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The problem of determining turning points of median lines between states sepa
rated by sea is considered. The turning point is defined as the point with equidis
tance lines to two basepoints along the shoreline of one state and one basepoint 
in the adjacent state. For the sphere the equidistance lines are parts of great cir
cles, and the problem is solved by closed formulas. For the ellipsoid the lines are 
defined along geodesics, and an iterative solution is presented.

Introduction

The median line is a line every point of which is equidistant from nearest points 
on the baselines of two states (IHB, 1993). This line is crucial for the maritime 
delimitation between opposite coasts of two states separated by sea. In general, 
the median line runs smoothly as the ‘straight line' equidistant between two dis
tinct baselines, each belonging to one of the states. However, whenever points 
belonging to another baseline along one coastline get closer to the median line 
than points on the previous baseline, the median line turns. As suggested by 
Carrera (1987) the median line turning point can be defined by a three-point 
method, i.e. the turning point is the point equidistant to three baseline points 
(belonging to different baselines). If the scale of the baselines (between defined 
basepoints) is small compared to the scale of the coastline separation, the points 
along baselines can be approximated by the discrete basepoints. This approxi
mation will be used here to determine median line turning points. This problem 
was also treated by Carrera (1987), Horemuz (1999), Horemuz et al.(1999) and 
Fan (2001). Carrera(1987) solved the problem by classical formulas for solving 
the geodetic direct and indirect problems for geodesics on the ellipsoid. Horemuz 
(1999) and Horemuz et al. (1999) solved the problem explicitly by rectangular co
ordinates for the spherical surface of reference, while an approximate method 
was used for the ellipsoidal surface of reference.

In this paper the three-point turning point problem is solved explicitly for the 
sphere by spherical co-ordinates. For an ellipsoidal surface of reference the prob
lem is formulated by integral equations along geodesics.

Solutions for the Sphere

Proposition: Given the points P, ((pi h) with latitudes tp, and longitudes X,; i = 1,2,3, 
the three-point problem has the solutions



Case I : ¢2):
S 23 cos (p, co s  À ,  -  S j3 cos  <p2 cos  X 2 +  S12 co s  cp3 cos 

t^n  A  — —  - - — 
—S 23 cos cp, s in  / - , + 8 ,3  cos <p2 s in  A 2 -  S 12 co s  (p3 s in  A 3

and

where

_  co s  cp2 cos A X 2 -  co s  <Pj cos A X ,

(la )

( lb )

tancp =
s 12

S;j =  sin<p; -s in c p j  ; i,j =1,2,3 and A X i =  A - À ,  ; i =1,2.

Case II : (q)i= 925* 93):
, co sÀ ,—cosX9 

ta n X  = -------- - » ------------- r 2-
s in À 2 - s i n  A ,

(2 a)

and coscp, cosAÀ, -coscp, cosAÀ, 
t a n < p -  -Î2  2 —  L (2b)

S 13

Proof: The point P(tp,A,) is defined by equal geocentric angles to the known points Pi ((pi,À,);i=l,2,3. From 
the spherical cosine theorem one obtains the following relation between \|/i and the spherical co-ordinates 
of the points P and Pi :

cos \|/, = sin cp sin<P; +  cos cp cos cp; cos AÀ, ; i =1 ,2,3. (3)

(4)
As P (cp,À) is defined by \|/i=v|/2=\j/3, it follows that
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The first equation of formula (5) (including points Pi and P2) can be rewritten: 

tan  cp (s in  cpj -  s in  cp2 )  =  cos  cp2 cos  A A 2 -  cos cp, c o s  A A ,  

Same treatment of the second equation of formula (5) yields:

tan  cp (s in  cp, -  s in  cp3 )  =  cos cp3 co s  A X 3 -  cos cp, c o s  A À ,

Let us now consider the different cases of the proposition.
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Case I (91 * <pi): In this case (p is eliminated by dividing each member of Eq. (6 a) by (6 b). For (pi * <f>3 the 
result is
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Inserting into (7)
(8)
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one easily arrives at the solution (la ) for X, and ( lb )  is directly obtained from Eq.(6 a). If (pi = <ps, the left 
hand side of (6 b) vanishes. Together with (8 ) it yields

t a n ^ . sinX.-sma,
C0 S À , - c o s X 3



which formula agrees with ( la ).

Case II (q>i = <p2 * cp3): Formula (8 ) inserted into Eq. (6 a) with Su= 0 yields 

cos X  co s  X 2 +  s in  X  s in  X 2 =  cos X  co s  X l +  s in  X  s in  A ,

which can be rewritten on the form (2a). The solution (2b) follows directly from (6 b). Q.E.D.
The solution for Case I was also derived by Fan (2001).
Although the above solutions of the proposition are mathematically exact, they may suffer from numeri
cal instability in the practical application. One improvement is gained by substituting the differences of 
sines of St by

Sy =  2 cos cpy s in (A (p ;j / 2 ) (10)

where cp*, = (cp* + <pj)/2.and Acp„ = <p, - cpj A similar improvement can be achieved for the differences of 
cosines of (9). To avoid the division by near zero for small latitude and/or longitude differences among 
the known points the following corollary may be useful.
Corollary 1: The coordinates À and <p of the median line turning point is given by
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D[ D, (1

and
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where Ai and Bi are the numerator and denominator, respectively, of the right hand side of Eq .(la ), and
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The proof is given by simple trigonometric manipulations of Eqs. ( la )  and (6 a,b).
Unfortunately, there is still the possibility that for small baselines the denominators D1 and D2 may be 
small, making the solutions for X and <p numerically unstable. This problem must be further studied. 
Corollary 2: The azimuth »  at point Pi (cpi,X.i) along the great circle towards P (¢,¾.) is given by

sin (X  — X: ) MG') 
tanoCj  =  ^ ; i = 1, 2, 3 (15) 

cos ̂  tan cp -  sin <Pj cos (A -  Xi )

The proof is given e.g. in Sjôberg (2002).

Solution for the Ellipsoid

In the case of an ellipsoidal surface of reference it is convenient to introduce the reduced latitude P relat
ed by the geodetic latitude <p by the relation

(16)
tan (3 =  V I - e 2 tancp

where e =  \ ja 2 — b 2 /a  is the first excentricity of the ellipsoid defined by the semi-major and -minor axes 
a and b. The distance (s>) and the ellipsoidal longitude difference (AL) from the point Pi ([}i, L) to the want
ed turning point P (|3, L) along the geodesic are given by
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Here hi = cos|W, where Pm«  is the maximum (or minimum) latitude of the geodesic. 
Alternatively, using the variable substitutions

s in P
s in  v  =  •

(19a)

V l - h 2

and

h  q
s in  w  =  . tan  p  (19b)

V l - h 2

the integrals (17a) and (18a) can also be written (Klotz 1991 and 1993; Schmidt 1999 and 2000):
v (2 0 a)

Si =  J  f  * ( v ,  h j ) d v  =  F* ( v ,  h; ) -  ( V j , h j )
and

where

and

W

A L j  = J g* ( w , h j  ) d w  =  G* ( w , h j  ) - G *  ( w ^ h j )

f  * ( v ,  h i )  =  a ^ l - e 2 { l - ( l - h 2 ) s in 2 v }
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(2 0 b)

V  u \  + /i e2h'  (21b)g  ( w , h i )  =  ±  1 - -
h? +  ( l  -  h f  ) s in 2 w

The three-point problem can now be defined by the equations

Sj — S2 —  S3 (2 2 a)

and

L  =  L 1 + A L 1 = L 2 +  A L 2 = L 3 + A L 3 (22b>

where si and A L  are given by Eqs. (17a) and (18a) or by Eqs.(20a) and (21a). The longitude L can be elim
inated from (22b), yielding four independent equations with four unknowns (|3, hi, h2, ha). The system of 
equations can thus be written



s, — s2 

s, = s 3 

Lj + AL, = L j + AL2 
Lj + ALt = L 3 + AL>3

(23)

(24a)

X T =(AP,Ah,,Ah2,Ah3)

vT =  { ( s = ) -  (s, ) . ( ¾  ) - (s, ) , l 2 - ( L 2 ) - Li -t-(L, ) , - < l 3) - L,  +  (L,  ) }
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Here the bracket ( ) denotes an approximation to the quantity within the bracket, determined by p° and 
HÎ. The vector of unknowns X  contains improvements to the approximate values p°, hS, h9 and hS. The ele
ments of the (4x4) design matrix A  are presented in the Appendix. In order to determine the elements of 
Y and A  the integrals (17a) and (18a) or (20a) and (21a) must be employed, e.g. by series expansions or 
direct numerical integrations (Klotz 1991 and 1993; Schmidt 1999 and 2000). Starting values for (3°, v° 
and hPare preferably given by the spherical solutions of Section 2. As the equations are linearised, the 
solution should be iterated.

Concluding Remarks

The solution of the position of a median line turning point from the three-point problem was derived explicitly 
for the sphere and as an iterative vector solution for the ellipsoid. The problem with possible unstable solutions 
for small baselines deserves further attention. However, numerical examples are left for a forthcoming paper. 
A future challenge is to avoid the approximation by the three-point problem and to determine the position 
of the turning point directly from all points along the baselines.
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Appendix
The elements of the design matrix A are as follows:
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A4,=

A 42 -  A 32

a 43= o

h° f g * ( v . h° )2 f

l - ( h “ )2 {
dv

COS V

f dAL, f  0A L 3 ^ _ h? f g* (v .h ? )d..
dh,\ 1 J k 9h3 J l - ( h ? )  v, cos2v 1i - ( h ! ) ' !

dv

h j _ J £ ( v X ) dv



Biography

Lars E. Sjôberg got his Ph.D. ir  Geodesy in 1975 at the Royal Institute of Technology (KTH) in Stockholm. 
After working with professor R.H Rapp at The Ohio State University during 1977 and 1978 and about four 
years work with the National Land Survey of Sweden, he returned to KTH in 1984 to succeed his old pro
fessor on the chair of Geodesy.
Through the years he has been a member of several IAG special study groups (chairing three of them) and 
commissions, and he is an IAG Fellow since 1991. He is a presidium member of the Nordic Geodetic 
Commission since 1982, a Fellow of the Alexander-von-Humboldt Foundation since 1983 and a corre
sponding member of the German Geodetic Commission since 1989.
His research interests are in the fields of geodetic theory of errors, physical geodesy, GPS positioning 

and deformation analysis. From 1989 to 1995 he served in the editorial boards of Manuscripta 
Geodaetica and Bulletine Geodesique, and he has published about 200 scientific papers and reports.

E-mail: sjoberg@geomatics.kth.se

mailto:sjoberg@geomatics.kth.se

