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PRECISE COMPUTATION BY NUMERICAL 
INTEGRATION OF VERY LONG GEODESIC AND 
COMPARISON WITH APPROXIMATE METHODS

In the UN Convention of the Law of the Sea, several articles prescribe the 
outer limit lines, lines of delimitation and median lines. These lines should be drawn 
according to the results of precise geodetic computation. The distances on the Earth's 
surface are computed according to the geodesic length on an ellipsoid surface.

For computation of the geodesic, several methods are known. Some of them 
are based on series expansion. Some of them are derived from spherical 
trigonometry. The method described here is based on numerical integration. It is 
directly derived from the EULER's equation of the calculus of variations.

This method can be applied to a very long distance, more than 19,000km, 
with an accuracy of 1mm. Algorithms and some examples are described here.

1. EULER'S EQUATION OF THE CALCULUS OF VARIATIONS

A line element ds on an ellipsoid surface is formulated as follows:

where rm and rp are the radius of curvature of the meridian and radius of curvature 
of the parallel of latitude, respectively, and described as follows:
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FOREWORD

ds2 = dx2 + dy2 + dz2



rm = a{l-e2)lw3f2 
rp = a cos4>/w = N coaj) 

(w  = \ jl-e2 sin2<}))

where N is the radius of curvature of the prime vertical, (() and X are latitude and 
longitude respectively.

The line elements ds becomes as follows, by using ac as the sign of change.

ds = oc Jr* + r2p X2 d 4> 
oc = +1 {when <j> is increasing, i.e. cos o>0) 

= -1  (when <|> is increasing, i.e. cos a< 0)

According to the general theory of the calculus of variations, the stationary 
function y, which gives a stationary value to the following definite integration L:

L = JT* F(x,y,y)dx

is  d ecid ed  by the follow ing EULER's equation:

3F d  (3F \  o
dy dx \dy

By the application of this theory to the present problem, the following formulae are 
obtained.

r2X
o c p = K

n  2 {2
i rm + rp k 

À = a. K ^ —

v

By substitu tion , the line elem ent ds is obtained as follows.

r_r_

Introduction of the azimuth a  brings the equation to the following well known 
equation of the geodesic.



rp sin a  = K

The geodesic is determined by the parameter K, that is established by the 
two terminal points of the geodesic. There are two kinds of terminal dispositions of 
the geodesic. On the one hand, two terminal points, P, and P2, lie on the same side 
of the ascending course or the descending course, as shown in Fig. 1. On the other 
hand, two terminal points lie on different sides of the course, as shown in Fig. 2. The 
top point Px, where the latitude takes the minimum value in the course, lies outside 
of the course in the former case, and inside the course in the latter case.

FIG. 1.- Single route.
PI and P2 lie in the same ascending course.

In this report, the former case is called the "Single Route", and the latter case 
is called the 'Turn Route". The turn route appears not only in the case of a long 
distance, but also in the case of a short distance, such as that of equal latitudes of 
two terminal points.

The formulae of the integral are described by using the latitudes and 
longitudes (¢,, X,), (<|>2, X,) and (<|>x, "K) of the terminals P„ P2 and the top point Px.



FIG. 2.- Turn route.
PI and P2 lie on different sides of the course.

1. Single Route

In this case, the latitude simply increases or decreases from ¢ , to <f>2. The 
following formulae are obtained.

Partial derivatives of X'2 and s with respect to K are necessary for reiteration 
and they can easily be obtained. The sign coefficient ac is constant through the 
whole integral course. It can be obtained at point Pv Reiteration can be done by 
using the following AK, modification of the parameter K, where Kc is the original 
value of K.



aa:  = AX

AA = k2-kf2

= O ' f ?  — ~ =

h  '  ° c f * ■ -------- - 1 -------

2. Turn Route

In this case, the integrals of and s are similarly determined by the 
coordinates of P, and P2. However, the integrals are composed of two terms, one 
integral from ¢, to ¢ ,, and the other from (|>2 to <(>„. The latitude ¢ , of the top point 
Px is determined by the following formula.

COS <b = |*|

The sign of the latitude ¢,,, is similar to that of cos a  at P,.

By the use of <J)X, K and oc at P„ the longitudes A*, Xj and distance s are 
computed by the following formulae.

\  = A ,*orA'f*' — la ---- <t|> = i k (*‘ — — —  d4>= - 7 = =  <*t> = W f C
•l / 2  ir l  *

rp



For the turn route, when K varies, not only the integral function but also the 
top of the integral area <j>x varies according to the above stated function. For 
reiteration, the modification AK of K is computed by the use of successive sets of 
approximation of (K„ V )  and (K2, V ) .

The above stated formulae of X,, Xj and s are written in integral form. In this 
report, they are directly computed by numerical integration, not by series expansion. 
There are two ways of numerical integration applicable to the present problem. One 
is the method of the weighted mean, and the other is the method of the double 
hyperbolic function transformation. The former is applicable to the integration of the 
single route. The latter is applicable not only to the integration of the single route 
but also to that of the turn route, in which the upper terminal of the integration area 
is a singular point of the integration function.

1/V2 -  n 2 r-2
K = Kr ax \K\ 

o4 = +1 (i/AXjX))
K

= - 1  ( i f  AA.j<0)

2. NUMERICAL INTEGRATION



1. Weighted Mean Method

In this method, the value of the following integration I is approximated by 
the following weighted mean S.

I  = /_*' /  (r) dx 
S = 2

There are many methods to calculate the weighted mean, such as the 
methods of NEWTON-COTE, M a cla u RIN and G a u s s . In G a u ss 's  method, the values 
of Xj and wi are determined so as to get the best approximation. The GAUSS's  method 
of six division points is adopted. The division of the area Xj and the weight values 
w, are as follows:

-xl =x6=0.932469514203152 
-x2=x5=0.661209386466265 
-x3=x4=0.238619186083197

wl=w6=0.171324492379170 
w2=w5=0.360761573048139 
w3=w4=0.467913934572691

The integration is repeated until the integrated value becomes sufficiently 
converged. The limit £ of reiteration convergence can be set to 1mm or less in value.

2. Double Hyperbolic Function Method

For the turn route, the upper terminal of the integral area is a singular point 
of the integral function. In this case, the above stated GAUSS's method becomes very 
slow in converging. Another method is suggested. The method of the double 
hyperbolic function is suitable. Here, the singularity of p, q>-l at both terminals +1 
of the following integration function can be allowed.

i  = / ; ‘  /  «  d x

By applying the transformation

x=g(t)

the integral area (-1,+1) is transformed to (-00,+00).

I = s 'M  àt

This integral resolves itself into the following summation by dividing the 
area into small divisions with step h.



/  = / » £ /  [g{nh)) g'inh)
-m

As the form of the transformation g(t), functions that decrease to zero in a 
double hyperbolic function manner when 111 goes to infinity, are known to be most 
suitable. Tlie following function meets this condition and is used in the computation 
of this report.

x = tanh(— sinh(f)) 
2

As for infinite summation, it is terminated when the value of the additional 
term becomes sufficiently small and no significant change occurs by omission of the 
succeeding terms. The reiteration is terminated by the convergence limit e.

3. FIRST APPROXIMATION

For reiteration, the first approximation of the geodetic parameter K is 
necessary. The approximate value of K is computed from the approximate value of 
the azimuth a.

1. Approximate azimuth at point P,

As an approximation of azimuth a, the following angle a ' can be computed 
by using the position vectors ?„ ?2 of P, and P2, and the north unit vector N and 
the east unit vector T? at Pv

tan a' = — ------ !-------
(r2 -  Fx) . N

Another approximation a" can be computed by the following formula:

,/ ((̂ 2 -  x n2) . N 
tan a"       

((r2 -  rj) x n2) . E

where rï2 is the normal unit vector at point P2.



The mean 0¾ of a ' and a" has an accuracy of about 0".01 at distance of about 
130 km, 0".l at 530 km and 0".8 at 1320 km in comparison with the standard 
examples shown in reference 1.

2. Approximate distance by mid-latitude azimuth

The following formula of cord length 1, radius p and arc length s can be 
used for approximation of distance.

The radius of curvature p is computed by the azimuth a,,, at mid-latitude <)>m.

The accuracy of this approximation is very good, 0 mm at 130 km, 2 mm at 
530 km and 6 cm at 1320 km in comparison with the standard examples shown in 
reference 1.

3. Approximate distance by scalar product

For the turn route, another formula gives a better approximation, which is 
based on the vector angle computed by the scalar product of two vectors. First, a 
point Q is taken on the z-axis apart from the origin by zq, and computed by the 
following formula using the mid-latitude <|>m.

j = 2  sin-1 (— )2p
where 1 is computed by the following formula.

sin a = sin a.171 1

/ cos2a sin2 a1 __ M . tH

z,
a e2 sin <|>„

■ In
'9

Then the angle 0 between the vectors QP, and QP2 is computed from the 
scalar product formula.



»  < ?> , & 2COS 0  =
IO > ,l ■ l<?>2

From this angle 0, the radius p and the distance s are computed by using 
the cord length 1.

=  1 
9 2 m  (0 /2 )

s = 0p

The accuracy of this approximation in the case of the turn route is very 
good, 0 mm at about 370 km, 2 mm at 920 km and 1 mm at 1200 km in comparison 
with the results of the integration method as shown in the examples stated later.

4. DISCRIMINATION OF INTEGRATION ROUTE

1. Coordinate transformation

To choose the integration method, it is necessary to discriminate the 
integration route. Three points P„ P2 and the origin O determine a plane. The cut of 
this plane and the ellipsoidal surface is proved to be an ellipse. The equatorial semi
axis of this ellipse is identical to that of the ellipsoid, lïie  polar semi axis b' is 
computed by the following formula:

1 _ cos2i sdn2i 

Ï 2 “ a 2 +

where i is the inclination of the plane containing the ellipse to the equatorial plane, 
as shown in Fig. 3. The inclination angle i and the rotation angle Q are computed 
from the coordinates (x„ yu zt), (x, y2, z2) of points P, and P2 through the direction 
cosine l,m,n.

Q = tan"1 ( -^ -)  
-m



T ' sin i sin Q '
m = -sin i cos Û
/*> k cos i j

FIG. 3.- Coordinate transformation.
Ci: Rotation around z-axis; i: Rotation around x'-axis.

The direction cosine 1,1*1,n are computed by the expansion of the following 
determinant.

V
7* 7* . -  i j k

m = A *1 *  h

where A is the normalization factor and T, J ,  1? are unit vectors in the direction of 
the x-axis, y-axis and z-axis respectively.

The new vector f  in the cut plane is transformed from the original vector 
r by the following rotation matrices Rx(i) and Rz(ft).



r' = Rx(i) Rz(Q)r

where matrix Rx(i) denotes rotation around the x-axis by angle i, and Rz(Q) around 
the z-axis by Cl. After this rotation, if the transformed coordinates y7, and y 2 of the 
points P, and P2 have the same sign, the integration route is the single route. If, on 
the other hand, they have different sign, the route is the turn route. This is the 
discrimination of the route.

2. Approximate Distance by Inclined Ellipse

As a byproduct of the coordinate transformation, there arises another 
approximation of distance. The angle y  of the normal to the ellipse is computed by 
the following formula, where e' is the eccentricity of the ellipse.

f  = tan’1 (— £— ) 
( 1 - * V

From the mean angle \|/m of the two normal angles % and *P2 at points P, 
and P2, the radius p of the curvature of the ellipse can be computed.

fl( 1 - c ’2)P = -------T------------(1-«’sin2 i|»m)3/2

By substituting this radius p in the formula of cord and arc, an approximate 
distance can be computed. This gives a better approximation than the approximate 
distance computed by the radius of curvature from azimuth am at mid-latitude (f>m. 
The difference is 0 mm at 130 km and 530 km, and 1.8 cm at 1320 km in comparison 
with the standard examples shown in reference 1.

5. EXAMPLES

Several examples are computed for both single and turn route.

1. Single Route

Five examples, cases A through E, are shown in Table 1. The results 
computed by two methods of integration are shown as dist.gm and dist.dh, which 
are distances computed by weighted mean using GAUSS's method and the double 
hyperbolic function method, respectively.

Approximate distances are also shown as dist.ma and dist.ie which are 
computed from mid-latitude azimuth and included ellipse respectively.



For the convenient comparison, the input data of the cases A through C are 
the same as those of the standard examples shown in reference 1. They are said to 
be originally the examples shown in the Handbuch der Vermessungskunde by 
J o r d a n -E g g e r t -K n e issl  (1959). The input data of case D are also similar to those of 
the example in reference 2. Those results coincide very well with the former 
computations.

The case E is a completely original example and has no former results for 
comparison. The approximate distance is computed using vector method. In this 
case, because of very long distances, dist.ma and dist.ie are not so good 
approximations as in the other cases.

Case A B C D E

Input Data 
4>1 
X.1 
<t>2 
A.2

49° 3<y 0" 
0° O' 0” 

50° 30* 0" 
1° O' 0"

52° 30” 16.7” 
0° O' 0" 

54° 42' 50.6" 
7° 6' 0"

45° O' 0" 
0° O' 0" 

55° O' 0" 
10° O' 0"

10° O' 0"
0° O' 0"

55° O' 0"
49° 35' 55.480210”

35° O' 0" 
140° O' 0" 
-35° 0' 0" 
316° O' 0"

Approximation
dist.ma(m)
dist.ie(m)

132315.375
132315.375

529979.580
529979.578

1320284.430
1320284.347

6606991.305
6606733.567 19650401.991*

Results
dist.gm(m)
dist.dh(m)

132315.375
132315.375

529979.578
529979.578

1320284.368
1320284.368

6606996.043
6606996.043

19661372.255
19661372.255

Table 1. Examples of single route.

dist.ma : Approximate distance by mid-latitude azimuth
dist.ie : Approximate distance by inclined ellipse
* : Approximate distance by vector angle
dist.gm : Integrated distance by GAUSS's weighted mean
dist.dh : Integrated distance by double hyperbolic function

Ellipsoid : Bessel 1841 (cases A to C) a=6377397.155m f=l/299.152813
Internationalise D) a=6378388.m f=l/297.
WGS 84(case E) a=6378137.m f=l/298.257223563 

Convergence limit: e =0.1mm

2. Turn Route

Five examples are shown in Table 2. The cases A through C are computed 
as examples of short and medium distances. The case D and E are examples of long 
and very long distances.

The results are computed by the double hyperbolic function method and 
shown as dist.dh. Approximate distances are computed by the mid-latitude azimuth 
method, inclined ellipse and vector angle by scalar product, represented as dist.ma, 
dist.ie and dist.va, respectively. For the cases D and E, dist.ma and dist.ie are not so 
good approximations and result in big errors in comparison with other cases.



In the case of the turn route, there are no examples which were previously 
computed or can be easily found, so no comparison is made with these examples.

Case A B C D E

Input Data 
¢1 
XI 
♦1 
XI

34° O' 0" 
131° O' 0” 
34° O' 0” 

135° O' 0"

34° O' 0” 
130° O' 0” 
34° O' 0" 

140° O' 0"

34° O' 0” 
130° O' 0" 
34° O' 0" 

143° O' 0"

31° 52' 42" 
130° 54'15" 
32° 3' 20" 
35° 17'29"

1° O' 0" 
1° O' 0” 
1° O' 0" 

175° O' 0”

Approximation
dist.ma(m)
dist.ie(m)
dist.va(m)

369471.650
369471.650
369471.650

923370.475
923370.456
923370.457

1200051.050
1200050.968
1200050.984

8680101.745
8677078.970
8678076.042

19498109.734
19267006.900
19333513.953

Results
dist.dh(m) 369471.650 923370.459 1200050.983 8677723.647 19330340.907

Table 2. Examples of turn route.

dist.ma : Approximate distance by mid-latitude azimuth
dist.ie : Approximate distance by inclined ellipse
dist.va : Approximate distance by vector angle
dist.dh : Integrated distance by double hyperbolic function

Ellipsoid : Bessel 1841 (cases A to C) a=6377397.155m f=l/299.152813
WGS 84(cases D to E) a=6378137.m f=l/298.257223563 

Convergence limit: e =0.1mm (cases A to C), e =lmm (cases D to E)

6. CONCLUSIONS

Two kinds of precise computation of very long distance geodesic by 
numerical integration, GAUSS's weighted mean method and the double hyperbolic 
function method, were developed for single route. They all agree together, with an 
accuracy of 1 mm over distances of more than 19,000 km.

One method, the double hyperbolic function method, can be applied to the 
turn route, over a distance of more than 19,000 km to an accuracy of 1 mm.

Three kinds of approximate computation for long distance geodesic were 
developed by using geometry and vectors. They are the methods of the mid-latitude 
azimuth, the included ellipse and the vector angle. The first two methods are 
applicable to both of single and turn routes. The vector angle method has good 
accuracy for the turn route.

These three approximate methods can be used up to 1,200km for practical 
use with good accuracy. At 200 nautical miles, they have an accuracy of 1mm.
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