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Abstract

Practical application of the Exceedance Probability Method of M iddleton 

and Thompson (J. Geophys. Res., V o l.91, 1986, pp. 11707-11716) to the 

estimation of extreme sea levels is considered in detail, for ports where tidal 

amplitudes dominate surge. Data from Sydney (Australia) are used to illustrate 

the method. Direct use of the histogram of tidal residuals, instead of fitting a 

model to it, is discussed, and the limitations are pointed out. Graphical fitting of 

the sum of two normal distributions to the histogram is also discussed. A  method 

is given for including a trend in mean sea level. A simplified method of checking 

if tidal amplitudes dominate the surge is given in an appendix.

INTRODUCTION

Recently, M iddleton and Thompson (1986, referred to here as MT) 

introduced a new method (Exceedance Probability Method, or EPM) for 

estimating return periods of extreme sea levels from short data records. An 

attractive feature of EPM is that it takes into account explicitly the deterministic 

nature of one component of sea level, the tide, which may be reasonably 

predicted decades into the future. Indeed, as will be shown below, where sea level 

consists only of tide, return periods of exceedance may be determined exacdy.

In this paper, we give some practical details of the use of the EPM, and 

suggest some simplifications, using 5 years of data from Sydney, Australia, for 

illustration. We include a brief account of EPM, and show how return periods are 

obtained for the case of a single sinusoidal tidal constituent. We make frequent 

reference to MT for details, and where possible use the same notation.

(*) Ocean Sciences Institute, University of Sydney, Australia.
(**) School of Mathematics, University of New South Wales, Australia.



THE EXCEEDANCE PROBABILITY METHOD

Following MT, 75 will denote sea level or ‘still water level’ (SWL) — the 

sum of tide (iff) and surge (rj), with wave and seiche effects filtered out.

The probability that 75 exceeds some level 7 * in a time interval [f, t + dt ] 
is denoted by

Q (t;v ')dt (1)

where

Q(t; r?*) = ̂ { V T + \  vt\ }P(i?*~ v t )  (2 )

77* =  drjj/d t and P(tj) is the probability density function (PDF) of the surge or 

residual component of sea level, 7 =  vs(V — WliO' Thus if the tide rjliO  and 
the density function P(rj) can be estimated from the sea level data available, the 

exceedance probability (1) may be determined. We discuss (2) in more detail 

later.

Now to obtain the return period T r  of sea level exceedance, we note that 

(1) may be interpreted as the expected number of exceedances in the interval 

[f,f + dt]. Thus

M — f  ‘+T Q(r;T j')dr (3)
* 1

represents the expected number of exceedances integrated over a time T and if 

equal to one, then T must equal the return period For extreme exceedance 

levels, the integration time may be of order 50-100 years, so the tidal components 

rjj(t) must necessarily be predicted for these long time intervals. To avoid these 

long predictions and indeed the long integrations, MT point out that T r  may be 

approximated by

Tr -  T/M  (4)

provided that T is long enough to include all significant periodicities in both the 

tide and surge, and that Tr »  T.

Before discussing in detail the practical estimation of T r , we discuss the 

nature of, and restrictions associated with, the exceedance probability (2 ). One 

important restriction is that (2 ) will be valid only at coastal ports where tidal 

amplitudes dominate surge in a mean-square sense (the strong tide limit of MT). 

This strong tide limit should pertain to most ports (Appendix 1; see also MT).

To illustrate the nature of the EPM, we consider the case of a single tidal 

constituent, 77  =  a sin eut. The expected number of exceedances in one tidal 

period is then



M = f  « rjTP(V '  -  VT)dt + JJT rjT P(v" -VT ) dt
^ 4

since 77  + \tjt\ vanishes over [7/4, 3774] and exceedances are expected to 

occur only on a rising tide. W ith the change of variable drj =  -  tjj(t)dt the 

above may be simplified to

M =  / J  P(rj)dr]
J tj* -  a

so that the expected number of exceedances equals the probability that the surge 

can ‘bridge’ the gap between tide t j j  — a sin wt and the exceedance level 7 *. 

Note that if we allow the surge to become vanishingly small, then P(tj) is 
asymptotic to the delta function 8(rj) so that

M = l l  K | < -
l 0 177 |> a

and only one exceedance can occur in one cycle as expected for a sine wave 

alone: in this case the return period equals the wave period, Tr — T.
Finally it should be noted that (2) was derived by MT only under the 

assumption that surge is normally distributed or has a distribution corresponding 

to the sum of two normal distributions. However, the illustrative example above 

suggests that (2) might be justified heuristically and we shall assume below that P 
may be estimated directly from the data without the fitting procedures used in 

MT.

PRACTICAL ESTIMATION OF TR

Under the assumed strong tide limit approximation, a practical scheme for 

estimation of T r  is based on calculating M  from (2) and (3) for a set of assumed 

values of 77*. Assuming the prediction time T is greater than 1 year (see below), 

and anticipating the need to allow for a trend, M  should be computed separately 

for each year as well as for each tj* . Let M j  be the value of M  for 7 * and the
T

ith year of prediction, and let Af; =  ^  . We usually want the level rjy which
/= 1

has a return period of Y years (typically Y = 50 or 100), so we need to inter

polate. Mj is a non linear function of 7 * but with AT = 1 year the ‘reduced 

variate’

yj =  -ln{- ln( 1 - My A T/T))

is a nearly linear function of 7^ from which the required value 7y corresponding 

to



y =  - ln(— ln (l - A T/Y))

can be interpolated.

The calculations require the predicted tide and its derivative, a choice of 
integration time T, and the surge probability density function P(r}). These will 
now be considered in more detail.

The Predicted Tide

The predicted tide is the easiest. Most users will have a program available 
for predicting hourly tide heights, for example the Canadian program (Foreman , 

1977). But MT recommend using a half-hour time interval, since Q(t; rj*) varies 
widely with time at large exceedance levels. Interpolation of the hourly predictions 
will usually be easier than modifying the prediction program. If rjj(t) is the 
predicted height (cm) at time t in hours, a suitable interpolation is

rjT(t + 0.5) =  0.5625(77^0 + VT<t + 1))-  0.0625(rj(t - 1 )+  rj(t + 2)),

and the time derivative, at time t, in cm/hr, is then ijj(t + 0.5) - rjy(t— 0.5).

Mean sea level for the full period of the data set should be included in the 
predictions. For example, if you have 5 years of data but analyse only one year 
to get the tide constants, the mean sea level obtained in the analysis should be 
altered to the mean for the 5 year period, before prediction. Note that hourly 
predictions will also be needed to get the surge PDF (see below).

Integration Time, T

The time interval T should be long enough to include at least one cycle of 
any important periodic variation in the extreme values of predicted tides. 
Unfortunately, no general statement can be made at present about the optimum 
value of T, nor is there any simple way of working it out from the tidal 
constants. There will almost certainly be an important variation with period about
4.4 years (half the period of lunar perigee (C artwright , 1974)). This period is 
clear for the U.K. ports of Avonmouth and Southend (A min , 1979, Fig. 2). This 
same figure also shows 19 year variations, which are particularly marked at 
Southend, although the amplitude is only about 6 cm. At Sydney (Australia), 
monthly maxima of predicted tides 1981-1999 showed clear variation at about
4.4 year period, with amplitude 6 cm, but the 19 year variation was negligible. 
Graphs for Halifax and Victoria (Canada) are given in Figure 4 of MT (but note 
that these are from observed rather than predicted values). Neither the 4.4 nor 
the 19 year variation is evident at Halifax, but there is a strong 19 year variation 
at Victoria, which was taken into account by using T =  19 years for tests on this 
station (MT, Fig. 10). Variations with much longer periods are possible 
(C artwright , 1974), but are poorly documented. We conclude tentatively that T 
should not be less than 4.4 years; users of the EPM are advised to do their own



predictions for at least 19 years, and examine plots of monthly extreme high 

waters. Alternatively the integration can be carried on for the full period of 

interest (usually 50 or 100 years); this might seem wasteful, but the computer time 

needed would not be excessive.

The Surge Probability Density Function (PDF), P (tj)

Estimating the PDF is the more difficult part. It has to be estimated from 

observations, and the difficulty comes from the need to represent as accurately as 

possible the extreme positive tail of the PDF. As a severe test of EPM, MT 

reported reasonable results from a PDF based on only one year of hourly obser

vations, but a longer data series should be used if it is available.

The PDF is based on a series of tidal residuals obtained from the available 

data by subtracting predicted hourly heights from observed hourly heights. It is 

assumed that any short period effects (seiches, for example) have been filtered 

out in forming the series of observed hourly heights. This series of residuals 

should be plotted and examined carefully, as is usual for tidal data quality 

control. Particular attention should be given to the highest values, as these will 

strongly affect the final critical levels; in fact, only these highest values are of any 

importance at the large exceedance levels of interest. At this stage, check for 

possible seasonal variation of surge statistics by plotting the surge variance for 

each month, as in Figures 5 and 6 of MT. At Sydney, the mean surge variance 

for 1980-84 (Fig. 1) shows no marked seasonal pattern. The peak in July is due

MONTH

FlG. 1.— Average monthly variance of hourly tidal residuals for Sydney, 1980-1984.

to high values in 3 of the 5 years, but is probably atypical, as it did not appear 

in a separate 5 year data set (1936-1940).



The required PDF can be represented as the histogram of these residuals, or 

as a mathematical function fitted to the histogram. Reliable estimation of the PDF 

at large exceedance levels is difficult, however, for two reasons. The first is 

simply that since extreme events are by definition rare, few can be expected to 

have occurred during the 4-5 years of sea level monitoring. The second reason is 

that the observations of residual surge are drawn from two distinct populations. 

Moderate surge events (~ 10 cm) may arise from direct effects of atmospheric 

pressure, and from large scale coastal trapped waves. Extreme surges (~ 50 to 

100 cm) on the other hand will be associated with intense cyclones. Thus a 

reliable estimation of the surge PDF at moderate exceedance levels will not in 

general allow the tails to be reliably estimated through the fitting of say a single 

normal distribution. For this reason, the sum of two normals will be fitted to the 

surge PDF below in an attempt to allow for both populations. However, again 

since a short record will not in general represent the relative importance of each 

population, estimation of the extremal PDF tail is at best subjective. MT used a 

fairly complex fitted function (their ‘contaminated normal model’, MT pp. 11713-4, 

with 7 parameters). The complexity is partly due to seasonal variation at the 

stations they studied, and partly to the need to give extra weight in the model to 

the extreme positive tail of the distribution of residuals.

The histogram can be used directly, and if seasonal variation is ignored, 

leads to

P(rj) =  f(j)/(sb) (5)

where f(j) is the number of observations (‘frequency’ in the statistical sense) in the 

jth bin of the histogram of residuals, s is the total number of observations, b is 

the bin width (cm) and tj (cm) is the tidal residual at the centre of the jth bin. If 

there is a seasonal variation in surge statistics, separate histograms should be 

prepared for each month, and the function P becomes

P(m>w) =  f(mJ)/(s(m )b) (6 )

where s(m) is now the number of observations of residuals in month m.

The difficulties in estimating the surge PDF can be illustrated by some tests 

using Sydney data. The histogram of all hourly residuals for 5 years (1980-1984) 

is slightly skewed, with the positive tail extending further than the negative tail 

(Fig. 2), so the histogram cannot be modelled adequately by a single normal 

distribution. Only the histogram values for tide anomalies greater them about 

25 cm are used in the EPM calculations for values of rj* near the 50 year 

exceedance level. These values are uneven, showing that even 5 years of data do 

not lead directly to a smooth approximation to the population histogram in this 
critical area.

The result of using (5) to predict return periods is compared in Figure 3 to 

the distribution of observed annual SW L maxima for Sydney, using all available 

data, 1883-1975. Curve A shows the observed results, plotted using the method of 

H azen (L ennon, 1963; Pugh, 1987). The ordinate is annual maximum SW L, and 

the abscissa is the reduced variate y — - ln(-ln(K)), where K is the mean value 

of (2r — l)/(2m ) for each value of annual maximum SW L, and r is the rank of



TIDE RESIDUAL (cm)
FlG. 2.— Histogram of hourly tidal residuals (observed minus predicted) for Sydney, 1980-1984. For 

clarity, frequencies for residuals >  20 and <-20 cm are X 10. Bin size 1 cm.

the m annual values. (This plot is similar to the Gumbel plot used in MT, but is 

not quite as steep. No correction was applied for linear trend in mean sea level, 

which is small at Sydney (~ 5 cm/100 years)).

For the EPM result B, the ordinate is tj*, the critical SWL and the abscissa 

is y =  - ln(- tn(\ - 1/7¾). At the lower levels of y, we expect A to be less 
than B, as found here and in most plots in MT. The reason is that for a given 
SWL, an exceedance of the level can be expected in a time shorter than the 
return period of annual maxima at that level, since (MT p. 11709) low values of 
annual maxima are likely to be rare.

We expect A and B to approach one another as y  increases, but near the 
50-100 year return periods we find B is less than A by about 5 cm. This may be 
due to the sharp cut-off of (5) above rj =  44 cm. In using (5) or (6), we are 
saying in effect that at Sydney the probability of a tided residual 7 >  44 cm is 
zero. For comparison, the residual at the time of the highest observed SWL at 
Sydney (237 cm, 2300 EST, 25 May 1974) was about 54 cm, rising to about



REDUCED VARIATE Y
FlG. 3.— Critical (or exceedance) «till water level (SWL) for Sydney, a» a function of ‘reduced variate’ y 
{see text). A: observed maximum annual SWL, using data from 1883 to 1975. B: exceedance levels from 
EPM, using normalized histogram of tide anomalies. C: as B, but using double-normal distribution function, 
fitted graphically. Z>. as C, but function fitted by method of moments. The dashed lines show the values of 

y corresponding to 50 y ear and 100 year return periods.

69 cm a few hours later. It seems clear that we need some way of extrapolating a 

PDF based on an observed histogram, if we are to expect the best results from 

EPM.

Fitting the sum of two normal distributions, as in MT, is probably the 

easiest way of extrapolating and allowing for the two surge populations. The 

general form is

P(x )=  5) a, [(2 77-)2 a,] exp { - (x - mD2/(2a2)} (7)
i=l

with the condition: a, + a2 =  1. Five parameters need to be estimated in 

(7): two means (/*,), two standard deviations (a,), and ax. MT (p .11714) 

used a non-linear least-squares library program, which included a provision for



weighting the observations, in this case to give extra weight to the extreme 

positive tail. This weighting is likely to be important, but is necessarily subjective. 

The program may not be available to all, and in any case may not converge for 

all data sets.

We considered two alternatives. The first is based on the first five moments 

of the (normalized) histogram; these are sufficient to determine the five 

parameters in (7) (see Table l), but the set of equations is still non-linear so con-

Table 1

Parameter
Method of Fitting

Moments Graphical

a, 0.806 0.9919
Ai(cm) -1.506 0

ft(cm ) 6.318 0

cr, (cm) 8.0 9.4

a2(cm) 9.46 22.0

vergence is not assured. No weighting was used although the positive extreme tail 

could be inflated so as to force a better subjective fit at that end (see Fig. 4). 

The second alternative is a graphical fit to a suitable plot of the normalized 

histogram (5). Specifically, we plot log (P (?])) against if-, and assume 

fj,\ — fj.2 — o, and of »  6\ . In this case, the two normals in (7) appear as 

straight lines with slopes erf, which can be fitted separately (Table 1). In the 

graphical fitting for Sydney data, a, is easily determined to within a few percent, 

but fitting for a, and oz is much more subjective. The crosses in Figure 4 are the 

right side of the normalized histogram (5) for Sydney, plotted as above. The 

dashed lines represent the two normal curves, fitted by eye to the main part of 

the graph and the ‘tail’, respectively. The continuous curve C is their sum, while 

D is a plot of (7) for the parameter values found by the method of moments.

Judgment will always be needed at this stage, since the tail of the observed 

distribution is dependent on the occurrence of rare events. For example, if the 

5 year data period happened to contain a single unusually severe sea level event, 

we would expect a nearly constant ‘tail’ for the PDF, at a level near 1 in 

43800 hrs or 2.3 X  10-5. This would grossly over-estimate the probabilities of the 

higher residuals. On the other hand, if the residuals were due to normal weather 

patterns for the whole 5 year period, we would have no data at all to use in 
fitting at and a2.

Assuming the double-normal model for the PDF, the above discussion 

suggests an inherent difficulty in determining au and more particularly o2, from a 

short set of data. We can see no easy way round this difficulty. A  PDF based on 

a much longer record at a nearby port could be used as a guide; presumably the 

weather statistics would be similar enough, but different local sea-floor 

topographies might lead to quite different surge results. This problem might not be 

serious in practice. At Sydney, omitting the a2-term altogether made a large 

change (a factor of 3) in M; for rj*= 230 cm, but this translates into a lowering of



TIDE RESIDUAL SQUARED (cm2)

FlC. 4.— Log (P (rj)) as a function of 7j2, where r) is the hourly tide anomaly, and P (jj) its probability 
density function. The crosses represent P (rj) derived from the positive side of the histogram in Figure 2. 
C: double-normal distribution, fitted graphically. D: double-normal distribution, fitted by method of moments.

Dashed lines: components of C.

50 or 100 year critical levels of only 5 and 7 cm respectively. Any reasonable 

estimates of a, and a2 might be expected to affect these critical levels by only 

about 1 or 2 cm.

The results of using these double-normal fits in the EPM are shown as C 
(graphical fit) and D (method of moments) in Figure 3. Using the graphical fit, 

which best represents the extreme tail, gives a marked improvement near the 

50 and 100 year return periods; differences between A and C are reduced here to 

about 1 cm. The result from the method of moments is not significandy different 

to that from using the histogram directly.

EFFECT OF A TREND

So far, we have assumed that mean sea level, used in calculating the 

predicted tide rjj, is constant. In the simplest case it will have been determined as 

775 : the mean of the observed tide over the period of the available data. If there 

is an appreciable regional trend in mean sea level, determined from longer series



at other ports in the region, or based on assumptions about the ‘greenhouse 

effect’, the trend should be taken into account. The calculated return periods for a 

given critical level rj* will then depend on the starting or ‘base’ year for the com

putations, i.e. the return period might be 50 years from 1988, but only 40 years 

from some later base year.

Let £, be the mean sea level in year i. Assume a linear trend

h = io + m - 1)

where {0 is an estimate of mean sea level in the base year (/ =  1), and k is the 

trend in cm/yr. Estimation of k and will depend on what additional data are 

available, and will not be considered here. We note only that may differ from 

the mean 175, even if the base year is the central year of the data period, since 

regional sea levels for the data period may have been above or below the 

regional trend.

The difference £0 - r}$ should simply be added to any estimates of critical 

level. To account for the trend, the EPM can be modified as follows, assuming 

the Mjj have been calculated as above for the years / =  1, T and for the trial

values of critical level 17*.1
Extend the upper limit of i to 50 or 100 years for each j  by repeating each 

set of Mjj. A positive trend decreases the gap between tide (777-) and trial critical 

level (17*), leading to increases in the M,y.

The effect is equivalent to reducing each 17* by (£, — £0). The new 

(increased) values, Mj/Q, can be estimated by interpolation. For Sydney, with 77* 

at 5 cm intervals, piecewise linear interpolation of was found satisfactory.

For large trends, the Zn(Afv) may need to be extrapolated first to higher 

values of j, unless the original calculations of Af, have been made to higher 

values of r\' than would be needed in the absence of trend. Linear extrapolation 

appeared satisfactory.

The value of 77* for which ^  M;j(£,) =  1 can now be interpolated, and is
i= 1

the maximum SWL expected to be reached in 7¾ years after the base year.

For Sydney, maximum SWL in the next 50 years was found to increase 

from 233 cm with no trend to 271 cm for a trend of 1 cm/yr. The increase is not 

quite linear, being more rapid for the higher levels. The estimates were made 

using the graphically-fitted double-normal model.

DISCUSSION

Operationally, 50 or 100 year return period levels are not likely to be 
significant to better than 10 cm accuracy. With this in mind, any of the three 
results B, C or D in Figure 3 can be considered satisfactory, especially if com

pared to a smoothed version of the observed curve A (for example, smoothed by 
fitting a Generalised Extreme Value distribution (Pugh, 1986, p.273)). Since the



PDF (5), based directly on the histogram of residuals, is the simplest, its use 

should be further explored. Its main disadvantage is that it cuts off sharply at the 

highest residual observed in the available data. This cut-off is likely to lead to 

underestimating the critical levels.

The graphical fitting of two normal distributions, as curve C of Figure 4, 

offers the simplest way of extrapolating the histogram data, but introduces an 

appreciable subjective element. If this method is used, you should check that the 

fitted PDF is reasonable at large values of residual. For example, using the 
parameter values under ‘Graphical’ in Table 1 gives P  =  1.07 X 10~6 for the 

probability of observing an hourly residual of 69 cm (the maximum recorded at 

Sydney in 93 years). The value of 1.07 X 10 6 is equivalent to one observation in 

115 years, which seems reasonable. It will usually be necessary to use results 

from other stations in the same area, as well as practical judgment, in deciding 

what is reasonable. (The ‘moments’ parameters in Table 1 lead to P=6.8X10 22 

for a 69 cm residual, which appears much too low.)

It may be noted that the better fits to observed annual maxima at Halifax 

and Victoria were obtained by fitting the sum of two normal distributions (MT, 

Fig. 10, 11; Table 2), with a, and a2 not too different from the values estimated 

graphically for Sydney. In particular, the ratio a-Jv\ was about 1.8, compared to

2.3 for Sydney. These admittedly very limited results suggest that o2/al =  2 

might be a useful guide in the graphical fitting.

Effects of very rare events such as tsunamis are difficult to include in any 

estimate using EPM, since they will not be adequately sampled in the assumed 

5 years of data.

The development of EPM in MT and here assumes the surge PDF is 

independent of predicted tide height. For ports bordered by large areas of shallow 

water, non-linear tide/surge interaction may invalidate this assumption (P ugh, 

1986), so that the PDF might need to be a function of tide height as well as 

season and residual. We have not considered this for Sydney, which is bordered 

by a narrow continental shelf.
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APPENDIX 1

Checking the Strong Tide Limit

The relevant criterion is that T »  1, where T =  ajw k/o  (MT, eq.18). a j 
and a are the standard deviations of the tide and ‘surge’ (non-tidal or residual sea 

level) respectively, cu is the frequency of the dominant tidal constituent, while k is 

a time scale of surge variability. MT estimate A via the normalized power 

spectrum (eqs.27 and 28), but it is easier to use their eq.15, i.e.:

A =  a/v

where v is defined (eq.12 of MT) as the standard deviation of the time-derivative 

of the surge. Anticipating that the strong tide limit will apply, it is not necessary 

to aim for high accuracy in A or v, since their values do not appear in the strong 

tide limit formula (MT, eq.22). The easiest method of estimating v is to start with 

the hourly tide residuals, i.e. hourly values of observed minus predicted tide, since 

these are needed in any case to get the surge statistics. Estimating time 

derivatives between every 12th hourly value seems to be good enough; this avoids 

the high-frequency noise you would get by straight differencing of the hourly 

values, and the 12 hour span reduces the effects of any residual semi-diurnal tide, 

caused perhaps by tide gauge errors. (Note that this simple method of estimating 

v and A. may not be suitable if initial tests throw doubt on the strong tide limit 

assumption, since the actual value of \ will then be needed for the full expression 

for Q  (MT eq. 16) or for the strong surge limit (MT eq. 19).)

( 5, vl 
\ X  where

the h j are the amplitudes of the 5 main tidal constituents (M 2, 52, N2, /Cl, O l at 
Sydney).

For Sydney, we found a =  0.1 m, v =  0.004 m/hr, giving A =  25 hr. With 

aj-— 0.4 m and w =  277/12, we get V =  52, so there is no doubt that the strong 

tide limit applies here. Since surges are mainly due to weather effects, we expect 

A to vary little from port to port. The product eoX will then be about 13 and 6 

at ports with mainly semi-diurnal and diurnal tides respectively. The criterion 

r  »  1 will then be satisfied in either case (diurnal or semi-diurnal tide) if the 

standard deviation of the tide (aj) equals or exceeds that of the surge (ct). This 

will be the case at most ports, unless the tides are particularly weak.


