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Abstract

We study a variant of the two-phase method for general bi-objective combinatorial optimization problems. First, we
analyze a basic enumerative procedure, often used in literature to solve specific bi-objective combinatorial optimization
problems, making it suitable to solve general problems. We show that the procedure generates the exact setE of efficient
points by solving exactly2|E| − 1 single objective problems. Second, we embed the procedure in a classic two-phase
framework, where supported points are computed in the first phase and unsupported points are computed in the second
phase.

We test the refined approach on a hard problem, namely the Traveling Salesman Problem with Profits, a bi-objective
generalization of the well known Traveling Salesman Problem. On the tested instances, the procedure outperforms the
ε-constraint method, one of the most used approaches to solveexactly general bi-objective combinatorial optimization
problems.
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1. Introduction

Decision makers often have to deal with several, usu-
ally conflicting, objectives. Often, multiple criteria are
aggregated into a single objective function, but this sim-
plification requires the adoption of arbitrary rules, that
are usually not adequate to face the complexity of real
world decisions. Multi-criteria decision making allows
a degree of freedom which is lacking in more popular
single objective optimization, as it aims to simultane-
ously optimize two or more conflicting objectives sub-
ject to certain constraints. [20] described how manu-
facturing firms are forced to consider multiple criteria
when designing products in order to stay competitive.
Focusing on a single objective, such as minimizing cost,
is no longer sufficient in different markets. Several ob-
jectives need to be prioritized and balanced ([20]). Ac-
cordingly, in the service industry, limiting the objective
to the minimization of costs may not be sufficient. In
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the long term, customer service and customer satisfac-
tion yield a more profound basis for a healthy busi-
ness, and it might be worthwhile to cut down on the
number of customers while improving service quality.
Thus, a trade-off is made between quantity and quality,
and a bi-criterion approach is interesting and relevant.
These types of application explain the interest in multi-
objective optimization, as witnessed by many books and
surveys on such a topic (see, e.g., [6], [5], [13]).

Since many real world applications involve dis-
crete decisions or events, many studies involve multi-
objective combinatorial optimization (MOCO) prob-
lems. In this paper, we focus on a sub-class of MOCO
problems, namely bi-objective combinatorial optimiza-
tion (BOCO) problems, where two competing criteria
must be simultaneously optimized. The general BOCO
problem may be formulated as follows:

(BP) min f(x)

min g(x)

subject tox ∈ X,
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wheref andg are the two objectives to be minimized,
andX is the feasible region defined by the constraints,
including integrality requirements. Any vectorx ∈ X is
a feasible solution. We assume thatf andg are bounded
and take integer values onX .

If a BOCO problem is well formed, there should
not be a single solution that simultaneously minimizes
both objectives to their fullest. A feasible solutionx
is Pareto optimalif there exists no feasible solutionx′

such thatf(x′) ≤ f(x) andg(x′) ≤ g(x), and at least
one inequality is strict. A feasible solutionx is weakly
Pareto optimalif there exists no feasible solutionx′′

such thatf(x′′) < f(x) and g(x′′) < g(x). A point
(φ, γ) ∈ R

2 is anefficient point(resp. aweakly efficient
point) if there exists a Pareto optimal solution (resp. a
weakly Pareto optimal solution)x such thatf(x) = φ
andg(x) = γ. Let E denote the set of efficient points.
An efficient point(φ, γ) ∈ R

2 is supportedif there ex-
ists a scalarλ ∈ [0, 1] and a feasible solutionx such
thatx minimizesλf(x) + (1 − λ)g(x) andf(x) = φ,
g(x) = γ. All the efficient points that do not belong to
the support set are definedunsupported efficient points.
A supported efficient point that is an extreme point of
the convex hull of all efficient points, is called anex-
tremesupported efficient point. LetSE denote the set
of extreme supported efficient points. Clearly,SE ⊆ E .

A general goal in BOCO is to find all efficient points
and, for each of them, a corresponding Pareto optimal
solution. Since the cardinality of the efficient set may
grow exponentially with respect to the input size, often
the efficient set is described only approximately. How-
ever, when the size of the efficient set is not huge, pro-
viding an exact description of the solutions is a reason-
able task. In this paper we focus on such a situation.

We refer to [6] for an extensive literature review
on BOCO methods. Here, we recall the approaches
most strictly related to our work. The most popular
method for BOCO problems isweighted sum scalariza-
tion, where the two objective functions are combined
into a parametrized single criterion, leading to the fol-
lowing parametric single objective combinatorial opti-
mization problem:

(P (λ)) min λf(x) + (1− λ)g(x)

subject to x ∈ X.

By varying the value of the parameterλ between 0
and 1, the method finds all extreme supported efficient
points (see, e.g., [4] and [1]). The main disadvantage of
this approach is that it cannot find the unsupported effi-
cient points, that usually are the main part of the efficient

set in BOCO problems. This drawback may be over-
come by atwo-phase method, where in the first phase all
supported efficient points are found through a weighted
sum scalarization, while in the second phase unsup-
ported points are found by problem-specific methods.
The two-phase method has been widely used. Among
the most recent works, [19] presented a two-phase al-
gorithm with several improvements to solve the bi-
objective assignment problem, and later generalized it
to multi-objective integer programs with more than two
objectives ([17]). [21] developed a two-phase procedure
to solve the bi-objective integer minimum cost flow
problem.

Another popular approach to BOCO problems is the
ε-constraint method. Here, one objective function is re-
tained as a scalar-valued objective while the other gen-
erates a new constraint. The right-hand side of this con-
straint is denoted byε: monotonically varying it, the
whole set of efficient points can be generated. [2] revis-
ited theε-constraint method for BOCO problems, and
test empirically its performance on a hard benchmark
problem, namely the bi-objective Traveling Salesman
Problem with Profits (TSPP).

Finally, a basic enumerative approach has been used
in the literature to solve specific combinatorial optimiza-
tion problems. At each iteration, the procedure com-
bines linearly the objective functions as in weighted
sum scalarization, and solves a single objective opti-
mization problem by constraining the objective values
in order to search an area strictly included between two
already known efficient points. For instance, [9] used
this approach to compute the efficient set for the assign-
ment problem, while [14] suggested and implement the
method specifically for the bi-objective Traveling Pur-
chaser Problem.

In this paper, we formalize and analyze the basic
enumerative approach, called hereBE algorithm, in a
general BOCO contex. In particular, we show that the
BE algorithm generates the exact setE of efficient points
by solving exactly2|E| − 1 single objective problems.
We also embed it in a general two-phase procedure. By
the way it is designed, the BE algorithm is particularly
suitable for cases where problem (P (λ)) is hard, and
a branch-and-cut method is a reasonable choice for its
solution. For this reason, we test the effectiveness of the
obtained two-phase method on the TSPP, using both
randomly generated instances and instances taken from
TSPLIB. To obtain a fair evaluation, we compare the
performance of the two-phase BE algorithm with that
of theε-constraint method, the approach used by [2] for
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the same problem. We implement some variants of both
the BE algorithm and theε-constraint algorithm for the
TSPP, using the same architectural choices. It turns out
that the two-phase BE algorithms outperforms on most
instances theε-constraint algorithm and it is more stable
in its behavior.

The contribution of the paper is thus twofold. First,
we formalize a general approach for the second phase
of a two-phase algorithm for general BOCO problems.
Second, we apply for the first time a two-phase approach
to the TSPP, improving performance with respect to a
state-of-the-art algorithm.

The paper is organized as follows. In Section 2. we
describe the BE algorithm for general BOCO problems
and we analyze its correctness and complexity. In Sec-
tion 3. we embed the BE algorithm in a two-phase
framework. In Section 4. we give an overview of the
ε-constraint method. In Section 5. we define the TSPP,
showing how the described algorithms can be imple-
mented to solve it, and we present our computational
results. Finally, some conclusions are drawn in Section
6.

2. An exact method for BOCO problems

In this section, we describe and analyze a general
procedure for the computation of the efficient set of
BOCO problems.

The underlying idea is to use the weighting method
with additional constraints. The procedure is contained
in a binary search that explores specific regions of the
objective space, through the use of constraints that re-
strict the search to properly defined sub-areas. This al-
lows us to generate both supported and unsupported
points.

Let a general BOCO problem (BP ) be given. The
starting step of the algorithm computes theideal point
(φI , γI) defined by

φI = min
x∈X

f(x), γI = min
x∈X

g(x),

and theNadir point (φN , γN) defined as

φN = min
x∈X

{

f(x) | g(x) = γI
}

,

γN = min
x∈X

{

g(x) | f(x) = φI
}

.

Such points define lower and upper bounds on the coor-
dinates of efficient points. By construction, the follow-
ing two points are efficient:

(φI , γN ), (φN , γI).

Furthermore, every efficient point is contained in the
rectangle in the objective space having(φI , γN) as up-
per left corner and(φN , γI) as lower right corner. Thus,
the algorithm initializes its partial listE of efficient
points asE = {(φI , γN ), (φN , γI)}, and its listL of
pending search areas asL = {[(φI , γN), (φN , γI)]},
where a rectangular area is identified by its upper left
and lower right corners respectively, in square brackets.

The algorithm iterates on areas contained inL,
searching for efficient points. To do this, it solves a
related single objective problem and gives (if it exists)
a new efficient point to put in setE and two new areas
to be added toL. The algorithm continues until all
areas inL have been successfully explored.

During a generic iteration, let[(φ1, γ1), (φ2, γ2)] be
the area in the objective space picked up fromL, with
φ1 < φ2 andγ1 > γ2. Then, the single objective prob-
lem related to area[(φ1, γ1), (φ2, γ2)] has the following
formulation:

(P (λ, φ2, γ1)) min λf(x) + (1− λ)g(x)

subject to x ∈ X

f(x) ≤ φ2 − 1

g(x) ≤ γ1 − 1

where

λ =
γ1 − γ2

γ1 − γ2 + φ2 − φ1
. (1)

Notice that, in the objective space, vector(λ, 1 − λ)
is orthogonal to the line passing through(φ1, γ1) and
(φ2, γ2) (see Figure 1(a)). If(P (λ, φ2, γ1))) has an op-
timal solutionx∗, thenx∗ corresponds to a new effi-
cient point(f(x∗), g(x∗)) to be inserted inL (see Fig-
ure 1(b)).

We call the whole procedureBE algorithm; the
pseudo-code is given as Procedure 1. Note that the
initial efficient points can be found without comput-
ing explicitly the ideal and the Nadir points. More
precisely, (φI , γN) and (φN , γI) correspond to the
optimal solution ofP (1 − ε,Φ,Γ) andP (ε,Φ,Γ), re-
spectively, whereε is a small positive constant, andΦ
andΓ are upper bounds on the values off andg onX .
Note further that we do not specify the search strategy
related to the data structure used for listL, since such
a strategy does not affect the total number of iterations.

The BE algorithm has not been analyzed previously,
so we prove the following result.
Theorem 1 The BE algorithm is correct. The number
of problems(P (λ, φ2, γ1))) that have to be solved is
equal to2|E| − 1.
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Fig. 1. Problem(P (λ,φ2, γ1)): (a) objective function (bold dashed) and search area (grey); (b) insertion of a new efficient point
and two new search areas.
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Algorithm 1 BE algorithm

solve problemP (1− ε,Φ,Γ); let x∗ be the returned
optimal solution
(φI , γN) = (f(x∗), g(x∗))
solve problemP (ε,Φ,Γ); let x∗ be the returned op-
timal solution
(φN , γI) = (f(x∗), g(x∗))
E = {(φI , γN), (φN , γI)}, L =
{
[

(φI , γN), (φN , γI)
]

}
while L 6= ∅ do

remove one interval
[

(φ1, γ1), (φ2, γ2)
]

from L

λ =
(

γ1 − γ2
)/(

γ1 − γ2 + φ2 − φ1

)

solve problem(P (λ, φ2, γ1))
if (P (λ, φ2, γ1))) is feasiblethen

let x∗ be the returned optimal solution
insert(f(x∗), g(x∗)) in E, between(φ1, γ1) and
(φ2, γ2)

L = L ∪

{

[

(φ1, γ1), (f(x
∗), g(x∗))

]

,

[

(f(x∗), g(x∗)), (φ2, γ2)
]

}

end if
end while
returnE

Proof To prove the correctness of the algorithm we
show that:
a) Every time a problem(P (λ, φ2, γ1))) has an optimal

solution, this identifies an efficient point.
b) Every efficient point is found by a problem(P (λ, φ2, γ1))).
We prove the above points by contradiction.

a) Let us suppose that a problem(P (λ, φ2, γ1))) iden-
tifies a point(φ∗, γ∗) which is not efficient, in the sub-
area of the objective space delimited by the efficient
points(φ1, γ1) and(φ2, γ2). The efficiency hypothesis
on these points excludes that there may be other effi-
cient points in the areas located in the lower-left side
of them. This means that, in the sub-area defined by
(φ1, γ1) and(φ2, γ2), there is a point(φ, γ) that domi-
nates(φ∗, γ∗). It follows thatφ ≤ φ∗ andγ ≤ γ∗, and
at least one inequality holds strictly. Since0 < λ < 1,

λφ+ (1− λ)γ < λφ∗ + (1− λ)γ∗,

but this contradicts the fact that(φ∗, γ∗) corre-
sponds to the optimal solution returned by prob-
lem (P (λ, φ2, γ1))).

b) Let us suppose that there is an efficient point(φ, γ)
not found by the BE algorithm. This point must be lo-
cated in the sub-area of the objective space delimited by

two consecutive efficient points(φ1, γ1) and (φ2, γ2),
contained in the final setE. It means that the search area
[(φ1, γ1), (φ2, γ2)] has been considered by the BE algo-
rithm, and the corresponding problem(P (λ, φ2, γ1)))
returned no solution. This proves the contradiction.

Starting from the above statements, it is easy to com-
pute the exact number of problems(P (λ, φ2, γ1))) that
must be solved to obtain the entire exact Pareto optimal
set. The first 2 efficient points are found in the initial-
ization phase, where 2 special problems(P (λ, φ2, γ1)))
are solved. The other|E| − 2 points are computed by
|E|− 2 problems(P (λ, φ2, γ1))). To check that no effi-
cient points are contained in the final intervals we need
exactly |E| − 1 calls to problem(P (λ, φ2, γ1))). The
statement follows. 2

Note that the bound given by the theorem is tight
and does not depend on the adopted search strategy.
The bound implies that the complexity of the BE al-
gorithm is polynomial at least in the output size when-
ever each problem(P (λ, φ2, γ1))) is polynomially solv-
able. Alternatively, the bound might be used to guar-
antee that only a polynomial number of calls to prob-
lem (P (λ, φ2, γ1))) are necessary if the objective func-
tions have special characteristics (see, e.g., [15] for a
discussion in case of multi-objective shortest path prob-
lems).
Remark 2 Theorem 1 does not depend on the specific
value ofλ used in problem(P (λ, φ2, γ1))), provided
0 < λ < 1. Therefore, we can choose theλ value in
order to improve numerical stability. The most reason-
able choice is to fixλ = 1

2 . In this way the objective
function of the problem(P (λ, φ2, γ1))) is equivalent to
the sum of the single objectives, which always take in-
teger values on the feasible regionX . We refer to the
BE algorithm where theλ value is always fixed to12
and the objective doubled asFBE algorithm.

We will compare through computational test the ef-
fectiveness of the BE and FBE algorithms.

3. A two-phase method

At each iteration of the BE algorithm we solve a prob-
lem (P (λ, φ2, γ1))), which has two more constraints
than the original BOCO problem. These additional con-
straints may bring about an increment of the computa-
tional time needed to solve each problem. In order to re-
duce this phenomenon, we may use the BE algorithm as
a sub-routine of a two-phase method, where supported
and unsupported efficient points are computed in two
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different phases. In this way, we may adopt tools opti-
mized for the different types of problem, improving the
overall performance of the method.

The first phase focuses on the computation of sup-
ported efficient points. To implement a classical first
phase, we simply apply the BE algorithm with the fol-
lowing modification: at each iteration of the algorithm,
solve a problem(P (λ)) instead of(P (λ, φ2, γ1))), i.e.,
remove the constraints defining a specific search area.
The advantage is having lighter subproblems to solve,
while the disadvantage is that we may end up with an
already known efficient point, namely an extreme point
of the considered rectangular area.

It is interesting to note that [14] suggest an opposite
approach, where each subproblem is even more con-
strained. Indeed, they propose to maintain the two con-
straints and add a third one:

λf(x) + (1− λ)g(x) < λφ2 + (1− λ)γ1.

In this way, we never end up with an already known
point (if the current interval does not contain an extreme
supported point then the subproblem turns out to be
infeasible). However, a clear disadvantage is that the
subproblem is heavier to solve. Some computational
tests will confirm that Salazar and Ledesma’s approach
is not competitive in practice.

In the second phase we compute the unsupported
points by searching iteratively new solutions on all the
subareas defined by couples of consecutive supported
points computed in the first phase. More precisely, we
call either the BE or the FBE algorithm, without initial-
ization steps, starting from every couple of consecutive
points in the listE by the first phase.

3.1. Upper bounds for the second phase

The performance of the BE or FBE algorithm
during the second phase could be improved by us-
ing upper bounds of the objective function of prob-
lem (P (λ, φ2, γ1))).

Let (φ0, γ0) and (φq , γq) be two consecutive sup-
ported efficient points returned by the first phase. Let
(φ1, γ1), (φ2, γ2), . . . , (φq−1, γq−1) be points (not nec-
essarily efficient) corresponding to feasible solutions
x1, x2, . . . , xq−1 ∈ X such that

φ0 < φ1 < . . . < φq−1 < φq and

γ0 > γ1 > . . . > γq−1 > γq.

[23] observed that every efficient point(φ∗, γ∗) in
[(φ0, γ0), (φq, γq)] must satisfy

λφ∗ + (1− λ)γ∗ ≤ max
i=1, ..., q

{λφi + (1 − λ)γi−1},

where λ is the coefficient associated with prob-
lem (P (λ, φq , γ0))). [18] observed that when the
objective functions have integer values the bound can
be improved as follows

λφ∗ + (1− λ)γ∗ ≤ UB =

max
i=1, ..., q

{λ(φi − 1) + (1− λ)(γi−1 − 1)}.

BoundUB may be useful to speed up the resolution
of (P (λ, φ2, γ1))) when branch-and-boundmethods are
used.
Remark 3 The upper boundUB is referred to a value
of λ defined as in (1). However, the bound is still valid
if we use it in connection with the FBE algorithm, fixing
λ = 1

2 and doubling the result. More precisely, the FBE
algorithm may be improved by means of the following,
integer bound:

FUB = max
i=1,...,q

{φi + γi−1 − 2}.

4. The ε-constraint method

In order to test the practical efficiency of the BE
algorithm, we will compare its performance with theε-
constraint method, that we briefly recall in this section.

In the ε-constraint method one objective function
of (BP ) is retained as a scalar-valued objective while
the other objective function generates a new constraint.
Thus, we may formulate two different subproblems:

(P1(ε)) min
x∈X

{f(x) | g(x) ≤ ε}

(P2(ε)) min
x∈X

{g(x) | f(x) ≤ ε}

One may use either problem (P1(ε)) or problem
(P2(ε)). Starting from a sufficiently large value ofε
and progressively reducing it, the exact Pareto optimal
set can be generated. [2] analyzed the implementation
of the ε-constraint method for BOCO problems with
integer objective values. We report the basic method in
Procedure 2, where we may set∆ = 1. It is important
to note that the above algorithm can easily be restated
by swapping the role off andg, thus solving problems
P2(ε).

A drawback of theε-constraint method is that it may
generate points that are not efficient, but only weakly
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efficient. [16] proposed a novel version of the method,
calledaugmentedε-constraint method, that avoids the
production of weakly efficient points and accelerates
the whole process by avoiding redundant iterations. It
consists in the transformation of the objective function
constraints to equalities by explicitly incorporating the
appropriate slack or surplus variables. In the same time,
these slack or surplus variables are used as a second term
(with lower priority in a lexicographic manner) in the
objective function, forcing the program to produce only
efficient solutions. For instance, the following model is
used in place of (P1(ε)):

(P 1(ε)) min
x∈X,s≥0

{f(x) + δs | g(x) + s = ε}

whereδ > 0 is sufficiently small.
It turns out that the augmented method gives a rel-

evant improvement with respect to the basic method
when the number of objective functions is high (more
than three) and/or when the size of the non efficient
points computed by the basic method is considerable.
As a consequence, for the specific class of problems
considered in this work, the augmented method does
not provide a clear advantage with respect to the basic
ε-constraint method. Moreover, the introduction of the
δ factor in the objective function may cause numerical
stability issues. For these reasons, we decided to report
only the basicε-constraint method and remove possi-
ble dominated points through a straightforward post-
processing.

Algorithm 2 ε-constraint algorithm

solve problemP (1− ε,Φ,Γ); let x∗ be the returned
optimal solution
(φI , γN) = (f(x∗), g(x∗))
γI = minx∈X g(x)
E = {(φI , γN )}, ε = γN −∆
while ε ≥ γI do

compute an optimal solutionx∗ of P1(ε)
add(f(x∗), g(x∗)) to E and setε = g(x∗)−∆

end while
returnE

5. An Application: TSPP

In this section, we test the BE algorithm on the Trav-
eling Salesman Problem with Profits (TSPP). First of
all, we give a description and a formulation of the prob-
lem, and we show how the BE algorithm can be tailored

on it. Then, we describe the test instances and the ob-
tained results, comparing them with the performance of
the ε-constraint method.

5.1. Problem description

The TSPP can be described as follows: letG =
(V,E) be a complete undirected graph, withV =
{0, 1, . . . , n} the set of nodes, andE the set of edges.
Let pi be the profit of nodei, and letce be the cost
of edgee ∈ E. A service carrier, starting from node
0 may visit any subset of nodes. Visiting a subsetS
of nodes implies a profitp(S) =

∑

i∈S pi, and a cost
c(S) which is the cost of a shortest Hamiltonian tour
among the nodes inS. The carrier wishes to maximize
collected profit and minimize incurred cost, and thus
faces a bi-objective problem.

Some single objective variants of the TSPP have been
considered in the literature as independent problems.
If we look at the TSPP as a BOCO problem (BP ),
consideringf as the cost function and−g as the profit
function, then problem (P (λ)) with fixedλ is known as
theprofitable tour problem, problem (P1(ε)) is known as
thePrize Collecting TSP(PCTSP), and problem (P2(ε))
is known as theOrienteering Problem(OP). Recently,
[3] studied different approaches to the TSPP on trees
and other special graphs. We refer to [7] for a survey
on the TSPP and related problems.

In order to formulate the TSPP, we use two sets of
variables. The first one is associated with edges:xe = 1
if edgee belongs to the solution,xe = 0 otherwise (e ∈
E). The second one is associated with nodes:yi = 1 if
nodei is visited,yi = 0 otherwise (i ∈ V ). We use the
following model (cf. [7]):

min
∑

e∈E

cexe, max
∑

i∈V

piyi (2a)

subject to
∑

e∈δ({i})

xe = 2yi (i ∈ V ) (2b)

∑

e∈δ(S)

xe ≥ 2yi

(∅ 6= S ⊂ V, with 0 ∈ V \ S andi ∈ S)
(2c)

xe ∈ {0, 1} (e ∈ E) (2d)

yi ∈ {0, 1} (i ∈ V ) (2e)

where δ(S) is the set of edges having exactly one
endpoint in node setS.

Constraints (2b) are thedegree constraints: they en-
sure that the degree of each node is 2 if the node is
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visited, 0 if the node is not visited. This means that a
node can be visited at most once. Constraints (2c) are
thesubtour elimination constraints: they impose that no
subtours are allowed among visited nodes.

5.2. Initialization

In the TSPP, the computation of the first two efficient
points is relatively easy. The ideal (minimum) cost is
0, corresponding to the empty tour, and the ideal (max-
imum) profit is

∑

i∈V pi, corresponding to visiting all
nodes. The Nadir value of profit given the ideal cost is
0, and the Nadir value of cost given the ideal value of
profit is the minimum cost of a Hamiltonian tour on all
nodes, sayC∗. Hence, the starting points for the BE
algorithm are

(φI , γN) = (0, 0) and (φN , γI) = (C∗,
∑

i∈V

pi).

5.3. Solving P (λ, φ2, γ1)

If (BP ) takes the form of (2), then problem
P (λ, φ2, γ1) can be formulated as follows.

min λ
∑

e∈E

cexe − (1− λ)
∑

i∈V

piyi (3a)

subject to
∑

e∈δ({i})

xe = 2yi (i ∈ V ) (3b)

∑

e∈δ(S)

x(e) ≥ 2yi

(∅ 6= S ⊂ V, with 0 ∈ V \ S andi ∈ S)
(3c)

∑

e∈E

cexe ≤ φ2 − 1 (3d)

∑

i∈V

piyi ≥ γ1 + 1 (3e)

xe ∈ {0, 1} (e ∈ E) (3f)

yi ∈ {0, 1} (i ∈ V ) (3g)

If we consider the FBE algorithm, the objective func-
tion becomes:

min
∑

e∈E

cexe −
∑

i∈V

piyi

We solve problem (3) by a classic branch-and-cut
procedure. Consider for simplicity the root node of the
branch-and-cut tree. We start with no constraints (3c)
and no integrality constraints, obtaining a (fractional)

solution(x∗, y∗). To detect violated subtour elimination
constraints, we set up a capacitated network by giving
capacityx∗

e to edgee. We fix 0 as the source node and
we consider as the destination each other node of the
graph, iteratively. Then, we compute the minimum cut
by a max-flow/min-cut algorithm. If the value of the
max flow from 0 toi is smaller than2y∗i then the con-
straint (3c) associated with the corresponding minimum
cut is violated, and we add it to the model. Once all cuts
obtained in this way have been added, we re-optimize
obtaining a new solution(x∗, y∗), where the process
can be repeated.

5.3.1. Warm start
We use the Lin-Kernighan heuristic to suggest a feasi-

ble starting solution to each branch-and-cut search tree.
In particular, we have tried a modified and extended
version of the Lin-Kernighan algorithm, presented by
[12]. We use Lin-Kernighan algorithm in the following
way. We solve the relaxed problem (2) with no sub-
tour elimination constraints and no integrality require-
ments. Let(x∗, y∗) be the obtained solution and let
G∗ = (V,E∗), whereE∗ = {e ∈ E : x∗

e > 0}. We
invoke Lin-Kernighan on the connected component of
G∗ containing node0 and use the obtained subtour as
starting feasible solution for problem (2).

5.4. Computational results

To assess the performance of the algorithms, we im-
plemented a C++ code and ran it on an AMD Opteron
2.4 GHz processor equipped with CPLEX 12.1. To com-
pute the cuts needed to solve eachP (λ, φ2, γ1) prob-
lem, we used a function of the Concorde package1 . The
function is an implementation of the “push-relabel” flow
algorithm described in [10]. For the Lin-Kernighan pro-
cedure, we use the implementation developed by [12]
2 .

In order to have a fair comparison between the per-
formances of the BE algorithm and theε-constraint al-
gorithm, we implemented both methods using the same
libraries, the same functions and the same hardware
resources. In this way, we obtained codes differing
each other only for the description of each optimization
model and the modality of exploration of the objective
space. We implemented both variants of theε-constraint
method.

1 http://www.tsp.gatech.edu/concorde.html
2 http://www.akira.ruc.dk/∼keld/research/LKH/
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5.4.1. Randomly generated instances
The first type of instances are randomly generated.

Graph nodes are points generated in the square1000×
1000. The arc costs are the euclidean distance between
each couple of points, rounded to the nearest integer
value. Profits associated with each node belong to one
of the following classes:
I. pi = 1 for all i ∈ V ;
II. pi integer from a uniform distribution in the interval
[1, 5], for all i ∈ V ;

III. pi integer from a uniform distribution in the in-
terval [1, 20], for all i ∈ V .
For each class, we average the performances of the

algorithms on a sample of10 instances. The obtained
results are contained in Table 1, Table 2, and Table
3. The informations reported in the columns are the
following:
• |V | is the number of nodes considered, including the

source;
• |SE| is the number of supported efficient points;
• |E| is the number of efficient points;
• N is the number of computed points (dominated and

non-dominated);
• T ime is the average CPU time, in seconds, to run the

specified procedure.
We use the column identified byN to show the number
of points in the objective space computed by theε-
constraint method. The differenceN − |E| gives us the
number of dominated points computed. Cells marked
by “t.l.e.” indicate that the instance was still unsolved
after a time limit of 72 hours (259200 seconds). Cells
marked by “*” indicate that, after the specified time,
CPLEX exits the program for memory problems. In this
case, we report in column|E| the number of efficient
points computed before the exit. For each instance type
the best average time is in bold.

Table 1 compares Ledesma and Salazar’s implemen-
tation of the first phase (Constrained 1st Phase, cf. [14])
and our implementation (Unconstrained 1st Phase). Ta-
ble 2 compares the computational times needed by the
following algorithms:
• BE is the BE algorithm as described in Procedure 1;
• FBE is the FBE algorithm;
• FBE + LK is the FBE algorithm with the Lin-

Kernighan warm start;
• 2P is the two-phase method with the FBE algorithm

in the second phase;
• 2P + FUB is the two-phase method with the FBE

algorithm and the upper bound improvement in the
second phase.

Note that we do not include the two-phase method with
the BE algorithm and upper bound UB in the second
phase, because this variant is systematically worse than
2P + FUB.

Although the two-phase method with upper bounds
does not prevail systematically, we can observe that,
overall, it gives better results with respect to the other
procedures. Thus, we retain the latter as our reference
implementation and in Table 3 we compare it with both
implementations of theε-constraint method.

Note that the performance of the two-phase approach
could be further improved by initializing the upper
bounds through the heuristic generation of potentially
efficient points, as in [18]. However, such a generation
is beyond the scope of this evaluation.

5.4.2. Instances from TSPLIB

The second type of instances are TSP instances taken
from TSPLIB ([22]). We generate profits according to
[2], considering three types:

A. pi = 1 for all i ∈ V ;
B. pi = 1 + [(7141 · i+ 73) mod 100] for all i ∈ V ;
C. pi = 1 + d99 · c0,i/θe for all i ∈ V , whereθ =
maxj∈V \{0} c0,j .

Instances with profits of typeA are generally the
easiest: the cardinality of the efficient frontier generated
is equal to the number of nodes. Instances of typeB
have random profit values between 1 and 100, while
instances of typeC produce hard problems, where profit
values become larger as their distance from the source
increases.

Table 4 contains the times needed by the two im-
plementations of the first phase to compute the set of
supported efficient points. Table 5, Table 6, and Table
7 show the results obtained by running the different
versions of the BE algorithm and two-phase method.
Again, we observe that the two-phase procedure with
the FBE algorithm and the upper bound improvement
is the most efficient.

Finally, Table 8, Table 9, and Table 10 show the per-
formance of the selected two-phase method, with re-
spect to theε-constraint approach both in the PCTSP
and in the OP versions, with profit types A, B and C, re-
spectively. Notice that for profit type A we have tested
instances with up to 159 nodes, whereas for profit types
B and C, producing harder instances, we have tested
instances with up to 101 nodes.
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5.4.3. Discussion
In the experiments we run, the times needed to com-

pute the set of efficient points by the two-phase proce-
dure with the FBE algorithm and the upper bound im-
provement are, in most cases, better than the times em-
ployed by theε-constraint method. In particular, the time
improvement given by the selected two-phase method,
with respect to the PCTSP version of theε-constraint
method is, on average, 22% on randomly generated in-
stances and 13% on instances from TSPLIB. If we ana-
lyze the time difference with respect to the OP version
of the ε-constraint method, we notice that the selected
two-phase method gives a 60% improvement on ran-
domly generated instances and 40% on instances from
TSPLIB. The advantage of the two-phase method is
dramatic on small to medium sized instances with a
tight range of profits, but is less apparent on large in-
stances with a wide range of profits, namely the hard-
est instances. It is worth to point out that many of the
latter instances are unsolvable by both methods with
the available computing resources, and that in such in-
stances the cardinality of the efficient set is so high that
the practical relevance of its exact description might be
questionable.

An important point is the number of solved subprob-
lems. In the BE algorithm, every optimal solution of a
P (λ, φ2, γ1) problem corresponds to an efficient point,
whereas, in theε-constraint algorithm, an optimal so-
lution of a P1(ε) or P2(ε) problem is not guaranteed
to correspond to an efficient point. Thus, it may hap-
pen that theε-constraint method, in any one of its ver-
sions, solves a larger number of subproblems than the
BE algorithm. Furthermore, on the same instance, the
number of non-efficient points that are generated may
greatly vary if either problemsP1(ε) or problemsP2(ε)
are solved. On a few of the instances we have tested, the
running times of the two implementations have differed
by a factor of 30. Though in the TSPP case the choice of
P1(ε), corresponding to a PCTSP, turns out to be conve-
nient ([2]), in general there is no apparent rule to decide
a priori which is the most convenient problem to solve.
On the other hand, if we analyze the performances of
the BE algorithm and the two-phase BE algorithm we
can notice a stable behavior in the time trend.

We therefore conclude that the BE algorithm and its
improvements are more stable in generic cases, espe-
cially where single objective subproblems cannot be re-
duced to well known problems, for which specific res-
olution techniques are available, or when it is not ap-
parent which objective function is better to constrain in

a single objective subproblem.

6. Conclusions

By elaborating some ideas proposed in the literature
for specific problems, in this paper we discuss a general
two-phase method suitable for hard BOCO problems.
We compared our method with theε-constraint method
on the Traveling Salesman Problem with Profits, where
the incurred costs and the collected profits are treated
as conflicting objectives. On a large set of instances
we observe that the approach suggested in this paper is
more competitive and more stable than theε-constraint
method.

The proposed procedure can be used with little mod-
ifications to develop approximation schemes able to de-
tect subsets of exact efficient points that approximate
the Pareto optima within a specified error on both ob-
jectives, in the spirit of [11]. We have developed this
subject in a companion paper ([8]).

References

[1] Y. P. Aneja, K. P. K. Nair, Bicriteria Transportation
Problem. Management Science. 25(1979)73-78 .

[2] Bérubé J., M. Gendreau, J. Potvin, An exactε-constraint
method for bi-objective combinatorial optimization
problems: Application to the Traveling Salesman
Problem with Profits. Eur. J. Oper. Res. 194(2009) 39-
50 .

[3] S. Coene, C. Filippi, F. C. R. Spieksma, E. Stevanato,
Balancing profits and costs on trees. Networks. 61(2013)
200-211 .

[4] J. L. Cohon, Multiobjective Programming and Planning
(Academic Press, New York, 1978).

[5] M. Ehrgott, X. Gandibleux, in Multiple Criteria
Optimization: State of the Art Annotated Bibliographic
Surveys, M. G. Ehrgott, X. Gandibleux, Eds. (Kluwer
Academic, Boston, 2002), pp. 369-444, vol. 52.

[6] M. Ehrgott, X. Gandibleux, A survey and
annotated bibliography of multi-objective Combinatorial
Optimization. OR Specktrum. 22(2000) 425-460 .

[7] D. Feillet, P. Dejax, M. Gendreau, Traveling Salesman
Problems with Profits. Transportation Science. 39(2005)
188-205 .

[8] C. Filippi, E. Stevanato, Approximation schemes
for bi-objective combinatorial optimization and their
application to the TSP with profits. Computers &
Operations Research.(2013).



Carlo Filippi & Elisa Stevanato – Algorithmic Operations Research Vol.7 (2013) 125–139 135

Table 1

Constrained 1st Phase Unconstrained 1st Phase
Profit Class |V | |SE| T ime T ime

I 15 12 0.3 0.1
25 25 3 1.2
35 11 17 3
50 16 46 14

II 15 14 1.5 0.4
25 19 8 1.2
35 36 153 18
50 67 989 120

III 15 23 1 0.2
25 52 26 8
35 46 193 41
50 112 2953 1822

Computation of the supported set on randomly generated instances.

Table 2

BE FBE FBE + LK 2P 2P + FUB

Profit Class |V | |E| T ime T ime T ime T ime T ime

I 15 18 0.9 0.5 0.5 0.1 0.1
25 37 4 3.1 3.2 3.1 3
35 48 30 24 25 21 20.8
50 69 267 231 235 167 170

II 15 37 2 1 0.9 0.7 0.8
25 72 21 16 17 16 16
35 142 210 190 192 182 178
50 207 2612 2247 2284 1556 1540

III 15 34 2 1.2 1.2 1.2 1.2
25 105 37 34 34 32 28
35 140 308 290 291 279 290
50 235 4502 4325 4327 3651 3646

Different versions of the BE algorithm on randomly generated instances.

Table 3

PCTSPε-constraint OPε-constraint 2P + FUB

Profit Class |V | T ime N T ime N Time |E|

I 15 0.8 18 4 48 0.1 18
25 5.5 37 18 96 3 37
35 25 48 102 180 20.8 48
50 250 70 1113 292 170 69

II 15 1 38 5 60 0.8 37
25 18 74 40 152 16 72
35 200 142 301 290 178 142
50 1720 209 2659 420 1540 207

III 15 1.5 37 3 57 1.2 34
25 33 109 43 185 28 105
35 292 144 323 240 290 140
50 3754 236 3365 423 3646 235

Theε-constraint method and the two-phase implementation of theBE algorithm, on randomly generated instances.
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Table 4

Constrained 1st Phase Unconstrained 1st Phase
Instance |V | |SE| T ime T ime

burma14 14 5 0.5 0
ulysses16 16 6 0.6 0
ulysses22 22 8 1.3 0.3
att48 48 10 17 6
eil51 51 16 25 12
berlin52 52 18 44 21
st70 70 27 460 211
eil76 76 25 3121 1785
pr76 76 29 15775 3643

Computation of the supported set for TSPLIB instances with profits of type A.

Table 5

BE FBE FBE + LK 2P 2P + FUB

Instance |V | |E| T ime T ime T ime T ime T ime

burma14 14 13 1 0.7 0.7 0.1 0.1
ulysses16 16 15 1 0.7 0.68 0.2 0.1
ulysses22 22 21 2 1.5 1.6 1.6 1.6
att48 48 47 65 58 60 51 54
eil51 51 50 45 39 39 34 25
berlin52 52 51 68 62 61 50 52
st70 70 69 730 668 675 476 462
eil76 76 75 4696 4410 4486 4112 4099
pr76 76 51 t.l.e. t.l.e. t.l.e. 23612* 23522*

Different versions of the BE algorithm on TSPLIB instances with profits of type A.

Table 6

BE FBE FBE + LK 2P 2P + FUB

Instance |V | |E| T ime T ime T ime T ime T ime

burma14 14 59 4.1 3.4 3.4 1.1 1.0
ulysses16 16 102 6.2 5.7 5.7 1.3 1.3
ulysses22 22 130 25 19 20 18 14
att48 48 435 3476 2984 2997 1511 1497
eil51 51 225 1951 1765 1798 1510 1501
berlin52 52 406 2980 2620 2672 1442 1386
st70 70 503 20445 19997 18995 15060 14693
eil76 76 386 41410 40755 40845 38920 38116
pr76 76 25 t.l.e. t.l.e. t.l.e. 6007* 5992*
rat99 99 662 56399 45005 46721 43855 43673

Different versions of the BE algorithm on TSPLIB instances with profits of type B.
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Table 7

BE FBE FBE + LK 2P 2P + FUB

Instance |V | |E| T ime T ime T ime T ime T ime

burma14 14 70 3.8 3.5 3.5 1.2 1.1
ulysses16 16 92 6.1 5.5 5.6 2.1 2.1
ulysses22 22 128 40 34.9 35.7 27 26.8
att48 48 438 7336 6461 6451 4112 4048
eil51 51 267 5655 5312 5365 5001 4892
berlin52 52 439 6614 5441 5742 4365 4361
st70 70 452 28769 21468 22576 14411 14238
eil76 76 383 8554 7987 8012 7155 6924
pr76 76 31 t.l.e. t.l.e. t.l.e. 10927* 12314*

Different versions of the BE algorithm on TSPLIB instances with profits of type C.

Table 8

PCTSPε-constr. OPε-constr. 2P + FUB

Instance |V | T ime N T ime N Time |E|

burma14 14 0.3 14 1 23 0.1 14
ulysses16 16 0.4 16 1 30 0.1 16
ulysses22 22 2 22 8 76 1.6 22
att48 48 53 48 274 196 54 48
eil51 51 33 51 943 308 25 51
berlin52 52 54 52 1012 509 52 52
st70 70 600 70 2428 260 462 70
eil76 76 3680 76 13744 312 4099 76
pr76 76 21587* 40 25423* 42 23522* 51
rat99 99 365 99 1922 233 349 99
KroA100 100 9216 100 15743 99 9099 100
KroB100 100 19665 100 19322 111 18514 100
KroC100 100 12132 100 14232 117 11563 100
KroD100 100 3654 100 4034 121 3402 100
KroE100 100 4943 100 5254 111 4304 100
rd100 100 3931 100 4521 109 3744 100
eil101 101 17433 101 15466 100 14362 101
lin105 105 38492 105 44638 114 36711 105
pr107 107 3376 106 3869 136 3341 107
pr124 124 43655 124 44571 162 42021 124
bier127 127 4123 127 4539 129 3764 127
ch130 130 8195 130 8731 156 7793 130
pr136 136 47509* 80 52140* 78 41435* 79
gr137 137 31585 137 40022 149 31021 137
pr144 144 171098 144 199421 193 164915 144
KroA150 150 15052* 19 13978* 16 13243* 17
KroB150 150 76982* 72 85312* 73 75677* 74
ch150 150 17599* 30 19764* 37 18553* 38
pr152 152 19223* 5 21232* 3 16631* 4
u159 159 5123* 12 5522* 8 4743* 11

Theε-constraint method and the two-phase implementation of theBE algorithm on TSPLIB instances with profits of type A.
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Table 9

PCTSPε-constr. OPε-constr. 2P + FUB

Instance |V | T ime N T ime N Time |E|

burma14 14 2 59 5 78 1.0 59
ulysses16 16 4.8 102 8 186 1.3 102
ulysses22 22 15 130 26 159 14 130
att48 48 1425 438 1844 487 1497 435
eil51 51 1567 269 943 308 1501 225
berlin52 52 1369 411 3474 561 1386 406
st70 70 17500 643 21321 735 14693 503
eil76 76 45283 538 47287 566 38116 386
pr76 76 6233* 24 7342* 21 5872* 25
rat99 99 45243 779 59966 799 43573 662
KroA100 100 82897* 156 96758* 157 95673* 256
KroB100 100 119443* 441 131865* 466 780952* 911
KroC100 100 13968* 82 16432* 80 8813* 82
KroD100 100 85331* 778 89951* 767 72353* 790
KroE100 100 71111* 821 78374* 800 60101* 815
rd100 100 101443* 870 144397* 869 92158* 868
eil101 101 143266* 332 155683* 321 123454* 335

Theε-constraint method and the two-phase implementation of theBE algorithm on TSPLIB instances with profits of type B.

Table 10

PCTSPε-constr. OPε-constr. 2P + FUB

Instance |V | T ime N T ime N Time |E|

burma14 14 3 70 2 78 1.1 70
ulysses16 16 3.86 92 5 153 2.1 92
ulysses22 22 18 128 35 198 26.8 128
att48 48 3733 440 3298 518 4048 438
eil51 51 6090 299 5878 287 4892 267
berlin52 52 3990 446 3984 561 4361 439
st70 70 14538 546 34451 558 14238 452
eil76 76 7411 468 10234 465 6924 383
pr76 76 11243* 29 18538* 26 12314* 31
rat99 99 4236* 13 5476* 13 2954* 15
KroA100 100 36978* 101 65716* 99 100001* 416
KroB100 100 33131* 35 58732* 37 61011* 160
KroC100 100 25537* 123 34521* 122 19847* 121
KroD100 100 68768* 211 67556* 215 50122* 236
KroE100 100 97643* 176 100254* 184 83322* 184
rd100 100 89432* 336 94543* 304 83236* 354
eil101 101 84335* 383 98231* 479 77361* 387

Theε-constraint method and the two-phase implementation of theBE algorithm on TSPLIB instances with profits of type C.
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