t0).

Now, Equation (30b) may be expressed as

4^- =  vo cos 0O sin a 0I. (31)
O A0

Finally, Equations (30a) and (31) are rewritten for azimuth a 01 to be expressed 

as bearing A 0, clockwise from North.



ds 

d<J> o
— - p 0cos a 0l =  - Pq cos(— A 0, )  =  p^cos A 01 (32a)

— vq cos 0o sin a 0I=  v0cos <fi0sin A 0, (32b)
dX0

where s =  distance between navaid and ship,

p0 =  radius of curvature in the plane of the meridian,

v0 =  radius of curvature in the plane of the prime vertical,

A 0I =  azimuth; bearing of navaid as observed from ship,

<j>0 =  latitude of ship, and

k 0 — longitude of ship.

b. Hyperbolic

Here k ) =  d  =  Rm Rs, where Rrn and R, are distances from the ship 

of the master and slave, respectively. The derivation is analogous to the previous 

one, yielding

Ad- =  P o ( c o s  A 01m - cos A ou) (33a)
d<Po

J U L  =  V 0 cos <fi0(sin A 0Im - sin A 0Is)  (33b)

where the subscripts m and s stand for master and slave.

c. Azimuth

Here, F(<fi, k ) =  A  =  bearing of ship as observed from navaid station. 

This derivation is in plane coordinates, which suffices because azimuth measure

ment may be done only within a short distance of the ship (the line of sight). 

Refer to Figure 2.

s — (x2 + y2) l/2 — distance from navaid to ship 

A  =  arc tan ^

dA  =  -Î- (ydx — xdy) — —  (cos A  dx — sin A  dy) (34)
s2 s

Now, convert from plane to spherical geometry.

dx — east-west distance

=  r cos <f>0 dk =  v0 cos 4>0 dk  (35a)
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I

FlC. 2.— Plane triangle used for derivation of B matrix expression for the case of an azimuth navaid.

dy — north-south distance 

=  r d(p — p0d<t> (35b)

Next, substitute Equations (35a) and (35b) into Equation (34) and calculate the 

following partials.

dA  n sin A
=  — P o -----

d<p

dA

dk

y .
JL cos 0o cos A .

(36a)

(36b)

2. Weight matrix

Expressions for computing weight are empirically derived. Azimuth weights 

are constants and depend solely on the precision of the instrument. Range weight 

depends on instrument calibration and the distance to the transponder (precision 

decreases with distance from the transponder).

Generally, weight is derived from the following equation.

W  _  _  standard variance

o2 variance o f this type o f nava id

An appropriate value for standard variance has been determined to be 16 m2, 

which corresponds to a standard deviation of 4 m. As mentioned, navaid



variance for an azimuth instrument is constant (e.g., o — 0.01° for the Coast 

Artillery Azimuth Instrument). For ranging instruments, variance is determined 

from this expression.

where a0 =  standard deviation of the instrument, 

s =z distance from navaid to ship, 

m =  meters.

The first term is variance attributable to the precision of the instrument. The 

second term accounts for that portion of variance that is proportional to the 

square of the distance.

Hyperbolic weight is treated in a similar fashion to range; the difference is 

that the calibration errors of the two component ranges cancel each other.

a 2 =  2 a  o +  ( ------ ----^V 10 km  7

where o0 =  (0.02 /xsec) (299.67 m//zsec) 

d  — range difference 

km =  kilometers.

Note that the units for weights are different for azimuth /  m \ and

(
 V radian2 /

m_Y  This is appropriate because weights are multiplied by residuals,

m 2 /
yielding the result cf> in meters2.

3. Misclosure

Misclosure is the difference between actual and imaginary observations. 

For azimuth navaids,

f  =  - Aim  * * o b s

where the subscript im  =  imaginary and obs =  observed; A =  bearing clockwise 

from north.

For range navaids,

f  — « « — « N k— °j'/n ^ obs — s im  -t

where N =  number of lanes and k =  lane width.



For a hyperbolic pair,

/ =  dim - dobs =  [Rm (R s+ R b)] - C (A tim e delay) 

where C =  speed of light

Rb =  (baseline) distance between master and slave.

III. DISCUSSION

The methodology described here has been implemented for one year and 

has survived an in itia l period of testing. It is part of the N A V O C E A N O  

Hydrographic Post Time System (HPTS). M a p p  et al. (1985) give test data and 

pseudocode for implementing the method on a computer.

The user must supply an approximate position for each fix, subject to two 

constraints: it should be close to the actual position (w ithin approximately 

100 km); and if either a hyperbolic triad or a pair of ranging navaids is used, 

the approximate point must be on the correct side of the baselines.

For a series of fixes from a small survey area, an initial position may be 

specified, and subsequent fixes can use the preceding fix as their approximate 

point. This method will work fine until a baseline is crossed, at which point an 

error will be made. To prevent this error, a new approximate location must be 

specified on the correct side of the baseline. In most cases, this is taken care of 

automatically if the approximate point is extrapolated from the last few locations. 

Still, when a baseline is crossed, the user should check the results carefully.
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