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Abstract

In this paper a simple method for tidal current modelling in short length 
convergent and elongated channels is presented. The authors have found that for this 
kind of channels a very suitable approach to tidal current velocity estimation can be 
obtained through a very simple formula. This method has been developed to obtain 
reliable tidal current velocity estimations along the channel using as less information 
as possible. In fact, the only necessary information to apply this method are the 
harmonic constants of the tidal elevation at any location in the channel and a proper 
nautical chart.

A graphical method is also presented to inquire when the geometrical 
characteristics of a given channel allow the application of our method. The validation 
has been performed on two estuaries of the Gallega Estuarine System in Spain.
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1. INTRODUCTION

Because of the small cross dimension, compared to the longitudinal size, of 
most of the estuarine systems, the main features of the tidal hydrodynamics in 
estuaries can be efficiently reproduced and modelled using an one-dimensional 
approach (U n c l e s , 1981; P r a n d l e , 1984; G o d in , 1988). However, even the one­
dimensional modelling implies a quite complex computation when bottom friction 
effects and the geometrical variations of breadth and effective depth of the estuary 
must be considered. In fact, to achieve satisfactorily this objective, it is necessary to 
solve the hydrodynamic equations by numerical integration. Because of this and in a 
general sense, the computation of the tidal current regime in any estuary is a task for 
physical oceanographers while for other professionals related to the marine 
environment this kind of information used to be difficult to obtain when needed.

In this paper, the authors present a simple method which allows, under 
certain assumptions, the prediction of tidal currents in short length convergent channels 
by using a proper nautical chart and the harmonic constants of the tidal elevation for 
a harbour located in the channel. Some numerical experiments on theoretical 
convergent channels with exponentially variant breadth and depth, similar to the one 
designed by P r a n d le  (1984), will lead to the determination of the geometrical 
parameters that allow the application of the proposed method. It has been validated for 
two estuaries of the Gallega Estuarine System which have these characteristics.

The article is organised as follows: in Section 1, the theoretical basis for the 
method is developed. Section 2 is dedicated to describe the procedure of the numerical 
simulation. In Section 3, the validity of the method is determined by results of the 
previous section. In Section 4, the authors apply the method on the Vigo and 
Pontevedra estuaries and the results are discussed. Finally the conclusions are drawn 
in Section 5.

1. Theoretical Basis

The linearised tidal hydrodynamics equations, the momentum and the mass 
balance equations, for the one-dimensional problem are:

du dZ,
. g (1)c t cx

where u is the current velocity, <Tis the sea level height, A is the cross sectional area 
of the channel, b is the breadth, h is the effective depth which is defined as A/b, x is the 
along axis co-ordinate, t is the time and r is the parameter arising from the linearisation 
of the bottom friction term and it is defined as (T a y lo r ,  1919):



8kU(x)

where k reads for the bottom friction coefficient and U(x) is the amplitude of the tidal 
current velocity as a function of x.

The solution of the system of Equations (1) and (2) can be expressed in the 
general form:

Ç=Z(x)cos[ü)f-5ç(x)] (4 )

u=U(x)cos[cof-5u(x)] (5 )

where co is the angular speed of the considered tidal wave, Z(x) is the amplitude of the 
tidal elevation, and 5^(x) and 5u(x) are the phase lags of the tidal elevation and the 
current velocity respectively.
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FIG. 1.- Scheme of two ideal channels closed at its inner side, 
a) Constant rectangular cross section, b) variable rectangular cross section.

The analytical solution of Equations (1) and (2) in the case of a channel of 
a constant rectangular section closed at its inner side (see Fig. 1a) is:

Z(x ) =Z0[cos2(azx)cosh2(fezx) +sin2(azx)sinh2(bi x)]1 (6)

ôc(x)=arctan
s in fa ^ s in h ^ x )

cos(azx)cosh(fczx) (7)
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where Z0 is the amplitude of the tidal elevation at the head of the channel. The x co­
ordinate is 0 at the head and L at the mouth. The r  parameter has been re-defined as 
independent of the x co-ordinate and it is expressed as (G o d in  and M a r t in e z , 1994):

r=-
km
2 h

(10)

where m is a constant whose optimum value is 0.7 for the velocity range 0.2 to 
1.0 m*s'1 ( G o d i n , 1988) and h is the depth of the channel. The other parameters of 
Equations (6) to (9) arising from the analytical solution are expressed as follows:
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Now, this theoretical result will be used to investigate the joined capability 
of the depth and the length of the channel to produce variations of the amplitude and 
phase lag of the elevation and the current velocity associated to a tidal wave.

In order to characterise such variations some additional parameters must be
defined:

a) the damping or amplification rate, R, as the ratio between the amplitudes 
of the tidal elevation at the head and at the mouth, obtained by the 
evaluation of Equation (6) at x=L:

R = — — =[cos2(a rL)cosh2(f> /.) +sin2(a L )s in h 2(/) f_)l 1/2 
Z(x=L) 1 1
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FIG. 2,- Values of the parameters; a) R, b) A6 and c) Aip for the case of the channel of constant 
rectangular cross section along different values of h and L. Computations have been done taking 

the values; io=ü)M2=1.4 10‘4 s 1, K=2.5 10 3 and Z0=1 m.

b) the phase lag of the tidal elevation at the head with respect to the tidal 
elevation at the mouth. Since a proper choice of the phase lag frame is 
to select it as 0 at the head, A5 can be computed from the evaluation of 
the Equation (7) at x=L:

A5 =5;-(x =0) -5j.(x =L) =a rcta n
-s\n{azL)s\nh(bzL)
cos(azL)cosh{bzL) (16)



c) the averaged channel value of the phase lag of the current velocity with 
respect to the tidal elevation:

Acp=ôu( x ) - 5 ç(x) ( I 7 )

The evaluation of these parameters for different values of depth, h, and 
length, L, for the frequency of the M2 wave, 0)=1.4^10-4 rad*s \ with a bottom friction 
coefficient of k=2.5*10'3and an amplitude for elevation at the mouth of Z0=1 m is shown 
in Figure 2. It can be observed that R and A5 decrease when h and L increase. For 
a channel of length L, az and 4 decrease when h increases and R-1 and AÔ -0  
(Equations (15) and (16)). On the other hand, for a fixed value of depth, or keeping az 
and bz constant, the decreasing of L produces the same results on R and A 5 .

In relation to Acp (Equation (17)), it tends to be 90 degrees when h increases 
and L decreases. The quadrature value implies a stationary behaviour of the tidal 
oscillation and similar variation of the phase lag of the tidal current and elevation. 
Therefore, a value of A 5 close to zero degree with a 90-degree phase lag between 
tidal elevation and currents implies a small along channel phase lag of the current 
velocity gradient.

Some combinations of depth and length can verify the values of R*  1, A 5 =0 
and A<p *90. Even for the shallowest case, 2 meters, these values are observed for 
channels of less than 20 km length. This means that for these channels it can be 
assumed that

ËL  = 0 (18)
dx

dx

dbT

dx
(20)

5u=ô^+90° (21)

Expressing the mass conservation (Equation (2)) in terms of the solutions 
(Equations (4) and (5)) for the case of a channel of constant rectangular cross section,

— cos(tof- 0  ) + U - ^ s i n ( w f - 5  )= —œsinfcof-ô,) (22)
dx dx h

and assuming the conditions of the expressions given by equations(18) to (21), it is 
simplified to



Considering a more general case where the depth and the breadth of the 
channel can change with the x co-ordinate (see Fig. 1b) , the mass balance is from 
Equation 2:

d(AU) dô
—------cos(iof-5u)+/41/— -sin((i)f-5 ) =6Zœsin(iüf-5 ) (24)

dx dx “

and with Equations (18) to (21 ):

d{AU) bZ to
dx

where in Equations (23) and (25), Z is assumed to be constant.

(25)

The simplification on the mass conservation equation given by Equations 
(23) and (25) implies that when the length of the channel allows to admit the conditions 
given by Equations (18) to (21), the maximum and minimum of the elevation and the 
current velocity can be assumed to be on phase, happening at the same time in the 
whole of the channel. Also the amplitude of the current velocity can be computed from 
the mass conservation equation being possible disregard the momentum balance 
equation.

If Equation (25), is integrated from the head, x=0, to the mouth of the 
channel, x=L, using an approximation of centred finite differences, the tidal current 
velocity amplitudes can be computed by:

Ai U, , b ,„ZtoAx
U ,= --------- (26)

where Ax is the distance between two consecutive sections. This equation said that 
the amplitude of the tidal current velocity in a given cross section / can be computed 
from the amplitude of the current velocity at the previous section i-1, the cross sectional 
area at the previous section i-1, the averaged breadth between the sections i-1 and /', 
b~^2 ■ the values of cross sectional area at section /, the amplitude of the tidal

elevation and the frequency of the considered tidal wave. The computation would start 
with the calculus of the amplitude of the current velocity in the second section, U1f after 
a value for the amplitude of the current velocity at the head, Uo=0, for no flux boundary 
condition is assumed.

So, the tidal current velocity can be computed quite approximately with very 
few data knowing the geometric characteristics of the channel, its breadth and depth 
variations from the nautical chart, and a value of the amplitude of the tidal elevation at 
an inner harbour. Although, it is implicit that the tidal behaviours accomplish a 
stationary character with slight variations of Z, and 5U with x.

The question now is how shorter a channel must be and, at the same time, 
what characteristics must be present in depth and breadth variations to compute the 
tidal currents through the Equation (26). In the next section it wi!! be presented a set



breadth which will allow to define the geometrical conditions for what approximation 
given by Equation (26) can be applied on.

2. Description of the numerical experiments

The numerical experiments consisted of the numerical integration of the 
system of differential equations, Equations (1) and (2), using centred finite difference 
schemes in several convergent channels varying exponentially in depth and breadth 
with the along channel co-ordinate x (P r a n d l e , 1984):

where x varies from x=0 at the head to x=L at the mouth and h0 and b0 are the depth 
and breadth at the head respectively. The constants a and p mean for the rates of 
exponential change in depth and breadth respectively.

The different geometrical configurations correspond to channels of five 
lengths; /-=10, 20, 30, 40 and 50 km. Such configurations were generated to different 
pairs of values (an ,(3m) where a „-n /L : with n varying from 0 to 4 with an increment 
of An=0.2 and (3m=m/L, with m varying from 0 to 4 each Am=0.2. The limit of 4 for n 
and m is established for the geometrical configurations of which value of the relations 
h(x=L)/ha and b(x=L)/b0 are greater than e4= 54 and they will not be considered. The 
most of the real convergent channels are contained under this limit.

The numerical solution to Equations (1) and (2) in each generated channel 
were obtained following the numerical integration scheme given by D e f a n t  (1961). In 
this technique, the forms of the solutions are firstly assumed as:

h(x)=hoe'ix

b(x)=boe ax

(27)

(28)

Ç=Z(x)cos[iof -5ç(x)]=Zc(x)costof+Zs(x)sinüJf (29)

o =L/(x)cos[cJf-5u(x)]=L/ C(x)coscof+l/ S(x)sinajf (30)

where

(31)

(32)

are the tidal elevation and current velocity amplitudes and

(33)

their respective phase lags.



The following time independent equations are obtained by the substitution 
of Equations (20) and (30) into Equations (1) and (2). The two first come from the 
momentum equation and the two last from the mass conservation:

dZc 1- ±  = — (rU c+o,Us) (35)
dx g

dZs 1
^  = l {ru s^ u c) (36)
dx g

d{AUc) „  .— -? -  = -b u Z s (37)
dx

d(AUs)
— -----=fKOZc (38)

dx

Now, these expressions are integrated from the head to the mouth after a 
discretisation of the spatial dominion in ‘n’ cross sections equally spaced a distance Ax 
and being given its co-ordinate x by x=bAx, with / varying from 0 to n, being the total 
channel length L=it Ax.

In this way, Equations (37) and (38) were applied on the even sections, i=0,
2, 4,...,n .yielding the expressions for Uc and Us :

U _ _ ^(i-i)tljZs()-i)2Ax _ A{i)Ucii)
u c("2) (39)

0-2) (/-2)

b, ..cio Z .,2A x  A .M  ,,
/ ----- +- t  (40)
(/•2) (/-2)

On the other hand, Equations (35) and (36) were applied on the odd 
sections, i=1, 3....n-1, yielding the expressions for Zc and Zs:

^c</*2) “  1 +r,‘ 1 ^c( i- i  )2 Asc +Zc(i) (41 )

Zs(/*2) (U^c(/-1) +r(/-1)^5(/-1))2^ +ZsW (42)

The computation starts with i=0 in Equations (39) and (40), computing the 
values Uc(2) and Us(2), at the third section, after fixing the boundary condition at the 
head, Uc(0)=Us(0)-0 and the values 2^1) =1 meter and Zs(1) =0, at the second section. 
The value Zs(1) is taken as zero in order to establish a zero value for the tidal elevation 
phase at the head, actually at the second section. Furthermore, the phases for tidal 
elevation and current velocity at any other section are referred to the tidal elevation



elevation phase at the head. The Uc(2) and 14(2) values are used to compute the 
values Zc(3) and Zs(3), taking i=1 in Equations <41) and (42). In this way, the pairs of 
Equations (39), (40) and (41), (42) are alternatively used to compute current velocity 
and tidal elevation. From these values the amplitude and phase lag are recovered from 
Equations (31 ) to (34).

The results of the numerical simulation will be resumed in the parameters 
R, A 5 and Acp defined in Equations (15) to (17). In addition it will be useful a new 
parameter defined as:

which represents the along channel averaged value of the differences in each section 
between the amplitude of the current velocity computed from the numerical model, Um, 
and the solution from Equation (26), U3 will be useful. This quantity is divided by the 
averaged along channel current velocity and it is expressed in percentage. The E, 
parameter is used to estimate the degree of approach of the Ua and Um. It can be read 
as a % of relative residue with respect to the averaged along channel current velocity 
amplitude.

3. Results from numerical experiments

The discussion and comments of this section will be referred to the Figures
3 to 5 where the contour maps of parameters R, A5 , Acp and Er for the different values 
of n and m and for several length of the channel are shown. All results are 
characterised for the M2 tidal wave and for a bottom friction coefficient of 2.5-10*3. 
A characteristic value of the depth at the head, h0=2 m, has been fixed for all 
simulations.

In the case of L- 10 m, the Er values never are greater than 2%, so the 
approach of the simplified model given Equation (16), Ua, to the full model, Um, is rather 
good. This is in agreement with the value of R, very close to 1, the value of A 5 close 
to 0 and a value of Acp close to 90 degrees for the full range of n and m. So, the 
simplified model of Equation (26) can be applied on convergent channels of L=10 km 
with a depth at the head of h0=2m and for arbitrary exponential variations of depth and 
breadth.

For the case of L=20 km, the Er values are never greater than 4%. So the 
approach of Ua to Um is quite satisfactory. However, significant deviations of A 5 from 
zero can be found for a wide range of n and m values. This means that although the 
amplitude of the current velocity is being well estimated from Equation (26) in the whole 
range of n and m, its along channel phase lag gradient is far from zero, leading to an 
uncertainty in the prediction of the time of maximum current along the channel. 
However if a small uncertainty is admitted for the phase lag of the current estimation, 
for A ô values less than 10 degrees, the relative error parameter, En is less than 6% for 
any case. This magnitude of the error can be accepted to perform the prediction of the

(43)

Um



amplitude and phase lag of the current. The Ten Degrees Line (TDL) can be assimilate 
as a straight line mapped for different combinations of m and n and for all the 
considered lengths of the channels.
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For the remaining cases, the TDL is located upper, decreasing the validity 
dominion of Equation (26) (Fig. 6). In this way, this region is reduced in the more 
limitating case of L=50 km to above the line joining the points n=0, m=3.1 and n=4,



m= 1.9. It is easy to verify that the validity dominion is greater in channels with greater 
depth at the head.
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4. Application to the Vigo and Pontevedra Estuaries

In order to analyse the feasibility of the approach given by Equation (26) in 
a practical context, the method has been applied on two Spanish characteristic short 
length convergent channels: the Vigo and Pontevedra estuaries. The Vigo and 
Pontevedra estuaries belong to the Gallega Estuarine System. They are located in the 
Northwest coast of Spain (Fig. 6). The sections where the tidal elevation and current 
velocity were estimated are also shown.

The application of the method consists in the computation of the values for 
the tidal elevation and currents of the M2 tidal wave by the full model and from the 
simplified model of Equation (26). After this, the computation is on N2, M2 and S2 tidal 
waves and the comparison with the harmonic constants from current velocity 
recordings in the locations C1 and C2 (Fig. 2) inside the Vigo Estuarie is made.

a) Comparison with numerical model solution

In Table 1 the length, L, the depth at the head, hg, and the geometrical 
parameters n and m characterising the breadth and depth exponential variation of the 
Vigo and Pontevedra are shown. It can be observed in Figure 6 that the points (n,m) 
are located above the respective critical lines corresponding to the two estuaries, Vigo 
L=20 km and Pontevedra L=10 km, henceforth a good approximation of Ua to 
values as well as a close to zero along channel phase lag of the current velocity should 
be found.

L=50 Km

L= 40 Km

L=30 Km

L=20 Km
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Table 1 - Values of geometrical parameters for the Vigo and Pontevedra Estuaries

Estuary h0(m) L (Km) a (m 1) P (m 1) n m
Vigo 2.0 21.6 8.29E-5 1.27E-4 1.79 2.743

Pontevedra 2.0 14.3 9.54E-5 2.03E-4 1.36 2.905

The phase lag for the current of the simplified and the full model associated 
to M2 tidal wave is obtained for Vigo and Pontevedra are shown in Figure 9 For both, 
the computations of Ua and Um are from the amplitude of the tidal elevation taken from 
Vigo and Marin Harbours within the Vigo and Pontevedra estuaries respectively and 
where harmonic constants of tidal elevation were available (Table 2). Considering



constant values for them along the estuary in the Ua computation and using them to fix 
the elevation boundary condition at the head in the Um computation. The Ua and Um 
agree quite well and the along channel current phase lag variation is very close to zero 
in the two estuaries. So, the presented method to compute tidal current velocities Ua 
can be successfully applied on those estuaries as it was expected from the numerical 
experiment results of section 3.

Table 2 - Harmonic constants of the main semidiurnal tidal waves for elevation in Vigo and Marin 
Harbours. Z means for the amplitude in meters and gç is Greenwich phase Jag in degrees

Vigo Harbour Marin Harbour
Component Z gS Z g£

n 2 0.219 69.53 0.210 67.00
m 2 1.089 77.94 1.040 82.00
S, 0.390 102.32 0.380 110.00

b) Comparison w ith the observed data

This comparison have been carried out by means of the along channel 
current velocity associated to the M2, N2 and S2 tidal waves. Data were taken from two 
currentmeters located in the Vigo estuary (Fig. 6) and the harmonic constants have 
been estimated by a Least Square Harmonic Analysis directly on data (F o r e m a n , 
1976). In Table 3, the harmonic constants from real data and the ones obtained by 
Equation (26) are shown together. All quantities, amplitudes and phase lags from real 
data and model, quite agree, showing that the proposed approach is quite well to 
modelling the tidal currents in the along axis of the channels that present certain 
geometrical characteristics.

Table 3 - Amplitudes (in cm s ') and Greenwich phase lags (degrees) for the main semidiurnal tidal 
waves in the along channel current velocity at two placements (C1 and C2) within the Vigo Estuary. 
Uob and gob stand for amplitudes and Greenwich phases lags obtained by least squares harmonic 

analysis on recorded data. Ua and ga stand for the values computed from Equation (26).

Component Uob Ua gob ga uob Ua gob ga
n2 2.3 1.4 5.9 -20.5 0.7 0.8 25.8 -20.5
m 2 11.3 7.2 14.3 -12.6 4.3 4.3 34.2 -12.6
s? 4.0 2.7 39.0 12.3 1.6 1.6 58.6 12.3

5. Conclusions

From the present study it could be detached that in short length elongated 
convergent channels a very feasible approach of tidal current velocity in the along 
channel direction can be obtained through the very simple formula represented by 
Equation (26). The only necessary information are the harmonic constants of the tidal 
elevation in any placement inside the channel and a resolved enough nautical chart of



the channel. In addition, a practical way to inquire when a channel allows the 
application of Equation (26) is proposed by the use of graphical representations for the 
10 degree lines of maximum errors, or TDL (Fig. 6). From the m and n values 
characterising the breadth and depth variations of a given channel and provided the 
point (n,m) locates above the TDL corresponding to the length of the channel L, the 
authors can expect that the estimation of the tidal current using Equation (26) will yield 
a successful approach.
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