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SUMMARY

Canada has the longest coastline and
largest continental margin of any
nation in the World. As a result, it is
more likely than other nations to expe-
rience marine geohazards such as sub-
marine landslides and consequent
tsunamis. Coastal landslides represent
a specific threat because of their possi-
ble proximity to societal infrastructure
and high tsunami potential; they occur
without warning and with little time lag
between failure and tsunami impact.
Continental margin landslides are com-
mon in the geologic record but rare on

human timescales. Some ancient sub-
marine landslides are massive but more
recent events indicate that even rela-
tively small slides on continental mar-
gins can generate devastating tsunamis.
Tsunami impact can occur hundreds of
km away from the source event, and
with less than 2 hours warning. Identi-
fication of high-potential submarine
landslide regions, combined with an
understanding of landslide and tsuna-
mi processes and sophisticated tsunami
propagation models, are required to
identify areas at high risk of impact.

SOMMAIRE

Le Canada possede les plus longues
zones coticres et marges continentales
du monde. Dong, il est significative-
ment exposé aux géorisques marins,
comme les glissements de terrain sous-
marins (GTSM) comportent également
des risques de tsunamis. Les glisse-
ments cotiers représentent un risque
significatif vu la proximité d’infrastruc-
tures et leur capacité de produire des
tsunamis. Ils se produisent sans aver-
tissement et peu de délai existe entre
leur déclenchement et 'impact possible
d’un tsunami. Les GTSM en marge
continentale sont communs dans ’his-
toire géologique mais rare a ’échelle de
Phistoire humaine. Quelques anciens
dépots glissés sont de dimensions
importantes, mais les nouvelles évi-
dences suggerent que méme les petits
glissements sur les marges continen-
tales peuvent générer des tsunamis.
L’impact des tsunamis peut étre ressen-
ti a des centaines de km de la source et
I'impact est possible avec moins de 2
heures d’avertissement. [’identifica-
tion des régions a potentiel élevé pour
I'instabilité des pentes combinées a la
compréhension des processus de for-
mation de GTSM et de tsunami, et a
des modeéles sophistiqués de propaga-
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tion, sont nécessaires pour identifier les
secteurs hautement a risque d’impact.

INTRODUCTION
A submarine landslide off Papua, New
Guinea in 1998 caused a tsunami
resulting in 2200 deaths (Tappin et al.
2001). On December 26, 20006, a sub-
marine landslide off Taiwan, in the
Luzon Strait, caused failure of seven
out of nine undersea cables (LaPierre
2007; Hsu et al. 2009). These failures
disrupted the entire internet network
between Taiwan, Hong Kong, and
China and affected communications
with Thailand, Malaysia, Vietnam,
South Korea and Singapore for 12
hours. Given that the combined GDP
of Taiwan, Hong Kong and China
approximates $7.56 billion dollars per
day, the economic impact of this event
was very severe. The complete cable
inventory was not again operational
until January 30%, 2007, after 18 cable
repairs. These two events point to the
potential devastation that submarine
landslides can wreak. As a result, con-
certed efforts by various groups are
underway to understand the risk these
offshore phenomena represent to soci-
ety; these groups include the United
States Nuclear Regulatory Commis-
sion, the US National Tsunami Hazard
Mitigation Program, the European
Continental Slope Stability (COSTA)
Program and associated Canadian Can-
COSTA program, and the United
Nations Educational Scientific and
Cultural Organization’s (UNESCO)
International Geological Correlation
Program (IGCP) Project 511 on Sub-
marine Mass Movements and Their
Consequences (Mosher et al. 2009a;
Lykousis et al. 2007; Locat and Meinert
2003).

This elevated awareness of the
need for better understanding of
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underwater landslides is coupled with
great advances in underwater mapping
technologies developed over the past
two decades. Multibeam sonar, 3D
seismic reflection, and remote and
autonomous underwater vehicle tech-
nologies provide hitherto unparalleled
imagery of the geology beneath the
oceans, permitting investigation of
submarine landslide deposits in great
detail. This paper reviews a number of
known examples of underwater land-
slides in Canada, particularly those for
which modern survey data exist, and
separates the discussion into coastal
and continental margin events. Some
landslides are known to have caused
tsunamis and so the tsunami potential
of these events is assessed. The paper
will also show the prevalence of land-
slide deposits in the offshore geologic
record, which has implications con-
cerning the frequency of underwater
landslides and the modern hazard they
represent.

COASTAL LANDSLIDES and
TSUNAMIS
Canada’s coastline is >243 000 km
long — the longest in the world (Fig. 1).
Coastal landslides represent a clear
hazard because of their high potential
for tsunami generation and their possi-
ble proximity to societal infrastructure.
Many coastal regions are characterized
by one or more of the following fac-
tors that create conditions conducive
to sediment mass-failure: 1) steep
slopes caused by wave, long-shore cur-
rent, and/or glacial erosion; 2) a variety
of coastal Quaternary deposits that in
many cases lack cohesive strength; 3)
offshore sediments having either
marine or lacustrine origins because of
a history of sea level rise and fall; 4)
juxtaposition of sediments with vari-
able geotechnical properties; and 5)
significant spatial and temporal varia-
tion in pore pressure because of the
juxtaposition of subaerial and subma-
rine conditions, tidal and wave fluctua-
tions, and the possible presence of
meteoric waters and aquifers.

The coast of British Columbia
(BC) is the region in Canada most
prone to landslides and consequent
tsunamis because of the conditions
listed above, combined with a high
potential for earthquakes (Bornhold et
al. 2001; Adams and Halchuk 2003).

Figure 1. Map of Canada showing the location of submarine landslides that
appear in subsequent figures.

The possibility of earthquake ground
motion amplification is also high in
areas of unconsolidated sediment
accumulations (Mosher et al. 2000;
Cassidy and Rogers 2004). The 1946
Vancouver Island M7.2 earthquake
caused underwater landslides within
the Strait of Georgia at Deep Bay,
Goose Spit, and Grief Point (Mosher
et al. 2004a; Fig, 2). The failure in
Deep Bay is known to have caused a
water wave that reportedly overturned
a boat and resulted in one drowning
(Rogers 1980). The Grief Point failure
severed an underwater telephone cable
running between Texada Island and the
mainland. Rabinovich et al. (2003)
simulated a hypothetical landslide in
this area of Malaspina Strait; the simu-
lation generated a tsunami with trough-
to-crest heights of 6 to 8 m along the
coast of Texada Island and wave
heights of 1.5 to 2.0 m across the
strait.

A number of coastal land-
slides in BC have been caused by
anthropogenic activity, such as the
Kitimat Arm failure of 1975 that
resulted from coastal construction
(Prior et al. 1982). This slide produced
a series of waves, the largest of which
was an estimated 8.2 m high (Prior et
al. 1982). In some cases, however, sedi-

ment mass failure occurs with no read-
ily apparent trigger. Spontaneous fail-
ure in river-mouth deltas may be
caused by rapid sediment loading
(Terzaghi 19506); for example, a well-
documented failure at the mouth of
the Fraser River involved 10° m’ of
sediment and retrogression of the head
of the principal sea valley to within
100 m of the Sand Heads lighthouse
(McKenna and Luternauer 1987;
Atkins and Luternauer 1991; Christian
et al. 1998). Similatly, some failures in
coastal regions are perhaps related
purely to pote pressure responses to
tidal change or storm activity (Christ-
ian et al. 1997, 1998; Mosher et al.
2004a, b).

The tsunami potential of a
failure on the Fraser River delta, irre-
spective of causal mechanism, was
assessed by Rabinovich et al. (2003),
who modeled the water column
response to a hypothetical slide failure
on the delta foreslope. Slide dimen-
sions were based on geological evi-
dence of a possible pre-historic failure
(Mosher et al. 2004a). The model
demonstrated a tsunami wave up to 18
m high crossing the Strait of Georgia
within 6 minutes (Fig, 3) and striking
the coast opposite the source area.
Wave amplitudes were much smaller (1



Volume 36 Number ¢

Metres

Figure 2. Seafloor multibeam images of coastal landslides that are known to have
occurred in the 1946 Vancouver Island earthquake. a) Location map; b) Grief
Point; ¢) Comox; d) Mapleguard Spit.

Figure 3. Secafloor multibeam image of the southern Strait of Georgia including
the Fraser River delta. The insets display a numerical simulation (Rabinovich et al.
2003) of a hypothetical landslide on the foreslope of the delta and a corresponding
tsunami at 6 minutes post-failure initiation. The black box shows the area featured
in the insets.
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to 4 m) on the mainland coast because
of reflection of the initial waves from
shallow water and intertidal delta
banks.

The MacKenzie River delta is
the largest river delta in Canada, and is
located in the Yukon-Beaufort-
MacKenzie region, where seismicity
potential is considered moderate
(Adams and Atkinson 2003). The two
largest recorded events were a M6.5
earthquake in 1920 and a M5 event in
1975 (Hyndman et al. 2005). The risk
of submarine landsliding is significant
because of this seismicity potential in
combination with thick sediment accu-
mulation and rapid sedimentation rates
on the delta. In addition, ecarthquake
ground acceleration amplification, vari-
able permafrost thicknesses, and the
presence of significant z situ gas and
possible gas hydrate (Paull et al. 2007)
must be taken into consideration in
assessing the probability of submarine
landsliding in the region of the delta.

Figure 4 shows a ~200 km®
submarine landslide of unknown age
on the seafloor of the MacKenzie
delta. This feature was studied by Hill
et al. (1982) but without the benefit of
modern multibeam sonar data (Bennett
et al. 2004). Hill et al. (1982) conclud-
ed that the area is stable under present
conditions (i.e. static — with no con-
tributing triggers such as ground
motion due to earthquakes), based on
infinite slope stability analysis. Evi-
dence of a mass failure, therefore, sug-
gests that seismicity or elevated pore
pressures were required to initiate fail-
ure. However, Hill et al. (1982) invoked
sediment creep (slow downslope defor-
mation) as a viable mechanism for ini-
tiation of mass failure in this region.
The failure’s tsunami-generating capac-
ity was not assessed, but multibeam
sonar data (Fig. 4) show >80 m-high
headwall escarpments in present water
depths of 115 m, hence its tsunami-
generating potential was probably high.
For comparison, the tsunami simula-
tion of Rabinovich et al. (2003) on the
Fraser delta (discussed above) involved
only 21 km* and a volume of 0.75 km’.
With offshore hydrocarbon develop-
ment in the MacKenzie River delta
region and extremely low terrain eleva-
tions in the adjacent hinterland, sub-
marine landslide and tsunami potential
poses a significant hazard in the Beau-
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Figure 4. Secafloor multibeam image of a submarine landslide on the MacKenzie
River delta, Beaufort Sea (from Bennett et al. 2004).
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Figure 5. a) Seafloor multibeam image of a submarine landslide at St.-Siméon,
Quebec, along the St. Lawrence River estuary; b) and ¢) a numerical simulation of a
hypothetical tsunami that such a slide may have generated (from Poncet et al.
2009).

fort Sea.

After British Columbia, the
second most earthquake-prone area in
Canada is the Laurentian Valley of
Quebec (Lamontagne 2009; Mazzotti
et al. 2005; Mazzotti 2007). Along the
banks and submarine slope of the St.
Lawrence estuary and the Saguenay
Fjord are numerous examples of mass
failure (Cauchon-Voyer et al. 2007,
Levesque et al. 2006; Urgeles et al.
2001; Fig. 3). Most are prehistoric, but
a few are relatively recent, such as the
1663 and ca. 1860 events (Cauchon-
Voyer et al. 2007; Lamontagne 2009).
It is unknown if these events produced
tsunamis; however, in 1908 a landslide
on the Lieve River in western Québec
produced a wave that inundated the
village of Notre-Dame-de-la Salette
and killed 27 people (Evans 2001).

Poncet et al. (2009) assessed
the tsunami-generating capability of
coastal landslides in the lower St.
Lawrence River estuary. They investi-
gated two cases, one of a mapped sub-
marine landslide at St-Siméon, and the
other a suture on the seafloor offshore
Matane that suggests potential for a
future landslide. They found that the
greatest contributing factor to tsunami
wave height in this environment was
the water depth of slide initiation. An
additional critical factor with respect to
tsunami impact was the orientation of
the failure relative to the axis of the
river. In the case of St-Siméon, Poncet
et al. (2009) modeled a 5 m-high tsuna-
mi wave striking the opposite coast
within five minutes and propagating
upriver (Fig. 5). Along the banks of the
river and estuary, it is possible that a
landslide could commence subaerially
and enter the water catastrophically, as
suggested for the Betsiamites slide of
1663 (Cauchon-Voyer et al. 2007). In
such a case, it is possible to generate a
significant tsunami, as surmised for a
rockslide in Knight Inlet, BC that
occurred sometime in the 1500s, in
which the consequent tsunami
destroyed the Kwalate First Nation vil-
lage (Bornhold et al. 2007). A more
recent tsunami occutred in 1958 in
Lituya Bay, Alaska, where a subaerial
rockfall fell into Gilbert Inlet, produc-
ing a wave that denuded the landscape
at elevations up to an incredible 524 m
above sea level (Miller 1960).



Volume 36 Number 4

CONTINENTAL MARGIN LAND-
SLIDES AND TSUNAMIS

Canada’s landmass in water depths
greater than 200 m (the approximate
depth of the shelf break) and above
the 3000 m isobath represents an area
of 2960 000 km®. This continental
slope typically supports a stable, thick,
unconsolidated sediment overburden
(Mosher et al. 1994). Seabed slopes
within this zone typically range
between <1° and 4°, although canyon,
channel wall and subduction thrust
ridge slope angles can exceed 45°
(Mosher et al. 2004¢c). Aside from
slope angle conditions, other factors
that increase the potential for slope
instability include interstitial biogenic
(natural) gas, gas hydrate, salt mobility,
underconsolidation related to high sed-
imentation rates (e.g. during deglacial
periods), high pore pressures, and ver-
tical lithologic (porosity/permeability)
variability (Mosher et al. 2004c). In
most continental margin settings, how-
ever, it is inferred that seismicity
(ground shaking due to earthquakes) is
required to initiate instability (Lykousis
et al. 2007).

On Canada’s west coast, seis-
micity along the continental slope is
common because of active convergent
and transform margins (Hyndman
1995). Sediment mass transport
processes are a common phenomenon
along convergent margins because of
frequent and strong seismicity com-
bined with steep slope angles and
potential for elevated pore-pressures
(Tappin et al. 2001, 2007; Goldfinger
et al. 2003). The complex geology of
accretionary margins results in variable
scenarios for landslide generation, and
also makes identification of landslides
difficult. Figure 6 shows the only
known examples of landslides along
the forethrust region of the Cascadia
accretionary prism. Along the adjacent
Oregon margin, however, Goldfinger
et al. (2000) and McAdoo et al. (2004)
recognized large landslide deposits and
assessed their tsunami-generating
potential. Volker et al. (2009) mapped
a submarine landslide off the Chilean
accretionary margin that is remarkably
similar in morphology to the Canadian
examples. A submarine landslide off
Papua New Guinea in 1998 showed
that subduction-related, landslide-gen-
erated tsunamis can be more haz-
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Figure 6. Scafloor multibeam image of the Cascadia accretionary prism showing
submarine landslides on the frontal thrust ridges (data compliments of D. Kelley
and J. Delaney, University of Washington, acquired as part of the NEPTUNE pro-

gram).

ardous than the subduction event itself
(Tappin et al. 2007).

Canada’s eastern and northern
continental margins are tectonically
passive margins and seismicity is rare
(Adams and Halchuk 2003). In the
past, seismicity was probably more
commonly related to deglacial isostatic
rebound, or periods when possible
ocean basin-scale tectonism was active
(Weaver 2003). Earthquakes up to
M7+, however, can be expected (Maz-
zotti and Adams 2005), and do occut,
such as the 1929 M7.2 event off the
southern tail of the Grand Banks

(Bent 1995). Amongst geoscientists,
the 1929 Grand Banks landslide is per-
haps the most famous historic subma-
rine landslide. It led to the first formal
recognition of naturally occurring tur-
bidity currents (Heezen et al. 1954;
Piper et al. 1988), and revealed that
seafloor displacements due to mass-
failure can cause damaging tsunamis at
great distances from their source (Ruff-
man and Tuttle 1995; Ruffman 1997,
2001; Fine et al. 2005). It also showed
that undersea events can cause damage
to engineering structures.

A significant portion of Cana-
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da’s Atlantic margin has been surveyed
with modern seismic reflection tech-
nologies and to a lesser extent by
multibeam sonar, permitting identifica-
tion of submarine landslide deposits
(Campbell et al. 2004). Mosher and
Piper (2007a, b) recently studied the
seafloor of the St. Pierre Slope, the
arca of the 1929 event, using multi-
beam sonar surveys (Fig, 7). These data
show numerous fresh escarpments
ranging from 5 to 100 m in height, but
no evidence of a single large headscarp
or debris lobe. These results suggest
that the landslide was relatively thin (5-
100 m, averaging about 20 m) and dis-
persed over a relatively large area
(~7200 km?®), as suggested by ecatlier
studies (Masson et al. 1985; Piper et al.
1988, 1992, 1999). McCall (2006) esti-
mated the total volume of failed sedi-
ment in the area of St. Pierre Valley
and St. Pierre Slope between the 500
and 2000 m isobaths to be about 93.5
km’®, of which about half was evacuat-
ed and half remained.

The shoaling series of escarp-
ments on St. Pierre Slope, consisting of
rotated blocks and basal debris (McCall
et al. 2005), suggests a retrogressive
style of failure. The morphology of
this sea-floor terrain is similar to that
seen everywhere on the Scotian Slope,
particulatly on broad, flat inter-canyon
regions (Mosher et al. 2004c; Fig. 6),
suggesting that similar thin-skinned
underwater landslides may be relatively
common on the eastern Canadian con-
tinental margin.

The tsunami resulting from
the 1929 Grand Banks submarine land-
slide impacted the south coast of the
Burin Peninsula just over two hours
after the slide. From observational evi-
dence, the wave is estimated to have
been 3 to 8 m high, and run-up heights
were approximately 13 m (Ruffman
1997). Coastal infrastructure was
destroyed, 12 undersea cables severed,
and 28 people were killed. Because
this event occurred in historically
recent time and much is known of the
earthquake (Bent 1995), landslide
(Piper et al. 1988, 1999; McCall et al.
2005) and tsunami metrics (Ruffman
1997), this is a critical event for calibra-
tion of landslide and tsunami numeri-
cal simulations (Fine et al. 2005; Ward
and Day 2005; Xu 2007, 2008; Fig. 7).

In seismic profile, submarine
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Figure 7. a) Multibeam sonar image of the seafloor of the St. Pierre Slope / Lau-
rentian Fan region. The red dot indicates the epicenter of the 1929 M7.2 earth-
quake. Outlined in black is the area where 100% of the seafloor is interpreted to
have failed in the 1929 Grand Banks landslide (McCall et al. 2005). b) to d) are
tsunami simulations produced by various researchers: b) Fine et al. (2005); ¢) Ward

and Day (2005); and d) Xu (2008).

landslide deposits are often charac-
terised by incoherent reflections with
typically irregular surfaces and possible
erosional bases. As data have become
more widely available, it has been rec-
ognized that landslide deposits on pas-
sive margins are prevalent at both the
sea-floor surface and subsurface
(Mienert and Weaver 2003; Benetti
20006). Mosher et al. (2009b) described
a Late Pliocene to Early Pleistocene
landslide on the Scotian Slope that had
a run-out distance >100 km and a total
volume in excess of 862 km’. They
numerically simulated a tsunami for
this event and demonstrated that a 13
to 25 m-high wave would have struck
the Halifax area in less than 80 min-
utes, assuming present-day water
depths (Fig. 8). Similar-sized subma-
rine landslide deposits have been rec-
ognized elsewhere along the Canadian
Atlantic margin (Deptuck et al. 2007)
and smaller deposits are abundant
(Tripsanas and Piper 2008; Mosher and

Campbell in press; Campbell and
Mosher 2009; Giles et al. 2009).

LANDSLIDE AND TSUNAMI HAZARD
ASSESSMENT

The prevalence of submarine landslide
deposits in coastal and continental
margin settings in Canada underlines
the potential for future submarine
landslides and consequent tsunamis in
these environments. It is believed that
carthquake ground accelerations are a
common initiating factor for many
submarine landslides; hence, to some
degree the potential for a landslide
event is dependent upon the seismic
hazard in the area. In the active tec-
tonic setting of Canada’s west coast,
earthquake potential is high. Although
subduction megathrust events are rare
on human time scales (hundreds of
years), significant (M6+) earthquakes
can occur anywhere within the forearc
crustal setting (Hyndman et al. 2003).
These events, particularly in concert
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with ground motion amplification, can
initiate sediment liquefaction and fail-

ure on slopes with sufficient sediment
mass. Particulatly susceptible are areas
with thick, rapidly deposited sediment
accumulations, such as the Fraser and

MacKenzie River deltas.

In eastern Canada, the seismic
risk is low, although residual post-gla-
cial strain is still of concern (Mazzotti
et al. 2005; Mazzotti 2007) and may
result in latent seismic events up to
~M?7.0. Areas most susceptible are
those with significant sediment mass
resting on slopes, particulatly those
areas overlying formerly active tectonic
elements where reactivation is a possi-
bility (Mazzotti 2007). The coastal
zone of the St. Lawrence River and
estuary is, therefore, susceptible to sub-
marine landsliding and tsunami-genera-
tion (Lamontagne 2009; Poncet et al.
2009). The eastern Canadian continen-
tal margin is also susceptible to lands-
liding, as demonstrated by the historic
event of the 1929 Grand Banks earth-
quake, landslide and tsunami.
Although the expected earthquake
recurrence rate is relatively low in the
latter region (Adams and Halchuk
2003), there are other contributing fac-
tors to seafloor instability, such as shal-
low gas, gas hydrates, subsurface salt
mobility, paleo-tectonic structures and
thick sediment accumulations in some
regions, such as the Laurentian Fan. A
study by Mosher et al. (2004¢) along
the Scotian Slope has shown a strong
correlation of events with glacial
advances and recessions, and few land-
slides in the post-glacial period (i.e. the
last 10 000 years). Mosher et al.
(2004c¢) suggest recurrence intervals of
a thousand years for smaller events,
and 10 000 to 100 000 years for larger
submarine landslides.

When assessing the tsunami-
generating capacity of a submarine
landslide, there are many factors to
consider (Ward and Day 2005). From a
source function perspective, the vol-
ume, area, displacement, acceleration
and water depth are critical. Most
slides are complex, and may include a
rotational component resulting in uplift
in one area and down-drop in another;
failure typically progresses from a slide
to a debris flow and eventually a tur-
bidity current (Locat and Lee 2002).
Each of these elements affects tsunami
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Figure 8. Tsunami simulation for a large (862 km?) Plio/Pleistocene submarine
landslide on the southwestern Scotian Slope, 85 minutes post-failure (from Mosher
et al. 2009b).

generation differently, and in most
cases it is difficult to predict these fac-
tors in advance of a failure.

After tsunami initiation, wave
propagation is affected by seafloor
bathymetry and coastal morphology
and may therefore also be complex.
This is particularly true in coastal set-
tings, where wave reflection and refrac-
tion, along with resonance and edge
wave effects can cause prolonged
propagation and wave amplification.
For example, Koh Phi Phi Island in
Thailand was inundated from both sea-
ward and landward directions in the
2004 Sumatran tsunami (Ioualalen et
al. 2007). Its landward (northern) side
was struck because waves refracted
around the island from both directions,
and constructive interference and
amplification occurred as they met on

the backside. Resonant effects causing
wave amplification were also demon-
strated in the 1964 tsunami that struck
Port Alberni, BC (White 19606; Fine et
al. 2008), whose long, narrow inlet is
typical of the BC coastline. The 1992
Cape Mendocino earthquake, at the
southern end of the Cascadia Subduc-
tion Zone, generated a tsunami in
which the largest observed amplitude
was associated with an edge wave that
arrived almost three hours after initial
onset of the tsunami (Gonzales et al.
1995). Finally, run-up distances atre
governed not only by wave height and
mass but also by the coastal (terrain)
slope angle and subaerial elevation.

As shown in a number of the
above examples, numerical simulations
of tsunamis can approximate real
waves, but rarely do they duplicate
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them. Additionally, these models are Arrival time at Halifax from anywhere in North Atlantic
t functional as planning or - & ‘
not functional as planning or assess sl q ik & >10
ment measures because they are source 38 7 .
© b 2 ) 10

dependent, and as discussed, it is diffi-
cult to know the source function « pri- 1
ori, 1.e. a future tsunami may not hap-
pen at a pre-specified location. To have
a full preparedness against future
tsunamis, a source-independent
approach must be adopted. Xu (2007)
developed such a methodology using
the All-Source Green Function .
(ASGF), which is pre-calculated and
can be reused for any tsunami source.
The ASGF can be constructed for any
point of interest, using the entire
ocean domain as potential sources.
The function manifests in matrix form,
and upon convolving with an initial

source vectof, it instantaneously gives b)
the time series for tsunami arrivals at a
designated “point of interest” (Halifax,
in the example shown in Figure 9).
Instead of guessing a future epicentre
to predict tsunami arrival, the focus is
on the point of interest; the ASGF
describes exactly how the water level at
this point will respond to a unit forcing
in any part of the model domain.

The ASGF also employs new
types of tsunami maps, the arrival-time
map and the gain (amplitude) map
(Fig. 9), without assuming a tsunami
source and without assuming the T Y . _ ¢
tsunami path reversibility (Xu 2007). 10000 5000
The time map (Fig. 9a) shows arrival kilometres
time at Halifax for tsunamis that may i i _ _
otiginate anywhere in the North C) Tsunami Arrival Time Series
Atlantic Ocean. The corresponding 6 L
gain map is the wave amplitude relative
to one unit of sea surface displacement 4
at a source region of 100 x 100 km”.

Alternatively, the gain map may be 2
referred to as the impact map. The
arrival time map and the gain map
complement each other, and, in combi-
nation with geologic assessments of
regions with submarine landslide
potential, provide important informa-
tion for tsunami preparedness. Figure
9 shows wave arrivals at Halifax for
tsunamis sourced from three. areas of 0 1 2 3 4 ' 5
the eastern continental margin where
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Northeast Channel, a major ice corri- along the Atlantic margin: source 1, the 1929 Grand Banks landslide site; soutce 2,
dor and glacial outwash depocentre central Scotian Slope; and soutce 3, southwestern Scotian Slope (Northwest Chan-

during the last deglaciation. The arrival nel) (from Xu 2008).
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times are 2.15h, 1.17h and 1.60h,
respectively. In the event of an off-
shore earthquake, the ASGF can also
be used in real time to determine
tsunami arrival time, assuming a tsuna-
mi will be generated by the event.

CONCLUSIONS

With the longest coastline in the world
and perhaps the largest continental
margin, Canada has significant expo-
sure to marine hazards, including the
potential for submarine landslides and
associated tsunamis. The lessons
learned in Canada and internationally
are that costs related to these phenom-
ena, in terms of human life and eco-
nomics, can be immense. Coastal land-
slides represent a significant threat
because of their proximity to societal
infrastructure and their high tsunami-
generating potential. They occur with-
out warning and with little time lag
between failure and subsequent tsuna-
mi impact. Regions prone to frequent
earthquake activity, such as southwest-
ern BC and the St. Lawrence River
estuary, are particulatly susceptible,
although there are a variety of other
contributing factors.

Continental margin landslides
are common in the geologic record but
rare on human timescales. Areas of
high earthquake potential, such as the
Cascadia subduction margin, are not
necessatily the most vulnerable to
threats of submarine landslides and
consequent tsunamis. Thick deposits of
unconsolidated sediment that have the
potential to fail down-slope probably
represent a greater contributing factor.
The passive continental margin of the
Atlantic, on which large volumes of
glacial outwash sediment have accumu-
lated, may be susceptible to mass fail-
ure, particularly given latent earthquake
potential related to isostatic rebound.
The 1929 Grand Banks landslide and
consequent tsunami is a classic exam-
ple of this type. In these instances,
tsunami impact can be hundreds of
km away from the source event. How-
ever, given the speed that tsunamis
travel, warning times are limited to
within a couple of hours for most vul-
nerable locations.

In most instances of subma-
rine landsliding and tsunami genera-
tion, prevention is not possible and
planning is necessary. Identification of

high potential submarine landslide
regions, combined with an understand-
ing of landslide and tsunami processes
and sophisticated tsunami propagation
and inundation models, are required to
identify areas at high risk of impact.
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