
Algorithmic Operations Research Vol.6 (2011) 91–104

Variants of the Shortest Path Problem

Lara Turner

Department of Mathematics, University of Kaiserslautern,P. O. Box 3049, 67653 Kaiserslautern, Germany.

Abstract

The shortest path problem in which the(s, t)-pathsP of a given digraphG = (V,E) are compared with respect to
the sum of their edge costs is one of the best known problems incombinatorial optimization. The paper is concerned
with a number of variations of this problem having differentobjective functions like bottleneck, balanced, minimum
deviation, algebraic sum,k-sum andk-max objectives,(k1, k2)-max, (k1, k2)-balanced and several types of trimmed-
mean objectives. We give a survey on existing algorithms andpropose a general model for those problems not yet treated
in literature. The latter is based on the solution of resource constrained shortest path problems with equality constraints
which can be solved in pseudo-polynomial time if the given graph is acyclic and the number of resources is fixed. In our
setting, however, these problems can be solved in strongly polynomial time. Combining this with known results onk-sum
and k-max optimization for general combinatorial problems, we obtain strongly polynomial algorithms for a variety of
path problems on acyclic and general digraphs.

Key words: Shortest path problem, universal objective function, resource constrained shortest path problem, strongly
polynomial-time algorithm.

1. Introduction

Shortest path problems (SPPs)are classical problems
in combinatorial optimization with various applications
in theory and practice. Given a directed graphG =
(V,E) with node setV of cardinalityn, edge setE of
cardinalitym and costsc(e) ∈ R for all edgese ∈ E,
the single-source single-sink version of thesum shortest
path problem (sum SPP)finds a path from sources to
sink t which minimizes the sum of the edge costs, i.e.

min
P∈Pst

∑

e∈P

c(e) (1)

wherePst is the set of all elementary(s, t)-paths de-
fined as sequencesP = (s = i0, e1, i1, . . . , il(P )−1,

el(P ), il(P ) = t) of nodes ik ∈ V and edges
ek = (ik−1, ik) ∈ E with the property that no nodes
(and thus no edges) are repeated. As usual, the length
l(P ) denotes the number of edges in pathP . It is well-
known that sum SPP is NP-hard, but can be solved in
polynomial time if there are no negative dicycles (paths
with the same start- and endnode and negative costs) in
graphG. The currently best strongly polynomial-time
algorithms are the label-setting algorithm of Dijkstra
in its Fibonacci heap implementation (for non-negative
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costs) and the label-correcting algorithm of Bellman
and Ford (for arbitrary costs) which have complexity
O(m + n logn) and O(nm), respectively. These al-
gorithms can, for instance, be found in the books of
Ahuja et al. [1] and Schrijver [33]. For recent sur-
veys on shortest path algorithms we refer the reader to
Zwick [42] and Festa [8].

In this paper, we study several variants of the shortest
path problem with sources and sinkt. These problems
have the same feasible set as the classical sum SPP, but
the sum objective is replaced by another criteria like
minimizing the largest edge cost (bottleneck SPP) or the
difference between the largest and smallest edge cost
(balanced SPP). Throughout the paper, we only focus
on objective functions which arise as special cases of
the more generaluniversal shortest path problem (Univ-
SPP)introduced in [35]. In its sequential definition, this
problem is solved as a sequence ofn − 1 cardinality
constrained path problems, Univ-SPP(l),

min
P∈Pst: l(P )=l

fλl(P ) =

l
∑

i=1

λl
ic(i)(P ) (2)

wherec(i)(P ) is the ith-largest edge cost in pathP ,
λl
i ∈ R, i = 1, . . . , l, are universal weight coefficients

andl ∈ {1, . . . , n− 1}. Besides the shortest path prob-
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lem with sum objective for which we setλl
i = 1 for all

i = 1, . . . , l, the bottleneck and balanced shortest path
problems can be formulated in this setting withλl

1 = 1
andλl

i = 0 else for bottleneck SPP,λl
1 = 1, λl

l = −1
andλl

i = 0 else for balanced SPP with lengthl 6= 1
andλ1

1 = 0 for balanced SPP with lengthl = 1. Many
other problems can be modelled as Univ-SPPs which
illustrates the potential of the universal approach. These
problems are addressed in Sections 2. and 4. and in-
clude, among others,k-sum andk-max, (k1, k2)-max
and (k1, k2)-balanced as well as trimmed-mean short-
est path problems.

The remainder of the paper is organized as follows. In
Section 2. we review shortest path problems dealt with
in literature. We consider special algorithms which have
been designed for path problems only and general al-
gorithms for arbitrary combinatorial optimization prob-
lems which can be applied to path problems. New vari-
ants of shortest path problems on acyclic and general
digraphs are discussed in Section 4.. The idea to tackle
these problems is to fix one or several edges askth-
largest orkth-smallest cost edges of the feasible paths
and to solve the resulting constrained path problem.
This resource constrained shortest path problem (with
sum objective and equality constraints) is analysed in
Section 3. and we show that two pseudo-polynomial dy-
namic programming algorithms which solve the prob-
lem on acyclic graphs with a fixed number of resources
are strongly polynomial in our case. As a consequence,
the path problems of Section 4. are solvable in strongly
polynomial time, too. A summary of our results will be
given in Section 5..

2. Shortest Path Problems in Literature

Using appropriate weight coefficientsλl
i, all path

problems considered in this paper can be modelled as
universal shortest path problems. Although the latter
problem is in general NP-hard (it contains as special
case the classical sum SPP with cardinality constraints),
polynomial-time algorithms for many objective func-
tions can be obtained by solving the unconstrained
version of the problem.

This holds for the classical sum shortest path problem
(see Section 1.) and thebottleneck shortest path problem
which minimizes the largest of the edge costs in pathP :

min
P∈Pst

max
e∈P

c(e). (3)

This problem which is also known asmaximum ca-
pacity path problemcan be solved by modifying
the algorithms for sum SPP, see e.g. Pollack [27].
So, Dijkstra’s algorithm with Fibonacci heaps yields
a complexity of O(m + n logn). Another strongly
polynomial-time algorithm for bottleneck SPP is ob-
tained by applying the binary search version of the
standard threshold algorithm of Edmonds and Fulker-
son [6] which consists of solvinglogm many feasibil-
ity problems. Using breadth-first search to determine in
O(n+m) time if there is a path froms to t using only
edges with costs less than a given threshold (see e.g.
Krumke and Noltemeier [22]), it has a performance
of O(n logm + m logm) = O(n log n + m logn).
This holds because the number of edges in digraph
G = (V,E) is less thann2, i.e.O(logm) = O(log n).
Hu [18] developed an algorithm to find the subset
of edges containing the bottleneck paths between all
pairs of nodes and Gabow and Tarjan [9] established
an algorithm for the single-source single-sink case
derived from their algorithm for bottleneck directed
spanning trees. The latter algorithm has a complexity
of O(min{m + n logn,m log∗n}) where log∗n :=

min{i : log(i)n ≤ 1} and log(i)n is iteratively defined
as log(0)n := n and log(i+1)n := log log(i)n else.
Recently, bottleneck shortest path problems have been
addressed by Kaibel and Peinhardt [21].

A related problem is thebalanced shortest path prob-
lem in which the difference between the largest and
smallest edge cost is minimized:

min
P∈Pst

(

max
e∈P

c(e)−min
e∈P

c(e)

)

. (4)

We use the algorithm of Martello et al. [24] which has
been developed for balanced combinatorial optimization
problems. It is similar to the threshold algorithm of [6]
and solves a sequence of at mostm feasibility prob-
lems such that a balanced shortest path can be found in
O(nm +m2) time. Duin and Volgenant [4] suggested
a unified approach to tackle balanced and minimum de-
viation problems simultaneously. For general combina-
torial problems where all feasible solutions have the
same cardinality minimum deviation problems were in-
troduced by Gupta and Punnen [16]. Theminimum de-
viation shortest path problemis defined as

min
P∈Pst

∑

ei∈P

(

max
e∈P

c(e)− c(ei)

)

(5)
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where all pathsP ∈ Pst have the same lengthl(P ).
Solving optimization instead of feasibility problems, the
algorithms of [16] and [4] applied to minimum devia-
tion SPP have a running time ofO(mT ) whereT is the
time needed to solve a sum SPP with modified (possi-
bly negative) costs. Using the algorithms of Dijkstra or
Bellman-Ford to compute these shortest paths (if there
are no negative-cost cycles), this isO(m2 + nm logn)
or O(nm2). Relaxing the assumption of fixed path
lengths, the problem can be formulated in terms of
Univ-SPP settingλl

1 = l − 1 and λl
i = −1 else for

l 6= 1 andλ1
1 = 0 for l = 1. On acyclic directed graphs,

where the cardinality-constrained shortest path prob-
lem can be solved efficiently for alll = 1, . . . , n − 1,
it is thus solvable in strongly polynomial time.

The same time complexity is attained for problems
with combined min-max min-sum objective function.
Such “algebraic sum” problems with a bottleneck and
sum objective function (that are usually based on dif-
ferent cost functions) were considered by Minoux [25]
and Punnen [28]. The solution algorithms are similar to
those for balanced and minimum deviation problems.
If there is a single cost function for the bottleneck and
sum objective, the algebraic sum version of SPP, the
algebraic sum shortest path problem, is

min
P∈Pst

(

max
e∈P

c(e) +
∑

e∈P

c(e)

)

(6)

and can be modelled as Univ-SPP withλl
1 = 2 and

λl
i = 1 else forl 6= 1 andλ1

1 = 2 for l = 1.

In literature, there exist algorithms for two other
types of shortest path problems, thek-sum SPP and the
k-max SPP, in which we minimize the sum of thek
largest edge costs or thekth-largest edge cost, respec-
tively. These path problems will be studied in more
detail since we will need them in Section 4. where new
variants of shortest path problems, not yet treated in
literature, will be discussed.

k-sum optimization problems have been investigated
in Gupta and Punnen [17] and Punnen and Aneja [29]
for general combinatorial optimization problems and in
Garfinkel et al. [12] for shortest path problems. In [12],
the authors introduced two versions of thek-sum SPP,
here calledk-centrum SPP, which are both shown to
be NP-hard: One version in which all pathsP ∈ Pst

of length l(P ) < k are assumed to be infeasible and

another more flexible one which accepts(s, t)-paths
P of length less thank and assigns to them the sum
of their edge costs as objective value. In case that all
paths froms to t have length at leastk, they have pro-
posed a strongly polynomial-time algorithm of com-
plexityO(n2m2) for the first version ofk-centrum SPP.
This algorithm is recursion-based and determines ak-
centrum shortest walk (i.e. a non-elementary or non-
simple path allowing repetition of nodes or edges) which
is reducible to ak-centrum shortest path. If there are no
negative dicycles in graphG, the algorithm can be mod-
ified to solve the second version ofk-centrum SPP, too.
Another approach to solvek-sum SPP is to adapt the
algorithm of Punnen and Aneja [29] for general combi-
natorial problems withk-sum objective. In this setting,
the cost coefficients are assumed to be non-negative and
thek-sum objective value is assumed to be the ordinary
sum if a solution has less thank elements. Using this
definition, thek-sum shortest path problemis

min
P∈Pst

min{k,l(P )}
∑

i=1

c(i)(P ) (7)

wherel(P ) is the length of pathP andc(i)(P ) denotes
its ith-largest edge cost. As such,k-sum SPP fits into the
framework of Univ-SPP choosingλl

1 = . . . = λl
k = 1

andλl
i = 0 else if l > k andλl

i = 1 for all i = 1, . . . , l
if l ≤ k. In the algorithm given by [29], the setPst is
partitioned into sets

Pst(ci) := {P ∈ Pst : c(k)(P ) = ci} (8)

of those(s, t)-pathsP with costci askth-largest edge
cost and the set

Pst(0) := {P ∈ Pst : l(P ) < k} ∪

{P ∈ Pst : c(k)(P ) = 0} (9)

containing all(s, t)-pathsP with lengthl(P ) < k and
the (s, t)-pathsP with cost0 askth-largest edge cost
(if c(e) = 0 for some edgee ∈ E). Sorting the values
ci in {c(e) : e ∈ E}∪{0} in increasing order, ak-sum
shortest path can be found among the optimal paths in
Pst(ci). For eachPst(ci), ci 6= 0, such an optimal path
is obtained by solving a sum SPP with edge costs

cci(e) :=

{

c(e)− ci if c(e) ≥ ci

0 if c(e) < ci
(10)

and an optimal path inPst(0), - or a path inPst(ci)
with smaller objective value than all paths inPst(0) - ,
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is obtained by solving a sum SPP with costsc(e). Since
a k-sum shortest path with less thank edges can alter-
natively be computed by solving a resource constrained
shortest path problem (see Section 3.), the algorithm is
still correct on digraphs without negative-cost cycles.
Using a different cost modification scheme

cci(e) :=

{

c(e) if c(e) > ci

ci if c(e) ≤ ci
(11)

a similar algorithm was proposed in a preceding paper
of Gupta and Punnen [17]. However, this is only valid
if all (s, t)-pathsP have the same lengthl(P ). Both
algorithms terminate inO(m2 + mT ) time which is
O(m2 + nm logn) or O(nm2) if the algorithms of
Dijkstra or Bellman-Ford are applied to solve the cor-
responding sum SPPs of complexityO(T ).

Thek-max objective function which generalizes the
bottleneck objective function by minimizing thekth-
largest cost coefficient was considered in Gorski and
Ruzika [15]. They presented a bisection search algo-
rithm which is applicable to general combinatorial opti-
mization problems and solve the problem in (strongly)
polynomial time whenever a related sum problem with
binary cost coefficients can be solved in (strongly) poly-
nomial time. This holds true for shortest paths such that
thek-max shortest path problem

min
P∈Pst

c(k)(P ) (12)

can be solved inO(n log n logm + m logm) =
O(n(log n)2 +m logn) time provided that any(s, t)-
pathP has lengthl(P ) ≥ k. Using bisection, it is tested
in each iteration if there exists a path froms to t whose
kth-largest cost edge has costs smaller thanc(ej) for a
given edgeej ∈ E, j ∈ {1, . . . ,m}. Sorting the edges
by non-decreasing costs, i.e.

c(e1) ≤ . . . ≤ c(em), (13)

this is done iteratively by solving a sum SPP

min
P∈Pst

∑

ei∈P

dj(ei) (14)

with binary (and thus non-negative) costs defined as

dj(ei) :=

{

0 if i ≤ j

1 if i > j.
(15)

Note that thek-max objective function is a universal
objective function if we setλl

k = 1 andλl
i = 0 else for

all l ≥ k. Thek-min shortest path problem

min
P∈Pst

c(l(P )−k+1)(P ) (16)

minimizes thekth-smallest instead of thekth-largest
edge cost. If we define costs

dj(ei) :=

{

1 if i < j

0 if i ≥ j
(17)

it can be solved in the same way ask-max SPP where
problem (14) turns into a sum shortest path problem of
maximization type. Since this longest path problem can
only be solved in polynomial time on acyclic graphs,
the same holds fork-min SPP which is universal if
λl
l−k+1 = 1 andλl

i = 0 else for alll ≥ k.

3. Resource Constrained Shortest Path Problems

For other types of shortest path problems than those
listed in Section 2., we give a general solution concept
which is based on resource constrained shortest paths.
The idea is to pick in each iteration an edgeejk ∈ E

as kth-largest orkth-smallest cost edge and to solve
associated sum SPPs where the set of feasible paths is
restricted to those pathsP ∈ Pst with edgeejk askth-
largest orkth-smallest cost edge, respectively. To this
end, we choose an approach which has been discussed
for so-called generalized balanced optimization prob-
lems [36] and specialize it to the case of shortest paths.
A related approach using concepts of multicriteria op-
timization to handle different objective functions in the
context of general combinatorial optimization problems
was independently suggested by Gorski [13,14].

We sort the edgesE = {e1, . . . , em} of digraphG
by non-increasing costs such that

c(e1) ≥ . . . ≥ c(em). (18)

According to this order, we define edge costs

djk(ei) :=

{

1 if i < jk

0 if i ≥ jk
(19)

or

djk(ei) :=

{

0 if i ≤ jk

1 if i > jk
(20)
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as in Gorski and Ruzika [15] which are0 or1 depending
on the index of edgeei ∈ E compared with that of
a previously chosen edgeejk , jk ∈ {1, . . . ,m}. The
pathsP ∈ Pst with edgeejk as kth-largest orkth-
smallest cost edge can be characterized as follows (see
Theorem 3 of [36]).
Theorem 1. For an edgeejk ∈ E, jk ∈ {1, . . . ,m},
and a pathP ∈ Pst, it holds:

(a) ejk is thekth-largest cost edge inP if and only if
∑

ei∈P djk(ei) = k − 1 and
∑

ei∈P djk+1(ei) = k

where the costsdjk(ei) anddjk+1(ei) are defined as
in (19).

(b) ejk is thekth-smallest cost edge inP if and only if
∑

ei∈P djk−1(ei) = k and
∑

ei∈P djk(ei) = k − 1
where the costsdjk−1(ei) anddjk(ei) are defined as
in (20).

The costc(ejk) associated with edgeejk is then said to
be thekth-largest orkth-smallest edge cost of pathP ,
respectively.

Proof. It suffices to prove claim (a) since claim (b)
can be shown analogously. By definition of the costs
djk(ei) and djk+1(ei), the sums

∑

ei∈P djk(ei) and
∑

ei∈P djk+1(ei) count the number of edges in path
P having an index which is strictly smaller thanjk or
jk + 1.
If
∑

ei∈P djk(ei) < k−1, there are at mostk−2 edges
in pathP with index smaller thanjk and these edges
have costs greater or equal thanc(ejk). Since pathP is
elementary, edgeejk occurs at most once and cannot be
its kth-largest cost edge. The same reasoning applies
if
∑

ei∈P djk(ei) > k − 1,
∑

ei∈P djk+1(ei) < k or
∑

ei∈P djk+1(ei) > k.
Conversely, if

∑

ei∈P djk+1(ei) = k and
∑

ei∈P djk(ei)
= k − 1 , pathP has exactlyk − 1 edges with index
smaller thanjk and k edges with index smaller than
jk + 1. Thus, edgeejk is contained in pathP and has
kth-largest cost.

Observe that Theorem 1 is not correct for directed
walks in which edgeejk might be used repeatedly.

Shortest path problems with sum objective and con-
straints as given in Theorem 1 (a) and (b) can be inter-
preted as resource constrained shortest path problems
with equality constraints.
Definition 1. For a directed graphG with K resources
we define theresource constrained shortest path prob-

lem with equality constraintsas

min
∑

e∈P

c(e) (21a)

s.t.
∑

e∈P

rk(e) = Rk ∀ k = 1, . . . ,K (21b)

P ∈ Pst (21c)

where rk(e) ∈ Z
+
0 are the units of resourcek con-

sumed along edgee ∈ E and Rk ∈ Z
+ is the re-

quired total consumption of resourcek on pathP with
k = 1, . . . ,K.

Problem (21) is a variation of theresourceor weight
constrained shortest path problemin which the equality
constraints (21b) are replaced by inequality constraints

∑

e∈E

rk(e) ≤ Rk ∀ k = 1, . . . ,K (21d)

which give an upper bound on the consumption of
resourcesk = 1, . . . ,K. The problem with con-
straints (21d) is widely studied. Early work concerned
with “route” problems of that type where nodes and
edges may be repeated can be found in Joksch [20]. If
there are no dicycles of negative cost, an optimal solu-
tion to such a walk problem will be an elementary path
and solves the corresponding path problem. Besides dy-
namic programming algorithms (see e.g. Lawler [23]),
other solution concepts for this problem (which is, in
general, strongly NP-hard and even weakly NP-hard on
acyclic digraphs with only one resource [11], [38]) in-
clude labeling algorithms, path ranking procedures and
relaxation methods. For a summary on available litera-
ture, we refer to the monographs of Ziegelmann [41],
Dumitrescu [5], Zhu [39] and Garcia [10]. A com-
prehensive survey on the generalized problem with
resource windows defined for the nodes of graphG

is given in Irnich and Desaulniers [19]. For directed
graphs with negative-cost cycles, theelementary re-
source constrained shortest path problemin which
node and edge repetition are explicitly forbidden has
been considered in Beasley and Christofides [2], Du-
mitrescu [5], Feillet et al. [7] or Righini and Salani [31].
This problem is NP-hard in the strong sense [3].

In contrast, there is only few literature on the re-
source constrained shortest path problem with equality
constraints. Research started with a paper of Saigal [32]
on the corresponding walk problem. The path problem
appeared as special case of the resource constrained
shortest path problem with lower and upper resource
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limits, see Ribeiro and Minoux [30] or Beasley and
Christofides [2]. Since the Hamiltonian path problem
is obtained forK = 1 resource withRK = n− 1, it is
strongly NP-hard (compare Garey and Johnson [11]).
Recently, Zhu and Wilhelm [40] proposed a three stage
approach to tackle the problem on acyclic graphs which
is a subproblem in column generation. In this case, the
resource constrained shortest path problem with equal-
ity constraints and a single resource can be proved to be
weakly NP-hard (compare Wang and Crowcroft [38]).
In the following, we study a standard dynamic pro-
gramming approach to tackle this problem.

For an acyclic digraphG with sources and sinkt,
we sort the nodes in topological order such thati < j

for all (i, j) ∈ E. For any nodej ∈ V , we define

cj(r
1, . . . , rK) (22)

to be the cost of a sum shortest path froms to j with
resource consumptionrk ∈ {0, . . . , Rk} for each re-
sourcek, k = 1, . . . ,K. If the nodes are examined in
topological order, these values can be computed recur-
sively as

cj(r
1, . . . , rK) :=

min
(i,j)∈E: rk

ij
≤rk

{ci(r
1 − r1ij , . . . , r

K − rKij ) + cij} (23)

starting withcj(0, . . . , 0) which is the cost of a short-
est path from sources to nodej with total resource
consumption equal to0 or infinity if a path with this
property does not exist. The correctness of this first al-
gorithm follows from the principle of optimality.
Theorem 2. On acyclic digraphs, the dynamic pro-
gramming algorithm solves the resource constrained
shortest path problem with equality constraints in
O(T+mKR1 · · ·RK) time whereT is the time needed
to solve a one-to-all sum shortest path problem.

Proof. The algorithm is correct since a cost-minimal
path froms to j with resource consumptionr1, . . . , rK

is the concatenation of a cost-minimal path froms to
any predecessor nodei of nodej with resource con-
sumptionr1 − r1ij , . . . , r

K − rKij and edge(i, j) ∈ E

with cost cij and resource consumptionr1ij , . . . , r
K
ij .

The optimal cost isct(R1, . . . , RK) which is infinity
if there are no resource feasible paths froms to t.
The corresponding resource constrained shortest path
P ∗ ∈ Pst can be found by backtracking along prede-
cessor labelspred(j; r1, . . . , rK) where we store node
i in which the minimum of (23) is attained.

A topological order of the nodes in digraphG can be
obtained inO(n + m) (see e.g. Krumke and Nolte-
meier [22]). The initialization steps can be done in
O(T + mK) where T is the time to compute the
shortest paths froms to all other nodes after delet-
ing those edgese ∈ E with rk(e) > 0 for some
resourcek, k = 1, . . . ,K. Since every edgee ∈ E

has to be considered only once, we needO(mK)
time to determinecj(r1, . . . , rK) and the predeces-
sorspred(j; r1, . . . , rK) for all nodesj ∈ V . For all
rk ∈ {0, . . . , Rk}, k = 1, . . . ,K, these values are
obtained in a total ofO(mKR1 · · ·RK) time. The
resource constrained shortest path froms to t is con-
structed in at mostn− 1 steps using backtracking.

An alternative algorithm in which no topological sort-
ing is needed uses the following recursion

clj(r
1, . . . , rK) := min

{

cl−1
j (r1, . . . , rK),

min
(i,j)∈E: rk

ij
≤rk

{cl−1
i (r1 − r1ij , . . . , r

K − rKij ) + cij}

}

.

(24)

For resource consumptionr1, . . . , rK , it computes the
cost of a sum shortest path froms to j which has no
more thanl edges. Since any path consists of at most
n − 1 edges, the cost of an optimal path froms to t

is cn−1
t (R1, . . . , RK) wherec0j (r

1, . . . , rK) has been
initialized as

c0s(0, . . . , 0) := 0 (25)

and
c0j(r

1, . . . , rK) := ∞ (26)

else. As in the proof of Theorem 2 we can show
that this algorithm solves the resource constrained
shortest path problem on acyclic graphs in time
O(n2R1 · · ·RK + nmKR1 · · ·RK). In general graphs
recursion (24) usually finds a shortest(s, t)-walk which
cannot be reduced to an elementary(s, t)-path satisfy-
ing the resource constraints.

If the number of resourcesK is fixed, both dynamic
programming algorithms have pseudo-polynomial time
complexity depending on the size of the resource con-
sumptionR1, . . . , RK . If the resource constraints are
as in Theorem 1 (a) or (b) there areK = 2 equality
constraints withR1 = k − 1 andR2 = k or R1 = k

andR2 = k−1, respectively, and the resulting resource
constrained shortest path problem is even solvable in
strongly polynomial time. Note that problem (27) can
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be reduced to a resource constrained shortest path prob-
lem with only one equality constraint ifk = 1.
Corollary 1. Using the first dynamic programming al-
gorithm, problem

min
∑

e∈E

c(e) (27a)

s.t.
∑

ei∈P

djk(ei) = k − 1 (27b)

∑

ei∈P

djk+1(ei) = k (27c)

P ∈ Pst (27d)

where djk (ei) and djk+1(ei) are as in (19) can be
solved inO(n2m) time on acyclic directed graphs. The
same holds for constraints

∑

ei∈P djk−1(ei) = k and
∑

ei∈P djk(ei) = k − 1 wheredjk−1(ei) and djk(ei)
are as in(20).

Proof. For some fixedk the constraints ensure that edge
ejk is thekth-largest orkth-smallest cost edge of the
pathsP ∈ Pst. Since any(s, t)-path has at mostn− 1
edges we have thatk ∈ {1, . . . , n − 1} which implies
that R1, R2 ≤ n. By Theorem 2 these resource con-
strained shortest path problems are solvable in at most
O(n2m) time if we apply the first version of the dy-
namic programming algorithm and the algorithms of
Dijkstra or Bellman-Ford to find the sum shortest paths
from sources to all nodes with resource consumption
0.

4. New Variants of Shortest Path Problems

In the following three subsections, we investigate
some new shortest path problems which are generaliza-
tions or extensions of the balanced,k-sum andk-max
shortest path problems presented in Section 2.. Some
of the objective functions have already been discussed
in the context of continuous and discrete location prob-
lems (see e.g. Nickel and Puerto [26] or Velten [37]),
but the solution approach for path problems is different.
We use the results of Section 3. and solve a sequence of
resource constrained shortest path problems of type (27)
with appropriately defined costs. For simplicity, we as-
sume that the pathsP ∈ Pst have “sufficient” length
l(P ) such that the objective functions are well-defined
for all (s, t)-paths in graphG. Furthermore, we sup-
pose that the edgese ∈ E are already sorted by non-
increasing costs.

4.1. (k1, k2)-Max and (k1, k2)-Balanced SPP

The(k1, k2)-max and(k1, k2)-balanced shortest path
problem are related path problems where the sum of the
kst1 -largest andknd2 -largest edge cost or the difference of
thekst1 -largest andknd2 -smallest edge cost, respectively,
is minimized. The(k1, k2)-balanced objective function
has not been considered before.
Definition 2.(a) If k1 < k2 ≤ l(P ) for all pathsP ∈
Pst, the(k1, k2)-max SPPis defined as

min
P∈Pst

(

c(k1)(P ) + c(k2)(P )
)

. (28)

(b) If k1+k2 ≤ l(P ) for all pathsP ∈ Pst, the(k1, k2)-
balanced SPPis defined as

min
P∈Pst

(

c(k1)(P )− c(l(P )−k2+1)(P )
)

. (29)

These problems generalize thek-max and balanced
SPP introduced in Section 1. and can be stated as Univ-
SPPs settingλl

k1
= λl

k2
= 1 and λl

i = 0 else for
(k1, k2)-max SPP withl ≥ k2 or λl

k1
= 1, λl

l−k2+1 =

−1 and λl
i = 0 else for (k1, k2)-balanced SPP with

l ≥ k1 + k2. They can be solved by a single solution
approach usingk-max shortest paths.
Theorem 3. On acyclic directed graphs, the(k1, k2)-
max and (k1, k2) balanced SPP can be solved in
O(n2m2 logn) time by solving at mostm constrained
k1-max SPPs.

Proof. Let

Pst(ejk2 ) := (30)

{P ∈ Pst : ejk2 is theknd2 -largest cost edge inP}

or

Pst(ejk2 ) := (31)

{P ∈ Pst : ejk2 is theknd2 -smallest cost edge inP}

be the set of pathsP ∈ Pst with edgeejk2 ∈ E as
knd2 -largest orknd2 -smallest cost edge. For eachjk2

∈
{k2, . . . ,m} or jk2

∈ {k1 + 1, . . . ,m− k2 + 1} (note
that Pst(ejk2 ) = ∅ if index jk2

is smaller thank2 or
larger thanm− k2 + 1) we solve

min
P∈Pst(ejk2

)
c(k1)(P ) (32)

which is a standardk1-max shortest path problem with
additional constraints
∑

ei∈P

djk2 (ei) = k2 − 1,
∑

ei∈P

djk2+1(ei) = k2 (33)
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or
∑

ei∈P

djk2−1(ei) = k2,
∑

ei∈P

djk2 (ei) = k2 − 1 (34)

depending on the definition ofPst(ejk2 ). Applying the
algorithm of Gorski and Ruzika [15] (for edges sorted
by non-increasing costs), ak1-max shortest pathP ∗

jk2
∈

Pst(ejk2 ) can be computed by solvinglogm many re-
source constrained shortest path problems of type (27)
with binary edge costs. PathP ∗

jk2
is obviously optimal

for the (k1, k2)-max and(k1, k2)-balanced SPP with
feasible setPst(ejk2 ) since the objective function val-
ues are

fλ(P ) = c(k1)(P )± c(ejk2 ) (35)

and
c(k1)(P

∗
jk2

) ≤ c(k1)(P ) (36)

for all P ∈ Pst(ejk2 ). An overall optimal solution can
thus be found as

P ∗ := argmin
jk2∈{k2,...,m}/{k1+1,...,m−k2+1}

fλ(P
∗
jk2

) (37)

wherefλ(P ∗
jk2

) = ∞ if an (s, t)-pathP with edgeejk2
asknd2 -largest orknd2 -smallest cost edge does not exist.
The running time follows since we solve at mostm

constrainedk1-max SPPs each of which has complexity
O(n2m logm) = O(n2m logn).

Using the following property of the(k1, k2)-max and
(k1, k2)-balanced objective function, the corresponding
path problems cannot only be solved on acyclic graphs,
but also on general graphs. To evaluate the objective
function value of an(s, t)-walk W we assume that the
edge costs in walkW are counted with multiplicities.
Lemma 1. For an(s, t)-walkW and its associated path
P ∈ Pst obtained by eliminating all dicycles inW it
holds that

fλ(P ) ≤ fλ(W ) (38)

where fλ(·) is the (k1, k2)-max or (k1, k2)-balanced
objective function.

Proof. Let

c(1)(W ) ≥ . . . ≥ c(l(W ))(W ) (39)

and
c(1)(P ) ≥ . . . ≥ c(l(P ))(P ) (40)

be the edge costs of walkW and pathP which have
been sorted in non-increasing order. It holds that

c(k1)(P ) ≤ c(k1)(W ) (41)

and
c(k2)(P ) ≤ c(k2)(W ) (42)

but theknd2 -smallest edge cost becomes larger if we
remove the dicycles in walkW , i.e.

c(l(P )−k2+1)(P ) ≥ c(l(W )−k2+1)(W ). (43)

This implies that

fλ(P ) = c(k1)(P ) + c(k2)(P )

≤ c(k1)(W ) + c(k2)(W ) = fλ(W ) (44)

and

fλ(P ) = c(k1)(P )− c(l(P )−k2+1)(P )

≤ c(k1)(W )− c(l(W )−k2+1)(W ) = fλ(W )
(45)

for the (k1, k2)-max and(k1, k2)-balanced objective
functionfλ(·).

Corollary 2. On general digraphs, a(k1, k2)-max or
(k1, k2)-balanced shortest path can be found in strongly
polynomial time.

Proof. In general graphs where no topological sorting
exists we apply the second dynamic programming al-
gorithm to tackle the resource constrained shortest path
problems which are solved in each iteration of the con-
strainedk1-max shortest path problems (32). Therefore,
the optimal solutionW ∗ which is found as in Theo-
rem 3 might be a non-elementary (with repeated nodes)
or non-simple (with repeated edges) path froms to t.
By Lemma 1, the corresponding(s, t)-pathP ∗ that is
obtained by deleting the dicycles in walkW ∗ satisfies

fλ(P
∗) ≤ fλ(W

∗) =

min
jk2∈{k2,...,m}/{k1+1,...,m−k2+1}

fλ(P
∗
jk2

)≤

fλ(P
∗
j∗
k2

) ≤ fλ(P
∗) (46)

where the solutionsP ∗
jk2

of problems (32) might be

walks and edgeej∗
k2

is theknd2 -largest orknd2 -smallest
edge cost of pathP ∗. So P ∗ is an optimal path for
(k1, k2)-max or(k1, k2)-balanced SPP withfλ(P ∗) =
fλ(W

∗). Using recursion (24) we needO(n4m logn+
n3m2 logn) time for solvingm constrainedk1-max
SPPs.

A special case of(k1, k2)-balanced SPP is thek-
balanced shortest path problemwhere the difference
between the largest andkth-smallest edge cost or the



Lara Turner – Algorithmic Operations Research Vol.6 (2011)91–104 99

kth-largest and smallest edge cost is as small as possi-
ble, i.e.

min
P∈Pst

(

max
e∈P

c(e)− c(l(P )−k+1)(P )

)

(47)

or

min
P∈Pst

(

c(k)(P )−min
e∈P

c(e)

)

. (48)

These problems are solvable as described in Theorem 3
or Corollary 2. An alternative approach which is valid
for any combinatorial optimization problem solves a se-
quence of at mostm maximization problems ofk-min
type wherec(e) ≤ ci for all e ∈ E or m minimiza-
tion problems ofk-max type wherec(e) ≥ ci for all
e ∈ E. The prescribed maximum or minimum edge
cost ci varies betweenc(e1), . . . , c(em) and both, the
k-min andk-max problem, can be solved sequentially
by problems

min
P∈Pst

∑

ei∈P

djk(ei) (49)

with binary edge costsdjk(ei) as given in (20)
or (19). This approach has a worst case complexity of
O(nm(logn)2 +m2 logn).

4.2. Trimmed-Mean SPP and Related Problems

For a pathP ∈ Pst, the (k1, k2)-trimmed-mean ob-
jective function ignores itsk1 largest andk2 smallest
cost edges and adds the costs of the remaining edges
in P . Conversely, if the costs of thek1 largest andk2
smallest edges are added and all other edge costs are
ignored, this is called a(k1, k2)-anti-trimmed-mean ob-
jective function.
Definition 3. Let k1+k2 ≤ l(P ) for all pathsP ∈ Pst.
We define

(a) the(k1, k2)-trimmed-mean SPPas

min
P∈Pst

l(P )−k2
∑

i=k1+1

c(i)(P ) (50)

(b) and the(k1, k2)-anti-trimmed-mean SPPas

min
P∈Pst





k1
∑

i=1

c(i)(P ) +

l(P )
∑

i=l(P )−k2+1

c(i)(P )



. (51)

Both objective functions generalize thek-sum ob-
jective function (see Section 2.) and are “univer-
sal” by choosingλl

k1+1 = . . . = λl
l−k2

= 1 or

λl
1 = . . . = λl

k1
= λl

l−k2+1 = . . . = λl
l = 1 and

λl
i = 0 else for alll ≥ k1 + k2.

Trimmed-mean objectives are known from location
theory, but we give the first algorithm for shortest
path problems of this type. We use the ideas of Gupta
and Punnen [17] and Punnen and Aneja [29] to solve
a sequence of “easier” sum optimization problems
with modified costs. As in the previous subsection,
additional constraints to fix an edge askth-largest or
kth-smallest cost edge are needed.

For jk1
, jk2

∈ {1, . . . ,m}, we define the sets
Pst(ejk1 ) andPst(ejk2 ) containing all(s, t)-pathsP
with edgeejk1 askst1 -largest cost edge and edgeejk2 as
knd2 -smallest cost edge, respectively. In addition, we set

Pst(ejk1 , ejk2 ) :=

{P ∈ Pst : ejk1 is thekst1 -largest cost edge inP

andejk2 is theknd2 -smallest cost edge inP} (52)

wherePst(ejk1 , ejk2 ) = ∅ if the edgesejk1 , ejk2 ∈ E

cannot be thekst1 -largest andknd2 -smallest cost edges of
a pathP ∈ Pst. Furthermore, let us define edge costs
cjk1 ,jk2 (ei) as

cjk1 ,jk2 (ei) :=











0 if i ≤ jk1

c(ei) if jk1
< i < jk2

c(ejk2 ) if i ≥ jk2

(53)

for (k1, k2)-trimmed-mean SPP or

cjk1 ,jk2 (ei) :=











c(ei)− c(ejk1 ) if i ≤ jk1

0 if jk1
< i < jk2

c(ei) if i ≥ jk2

(54)
for (k1, k2)-anti-trimmed-mean SPP.
Lemma 2. Let ejk1 , ejk2 ∈ E.

(a) For the (k1, k2)-trimmed-mean objective function
fλ(·) it holds that

1.
∑

ei∈P

cjk1 ,jk2 (ei) ≥ fλ(P ) + k2c(ejk2 )

for P ∈ Pst(ejk1 ), (55)

2.
∑

ei∈P

cjk1 ,jk2 (ei) = fλ(P ) + k2c(ejk2 )

for P ∈ Pst(ejk1 , ejk2 ). (56)
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(b) For the (k1, k2)-anti-trimmed-mean objective func-
tion fλ(·) it holds that

1.
∑

ei∈P

cjk1 ,jk2 (ei) ≥ fλ(P )− k1c(ejk1 )

for P ∈ Pst(ejk2 ), (57)

2.
∑

ei∈P

cjk1 ,jk2 (ei) = fλ(P )− k1c(ejk1 )

for P ∈ Pst(ejk1 , ejk2 ). (58)

Proof. We only prove the lemma for the(k1, k2)-
trimmed-mean objective functionfλ(·). LetP be a path
with edgeejk1 as kst1 -largest cost edge. We may as-
sume that the cost values of the edges in pathP which
contribute to the right hand side of inequality (55)

fλ(P ) + k2c(ejk2 ) (59)

are0 for the k1 largest cost edges,c(ejk2 ) for the k2
smallest cost edges and unchanged otherwise. By def-
inition of cjk1 ,jk2 (ei), the k1 largest cost edges ofP
with index i ≤ jk1

have costscjk1 ,jk2 (ei) = 0 as well.
The costs of the remaining edges inP , however, are

cjk1 ,jk2 (ei) = c(ei) ≥ c(ejk2 ) (60)

if jk1
< i < jk2

or

cjk1 ,jk2 (ei) = c(ejk2 ) ≥ c(ei) (61)

if i ≥ jk2
due to the non-increasing sorting of the edge

costs. It follows that

cjk1 ,jk2 (ei) ≥ c(ejk2 ) (62)

for thek2 smallest cost edges of pathP and

cjk1 ,jk2 (ei) ≥ c(ei) (63)

for the edges in between. This shows claim 1.
Claim 2 follows since the costscjk1 ,jk2 (ei) are equal
to 0, c(ejk2 ) andc(ei) for thek1 largest cost edges, the
k2 smallest cost edges and all other edges of any path
P ∈ Pst(ejk1 , ejk2 ). Inequality (55) is thus satisfied at
equality.

Theorem 4. On acyclic directed graphs, the(k1, k2)-
trimmed-mean and(k1, k2)-anti-trimmed-mean SPP
can be solved inO(n2m3) time by solving at most
m2 resource constrained shortest path problems with
equality constraints.

Proof. Consider the(k1, k2)-trimmed-mean SPP. For
each pair of edgesejk1 , ejk2 ∈ E we solve a sum SPP
with costscjk1 ,jk2 (ei) where the set of feasible paths is
Pst(ejk1 ). This is a resource constrained shortest path
problem of type (27) which is solvable inO(n2m). By
Lemma 2 (a), the corresponding resource constrained
shortest pathP ∗

jk1 ,jk2
∈ Pst(ejk1 ) satisfies

fλ(P
∗
jk1 ,jk2

) + k2c(ejk2 ) ≤
∑

ei∈P∗

jk1
,jk2

cjk1 ,jk2 (ei)

≤
∑

ei∈P

cjk1 ,jk2 (ei) = fλ(P ) + k2c(ejk2 ) (64)

for all P ∈ Pst(ejk1 , ejk2 ). Subtractingk2c(ejk2 ) we
get

fλ(P
∗
jk1 ,jk2

) ≤ fλ(P ). (65)

An optimal solution to the(k1, k2)-trimmed-mean
shortest path problem is

P ∗ := argmin
jk1∈{k1,...,m}, jk2∈{k1+1,...,m−k2+1}

fλ(P
∗
jk1 ,jk2

).

(66)
It can be determined in a total of at mostO(n2m3)
time.

If we assume that the (original) edge costs are non-
negative, the(k1, k2)-trimmed-mean shortest path prob-
lem can even be solved on general graphs. This is not
correct for its counterpart, the(k1, k2)-anti-trimmed-
mean shortest path problem.
Corollary 3. In general digraphs withc(e) ≥ 0 for all
e ∈ E, the (k1, k2)-trimmed-mean SPP is solvable in
strongly polynomial time.

Proof. As indicated in the proof of Corollary 2 an op-
timal solutionW ∗ found by recursion (24) might be
a walk. Reducing walkW ∗ to its associated pathP ∗

yields

l(P ∗) < l(W ∗) (67)

and

c(i)(P
∗) ≤ c(i)(W

∗) (68)

for all i = 1, . . . , l(P ∗). It follows that

l(P∗)−k2
∑

i=k1+1

c(i)(P
∗) ≤

l(P∗)−k2
∑

i=k1+1

c(i)(W
∗) (69)
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and

fλ(P
∗) =

l(P∗)−k2
∑

i=k1+1

c(i)(P
∗)

≤

l(P∗)−k2
∑

i=k1+1

c(i)(W
∗) +

l(W∗)−k2
∑

i=l(P∗)−k2+1

c(i)(W
∗)

= fλ(W
∗) (70)

because all costs are non-negative. As in Corollary 2,
path P ∗ is optimal and can be found inO(n4m2 +
n3m3) time.

The following problem which we denote as(k1, k2)-
anti-trimmed-mean-balancedshortest path problemand
in which we compute the difference between thek1
largest andk2 smallest edge costs wherek1+k2 ≤ l(P )
for all pathsP ∈ Pst

min
P∈Pst





k1
∑

i=1

c(i)(P )−

l(P )
∑

i=l(P )−k2+1

c(i)(P )



 (71)

can be seen as combination of the balanced and(k1, k2)-
anti-trimmed-mean SPP (we haveλl

1 = . . . = λl
k1

=

1, λl
l−k2+1 = . . . = λl

l = −1 andλl
i = 0 else for all

l ≥ k1 + k2). But in contrast to the latter, it can be
solved by classical sum shortest path problems without
resource constraints.
Theorem 5. The(k1, k2)-anti-trimmed-mean-balanced
SPP can be solved in strongly polynomial time on gen-
eral directed graphs.

Proof. We define a sum SPP with non-negative costs

cjk1 ,jk2 (ei) :=











c(ei)− c(ejk1 ) if i ≤ jk1

0 if jk1
< i < jk2

c(ejk2 )− c(ei) if i ≥ jk2

(72)
for which an optimal pathP ∗

jk1 ,jk2
∈ Pst can be found

in O(m + n logn) time applying the label-setting al-
gorithm of Dijkstra. As in the proof of Theorem 4, we
can argue that
∑

ei∈P

cjk1 ,jk2 (ei) ≥ fλ(P )− k1c(ejk1 ) + k2c(ejk2 )

(73)
for all pathsP ∈ Pst since

cjk1 ,jk2 (ei) ≥ c(ei)− c(ejk1 ) (74)

cjk1 ,jk2 (ei) ≥ c(ejk2 )− c(ei) (75)

and
cjk1 ,jk2 (ei) ≥ 0 (76)

for the k1 largest, thek2 smallest and the remaining
cost edges. For the pathsP ∈ Pst(ejk1 , ejk2 ) one has

∑

ei∈P

cjk1 ,jk2 (ei) = fλ(P )− k1c(ejk1 ) + k2c(ejk2 )

(77)
and thus

fλ(P ) ≥ fλ(P
∗
jk1 ,jk2

) (78)

such that an optimal solution for(k1, k2)-anti-trimmed-
mean-balanced SPP is among the sum shortest paths
P ∗
jk1 ,jk2

. Since less thanm2 sum shortest path problems

have to be solved we get a complexity ofO(m3 +
m2n logn) time.

An analogous result can be obtained for general com-
binatorial optimization problems if the corresponding
problem with sum objective is solvable in (strongly)
polynomial time.

4.3. Univ-SPP with Non-Negative Weight Coefficients
and Weight Coefficients in “Blocks”

The path problems considered so far are universal
shortest path problems whose weight coefficientsλl

i are
in {0,±1}. In this section, we consider further variants
where the universal weight coefficients are arbitrary or
non-negative real numbers.

The results of Subsections 4.1. and 4.2. remain
valid if the weight coefficients1 or −1 are mul-
tiplied by α1, α2 ∈ R

+
0 . Hence path problems

with λl
k1

= α1, λ
l
k2

= α2 and λl
i = 0 else or

λl
k1

= α1, λ
l
l−k2+1 = −α2 and λl

i = 0 else which
generalize the(k1, k2)-max or (k1, k2)-balanced SPP
can be solved in strongly polynomial time on acyclic
and general directed graphs. For the problems of Sub-
section 4.2. the corresponding generalizations are

min
P∈Pst

l(P )−k2
∑

i=k1+1

αc(i)(P ) (79)

whereα ∈ R
+
0 and

min
P∈Pst





k1
∑

i=1

α1c(i)(P )±

l(P )
∑

i=l(P )−k2+1

α2c(i)(P )



.

(80)



102 Lara Turner – Variants of the Shortest Path Problem

To solve them, it suffices to modify the edge costs
cjk1 ,jk2 (ei) defined in (53), (54) and (72).

Another class of universal objective functions to
which our model applies are objective functionsfλ(·)
where the universal weight coefficientsλl

i can be di-
vided into “blocks”. Assuming that any pathP ∈ Pst

has length at leastkp, this means e.g. that

λl
1 = . . . = λl

k1−1 = α0

λl
k1
= . . . = λl

k2−1 = α1

...
...

λl
kp
= . . . = λl

l = αp (81)

or

λl
1 = . . . = λl

l−kp+1 = αp

...
...

λl
l−k2+2= . . . = λl

l−k1+1 = α1

λl
l−k1+2= . . . = λl

l = α0 (82)

wherep ∈ {1, . . . , n− 2}, 1 < k1 < . . . < kp ≤ l and
α0, α1, . . . , αp ∈ R. On acyclic digraphs, such prob-
lems can be solved in strongly polynomial time ifp is
fixed. For suitableejk1 , . . . , ejkp ∈ E, we choose these

edges askst1 -,. . . ,kthp -largest or kst1 -,. . . ,kthp -smallest
cost edges of pathP and solve resource constrained
shortest path problems with2p constraints and costs
defined as

cjk1 ,...,jkp (ei) :=























α0c(ei) if i < jk1

α1c(ei) if jk1
≤ i < jk2

...
...

αpc(ei) if i ≥ jkp

(83)

or

cjk1 ,...,jkp (ei) :=























αpc(ei) if i ≤ jkp

...
...

α1c(ei) if jk2
< i ≤ jk1

α0c(ei) if i > jk1

(84)

respectively. Special cases are e.g. the minimum devi-
ation and algebraic sum SPP (see Section 2.). Others
are the so-called cent-dian or anti-cent-dian objectives
which are well-known in location theory and for which
the universal weight coefficients are set toλl

1 = 1 and

λl
i = α else orλl

l = −1 andλl
i = −α else. Finally

the problems in which we minimize the smallest or the
k smallest edge costs belong to this problem class and
can be modelled using0-1 weight coefficientsλl

l = 1
or λl

l = . . . = λl
l−k+1 = 1 and the remainingλl

i = 0.

5. Conclusion

We have provided strongly polynomial-time algo-
rithms for a series of shortest path problems. In ad-
dition to the problems with sum, bottleneck ork-sum
objective for which specially-designed shortest path
algorithms exist, balanced, minimum deviation, alge-
braic sum andk-max shortest path problems could be
addressed by algorithms which had been developed for
general combinatorial optimization problems. To han-
dle other objective functions we have solved equality
constrained shortest path problems. Algorithms were
given for the following problems on acyclic digraphs:
(k1, k2)-max and (k1, k2)-balanced SPP,(k1, k2)-
trimmed-mean and(k1, k2)-anti-trimmed-mean SPP,
variants of these SPPs such ask-balanced or(k1, k2)-
anti-trimmed-mean-balanced SPP, Univ-SPPs with
non-negative universal weight coefficients and Univ-
SPPs with universal weight coefficients in “blocks”.
The (k1, k2)-max and (k1, k2)-balanced SPP, the
(k1, k2)-trimmed-mean SPP (provided thatc(e) ≥ 0),
the k-balanced and(k1, k2)-anti-trimmed-mean-bal-
anced SPP and their generalizations discussed in Sec-
tion 4.3. were actually solvable on general digraphs.

Unlike the classical sum shortest path problem which
can also be solved as linear program (see e.g. Ahuja
et al. [1]), the path problems considered in this paper
and their generalization, the universal shortest path
problem, cannot be addressed by linear programming
since the additional sorting problem makes the objec-
tive function non-linear. IP formulations for Univ-SPP
are proposed and analysed in [35] and [34].

It is worth investigating the relationship of our ap-
proach and that of Gorski [13,14] and combining them
to improve the results in both papers. This will be done
in the forthcoming thesis of Turner [34].

The ideas of Section 4. can be used to tackle the cor-
responding shortest walk problems where an optimal
walk (with repeated nodes or edges) instead of an op-
timal elementary path is sought for. In the case where
edges may be repeated and there are no negative-cost
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cycles with total resource consumption equal to0, an
edgeejk ∈ E is guaranteed to be thekth-largest or
kth-smallest cost edge in walkW if we require that

∑

ei∈W

djk(ei) ≤ k − 1,
∑

ei∈W

djk+1(ei) ≥ k (85)

or
∑

ei∈W

djk−1(ei) ≥ k,
∑

ei∈W

djk(ei) ≤ k − 1, (86)

respectively, where the costsdjk(ei), djk+1(ei) or
djk−1(ei), djk (ei) are defined as in (19) or (20). The
resulting resource constrained walk problems have
lower and upper resource limits (see e.g. Beasley and
Christofides [2]) in the problem size.
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