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Abstract

In this paper we formulate four problems in computational molecular biology as 0-1 quadratic programs. These
problems are all NP-hard, and the current solution methods used in practice consist of heuristics or approximation
algorithms tailored to each problem. Using test problems from scientific databases, we address the question, “Can a
general-purpose solver obtain good answers in reasonable time?” In addition, we use the latest heuristics as incumbent
solutions to address the question, “Can a general-purpose solver confirm optimality or find an improved solution
in reasonable time?” Our computational experiments compare four different reformulation methods: three forms of
linearization and one form of quadratic convexification.
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AlgOR established a Supplementary Site (http://journals.hil.unb.ca/index.php/AOR/rt/suppFiles/5930/9786), which
contains code and data for the experiments reported in the paper.

1. Introduction

We present Quadratic Binary Programming (QBP)
models of four problems in computational molecular
biology. The problems have been subject to compu-
tational research for more than a decade, but each
has been formulated in its own way and solved by
special algorithms designed for the individual problem
under consideration. We address the question, “Can
these problems be solved by the same general-purpose
solver?” An advantage of using a general-purpose
modeling framework, like QBP, is that the algorithm
does not depend on the model. Although applying a
common strategy can require more computational time
to reach a solution, it has the advantage of providing an
“umbrella” that makes it unnecessary for the scientist to
know the details of numerous algorithms. It also enables
the incorporation of new features, such as additional
constraints, with no new algorithm design.

In this paper we consider two solution strategies for
solving the QBP. The first strategy, calledlinearization,
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is to reformulate the QBP as a Mixed-Integer Linear
Program (MILP) through the introduction of auxiliary
variables and constraints. Then, the reformulation can
be solved using any standard mixed-integer linear
solver. The second strategy, known asconvex quadratic
reformulation, is to rewrite the QBP into an equivalent
problem with a convex quadratic objective function.
This does not require auxiliary variables or constraints,
but it does require an adjustment to the objective, called
convexification, to make the quadratic form a convex
function.

This paper is organized as follows. In§2we give some
background for understanding the problems and QBP
approaches, leaving details to the references we cite.
Also, we assume some familiarity with mathematical
programming terminology — see theMathematical
Programming Glossary [28] for details. In §3. we
present four models and numerical results for our test
problems. We conclude with some observations and
indications of avenues for further research.

2. Background

We begin this section by providing background in the
basic, underlying biology for the problems we study.
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We then briefly review our approaches to solving QBP,
namely linearization and convex quadratic reformula-
tions. Finally, we discuss the data source for our test
problems, which is primarily the Protein Data Bank
(PDB) [7]. We further describe how we implemented
our models to obtain the numerical results in§3. Related
descriptions of linear integer programming models
are given in [9,24], as well as references to more
background material.

2.1. A Little Molecular Biology

All life depends on three critical molecules:
(1) DNA, which contains information about how a cell

works;
(2) RNA, which makes proteins and performs other

functions;
(3) Proteins, which are regarded as the workers of the

cell.
DNA is a double-stranded sequence of nucleic acids:

Adenine, Cytosine, Guanine, andThymine. RNA is
a single-stranded sequence of nucleic acids:Adenine,
Cytosine,Guanine, andUracil. The genetic code maps
each triple of nucleic acids into one of 20 amino acids.
A peptide bondis a bonding of two amino acids. A
protein is determined by a sequence of successively
bonded amino acids.

Thecentral dogmais the information flow: DNA⇒
mRNA ⇒ Protein. The first mapping, from the DNA
molecule to messenger RNA, is calledtranscription. It
removes some of the nucleic acids, leaving only those
that code for the protein. The second mapping, from
mRNA to a protein, is calledtranslation, which uses
the genetic codeto map triples of nucleic acids into
amino acids. Proteins are formed by the bonding of
the sequence of amino acids. Figure 1 shows how two
amino acids bond — thecarboxyl endof the first amino
acid bonds with theamino endof the second.

The amino acids have certain properties: basic vs.
acidic, polar vs. non-polar, and hydrophilic (water lov-
ing) vs. hydrophobic (water hating). This last property
has special meaning in our study, upon which we
elaborate in§3.2..

In principle, the function of a protein is determined
by its amino acid sequence, but full understanding of
that mapping is beyond current science. It embodies a
celebrated problem in computational biology, known as
the protein foldingproblem: How does the sequence
of amino acids determine the structure of the protein?
Related to this is understanding how structure deter-
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Fig. 1. Amino Acids Bonding

mines function — that is, whether the protein transports
molecules (like oxygen from the lung to the brain),
catalyzes other reactions, protects the organism from
disease, or performs some other function. Knowledge of
such things has been increasing dramatically due to new
ways of getting huge amounts of data and developing
algorithms to process the data. Optimization plays a
fundamental role in all of this, and we illustrate with
four basic problems in the next section.

This should be enough biology terms and concepts
to get started; consult [11,29] for broader and deeper
introductions. Further, we define more basics as needed
when we develop the models.

2.2. Solution Strategies

We provide in this section details of both the linear
and convex quadratic reformulation strategies. To estab-
lish notation, consider the general form of the quadratic
binary program:

max cx + 1

2
x ′ Qx : x ∈ X ∩ {0, 1}n, (1)

whereX denotes a polyhedral set. We assume, without
loss in generality, thatQ is symmetric, andQii = 0
(x2

i term can be included in the linear portion since
x2

i = xi).
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Although all of the biology models presented in this
paper have binary variables with multiple indices, and
some have continuous variables as well, we use (1) in
this section to simplify the discussion of the reformula-
tion strategies. Specific implementation details can be
found in our model files at this article’s supplement site.

2.2.1. Linearization
The first class of reformulation methods we con-

sider is linearization. The strategy is to convert the
quadratic program into an equivalent MILP through the
introduction of auxiliary variables and constraints. The
linear reformulation is then solved by a standard MILP
algorithm.

There are many different linearization strategies
in the literature (see [2,3] for recent surveys). By
definition, they are all equivalent when the binary re-
strictions are enforced; however, their formulation size
and continuous relaxation strength can vary greatly. We
consider three methods here:Standard, Reformulation-
Linearization Technique(RLT), andGlover’s.

A standard way to linearize the QBP is to replace
each productxixj in the objective function with the
continuous variablewij and add four linear inequalities
as auxiliary constraints:wij ≤ xi, wij ≤ xj , wij ≥
xi + xj − 1, and wij ≥ 0. Collectively, these imply
wij = xixj for all binary values ofx. Incorporating the
symmetry reduction, the domain ofw is domstd(w) =
{(i, j) : i < j, Qij 6= 0}. We can reduce the number of
auxiliary constraints by using optimality and the sign of
Qij . Let Q+ = {(i, j) ∈ domstd(w) : Qij > 0} and
Q− = {(i, j) ∈ domstd(w) : Qij < 0}. Then, we can
omit the upper bound constraints for(i, j) ∈ Q−, and
we can omit the lower bound constraints for(i, j) ∈
Q+. We thus define theStandard linearizationof QBP:

max cx +
∑

(i,j)∈domstd(w)

Qijwij : x ∈ X ∩ {0, 1}n

wij ≥ xi + xj − 1 and wij ≥ 0 for (i, j) ∈ Q−

wij ≤ xi and wij ≤ xj for (i, j) ∈ Q+.

We do not require the auxiliary variables (w) to be
binary; that is implied by binary values ofx. This
tells the solver to branch on only the primary decision
variables (x). Also, note that we do not declarewij ≥ 0
unless it is necessary. This can provide a computational
advantage because if a “free variable” [28] enters the
Linear Programming Relaxation (LPR) basis it will
remain there.

A strengthening of the Standard linearization is the
Reformulation Linearization Technique(RLT) intro-
duced and developed by Adams and Sherali [5,34]. The
RLT can be used to generate a hierarchy of progressively
tighter linear programming relaxations. The level-1
RLT representation is constructed by multiplying the
constraints ofX by each binary variablexi and its
complement,1 − xi, and then using the auxiliary
variablewij to replace each product termxixj , along
with settingx2

i = xi.
Given the sizes of the problems in molecular biology

that we consider, the full level-1 RLT is, in general, not
a viable approach due to its huge memory requirements,
and therefore we consider apartial level-1 RLT
representation here.1 The idea is to include only a
subset of the RLT restrictions by judicially selecting
subsets of constraints and variables from which to
generate the RLT restrictions. We illustrate below
by applying the RLT to a selection (or assignment)
constraint. Such constraints are prevalent in biology
problems that involve combinatorial optimization. The
specific details of each partial RLT implementation are
discussed in§3.

Suppose that we require

∑

j∈J

xj = 1 (2)

for some index setJ . Multiply (2) by xi for i 6∈ J to
obtain the quadratic constraints:

∑

j∈J

xixj = xi, ∀i 6∈ J. (3)

Now substitutewij = xixj for i < j to reformulate (3)
as the RLT constraints

∑

j∈J: i<j

wij +
∑

j∈J: i>j

wji = xi, ∀i 6∈ J. (4)

The constraints (4) are then added to the Standard
linearization to strengthen the LPR. We point out that
the domain ofw is generally much larger than that
of the Standard linearization as it typically includes a
large number ofwij variables for whichQij = 0. In
particular, the domain ofw for the level-1 RLT is

domRLT(w) = {(i, j) : i < j}.

1 Some of the many open research questions about using the
RLT are discussed in our conclusions (§4.).
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Our partial RLT formulations use a subset of this.
As we shall see in the experiments, the RLT con-

straints can be a very strong addition to the Standard
linearization, sometimes enabling the root LP to solve
the MILP, but the price can also be enormous (to the
point of requiring so much memory that the problem
cannot be setup). The (partial)RLT linearizationof QBP
is thus defined:

max cx +
∑

(i,j)∈domRLT(w)

Qijwij : x ∈ X ∩ {0, 1}n,

∑

j∈J xj = 1

wij ≥ xi + xj − 1 for (i, j) ∈ Q−

wij ≤ xi andwij ≤ xj for (i, j) ∈ Q+

∑

j∈J: i<j wij +
∑

j∈J: i>j wji = xi for i 6∈ J

w ≥ 0.

Note that we includew ≥ 0 for all auxiliary variables,
as opposed to just thosewij with (i, j) ∈ Q−.

While this is not necessary for the RLT restrictions
to be valid, computational experience has shown that
this is beneficial because the nonnegativity restrictions
enhance the strength of the RLT constraints.

A compact linearization strategy that we consider
is the formulation by Glover [20]. This formulation
is more economical than the Standard linearization in
terms of the required number of auxiliary variables and
constraints. The method replaces for eachi the expres-
sionxi

∑

j>i Qijxj in the objective with a continuous
variablewi, and enforces thatwi = xi

∑

j>i Qijxj for
binaryx through the introduction of four linear auxiliary
constraints. (Recall that we assumeQ is symmetric, so
the quadratic portion of the objective function satisfies
1
2 x ′ Qx =

∑

i

∑n

j=i+1 xiQijxj .) This method results
in the following formulation of QBP:

max cx +
∑n

i=1 wi : x ∈ X ∩ {0, 1}n

Lixi ≤ wi ≤ Uixi

wi ≥
∑

j>i Qijxj − Ui(1− xi)

wi ≤
∑

j>i Qijxj − Li(1− xi)

∀ i,

where Li and Ui are lower and upper bounds,
respectively, on

∑

j>i Qijxj .
When xi = 0, the first pair of inequalities forces

wi = 0, while the second pair is redundant. Whenxi =
1, the first pair is redundant, and the second pair forces

wi =
∑

j>i Qijxj . Thus,wi equals the desired value
for each binary value ofxi.

The bounds (L, U ) can be computed as

Li = min
{

∑

j>i Qijxj : x ∈ X ∩ {0, 1}n
}

Ui = max
{

∑

j>i Qijxj : x ∈ X ∩ {0, 1}n
}

.

For the sake of computational ease, any relaxation can
be used, such as

Li =
∑

j:(i,j)∈Q−

Qij andUi =
∑

j:(i,j)∈Q+

Qij .

As shown in [1], two simple modifications of Glover’s
original formulation reduces the number of auxiliary
constraints. First, the lower bounds onw are redundant
at optimality and can therefore be removed. Second, the
number of structural constraints can be further reduced
by the substitution of variables:si = Uixi − wi for
each i. This substitution enables the replacement of
structural constraints with the same number of non-
negativity restrictions. This yields the linearization:

max cx +

n
∑

i=1

(Uixi − si) : x ∈ X ∩ {0, 1}n, s ≥ 0

si ≥ (Ui − Li)xi −
∑

j>i Qijxj + Li ∀ i.

In this formulation, the number of auxiliary variables
(s) equals the number of binary variables (n), but we
may be able to reduce it further.

The domain ofs can be reduced to those for which
Qij 6= 0 for somej > i (otherwise,

∑

j>i Qijxj is
identically zero for allx). We thus define the (extended)
Glover linearizationof QBP:

max cx +
∑

i∈I

(Uixi − si) : x ∈ X ∩ {0, 1}n, s ≥ 0

si ≥ (Ui − Li)xi −
∑

j>i Qijxj + Li ∀ i ∈ I,

where I = {i : Qij 6= 0 for somej}. This domain
is a proper subset of the domain ofx in some of the
problems we consider.

2.2.2. Convex Quadratic Programming Reformulation
(CQPR)

The second class of reformulation methods we con-
sider is convex quadratic reformulation. The idea is
to replace the quadratic formf(x) = x ′ Qx with the
function g(x) = x ′ Λx + λx, such thatf(x) = g(x)
for all x ∈ {0, 1}n and Λ is negative semi-definite.
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A simple way to do this is to add
∑

i λi(xi − x2
i ) to

the original objective, whereλ > 0. For λ sufficiently
large, Λ = Q − diag(λ) is negative semi-definite.
This stems from the early work of Hammer and
Rubin [25]. Recently, this framework was expanded by
Billionnet et al. [8], who use the solution of a semi-
definite program to obtain a convex reformulation with
a continuous bound that is at least as tight as that of
[25].

In our study we rely on the automatic convexification
by CPLEX R©10 because our goal is to see if we can solve
these biology problems with a standard solver, rather
than a structure-exploitingalgorithm.CPLEXsetsλ such
thatΛ is diagonally-dominant, which is sufficient forΛ
to be negative semi-definite. In particular,CPLEX sets
λ to satisfy

λi ≥
∑

j 6=i

∣

∣Qij

∣

∣, ∀i. (5)

(RecallQii = 0 in all of our formulations, usingcx to
include the square sincex2

i = xi.)

2.3. Numerics

Our data are primarily from the PDB, a rich database
of protein structures and sequences. The protein iden-
tifier is a 4-character code, such as 1abo. The problem
formulations were modeled usingAMPL R© and solved
with CPLEX with a one hour time limit. The data and
program files are available at this article’s supplement
site.

For comparative purposes, we executed our tests
under both MS Windows XPR© (henceforth, called
Windows) and Unix computing environments.Our PC is
an IBM ThinkpadR©, equipped with a 3.0 GHz processor
and 2 GB RAM (+ 4 GB of virtual memory). Our Unix
system is a Sun V440, equipped with four 1.6 GHz
processors and 16 GB RAM, running Solaris 10.

Since we ran our tests with the same version of
CPLEX on both platforms, the main difference, other
than processor speed, is that our version of Windows
has a memory limitation of 2 GB per process due to the
32-bit addressing. This memory restriction prevented
us from solving some problems under Windows due to
insufficient memory forAMPL/CPLEX to setup and solve
the root linear programming relaxation. We therefore
focus on our test results under Unix, while indicating
the results under Windows.

For each of our problems we had three start con-
ditions: cold, warm, and hot. For the cold start we

simply passed our formulation toCPLEX, while for both
the warm and hot starts we provided an incumbent
solution. The warm start gives a simple feasible solution
that is problem-dependent, but does not exploit any
information from a particular instance. The hot start
sets the variables equal to a solution obtained from an
instance-dependent heuristic. The question addressed
with the hot start is, “Can a general-purpose solver
find a better solution, or confirm the optimality of the
heuristic solution, within some reasonable time?” We
do not report the time to compute the hot start because
that does not affect the answer to our question.

3. QBP Models and Computational Results

In this section we consider four problems in computa-
tional molecular biology: Multiple Sequence Alignment
(MSA), Lattice Protein Folding (LPF), Contact Map
Overlap (CMO), and Rotamer Assignment (RoA). We
present a QBP formulation for each problem, and
numerical results for the linearizations and the convex
quadratic reformulation.

3.1. Multiple Sequence Alignment

Two fundamental biological sequences are taken
from the alphabet of nucleic acids,{a,c,g,t}, and
from the alphabet of amino acids,{A,R,N,D,C,Q,E,
G,H,I,L,K,M,F,P,S,T,W,Y,V}. The former are
segments of DNA (or RNA ift is replaced byu). The
latter are segments of proteins.

The Multiple Sequence Alignment (MSA) Problem
is to seek similarities among a given set of sequences
from the same alphabet. This might be to:
• understand life through evolution;
• identify families of proteins to infer structure or

function from sequence;
• diagnose disease;
• retrieve similar sequences from databases.

An early application of MSA that illustrates its im-
portance is given by Riordan et al. [33], who discovered
the Cystic Fibrosis Transmembrane Regulator gene and
its connection to Cystic Fibrosis. Even before then,
algorithms for MSA [31,35] were developed for the
biologists who used computational methods for their
research. A good introduction to dynamic programming
methods is by Fuellen [17].

One key to defining an objective is the notion of a
gap. This is a sequence of insertions or deletions (called
indels) that occur during evolution. For example, if one
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applies a simple Hamming distance to the sequences,
acacta andtacact, they are six characters apart.
However, inserting gaps we obtain theextended se-
quences,

-acacta
|||||
tacact-

This has a Hamming distance of only two. The middle
sequence,acact, is the same in the alignment. (See
Doolittle [16] for a clear account of the biology and
references to early works.)

Two sequences can be optimally aligned by dynamic
programming, where “optimal” is one that maximizes
an objective that has two parts:
(1) ascoring function, given in the form of anm×m

matrix S, wherem is the size of the alphabet.
The value ofSij measures a propensity for theith

alphabet-character in one sequence to align with
thejth alphabet-character in some position of the
other sequence.
Example: Lets = agt and t = gtac. In the
alignment of the first character ofs with the
first character oft, the score isSag, which is the
propensity fora to be aligned withg.

(2) a gap penalty function, expressed in two parts: a
“fixed cost” of beginning a gap, denotedGopen,
and a cost to “extend” the gap, denotedGext.
Example: Lets = agt and t = gtac. One
alignment is to put a gap at the end of the first
sequence:

agt-
gtac

Figure 2 shows three different alignments for the two
nucleic acid sequences,agt andgtac. Suppose the
scoring matrix is

a c g t

S =









2 −1 −2 0
−1 2 0 −2
−2 0 2 −1

0 −2 −1 2









.

a
c
g
t

Then, the scores (without gap penalties) are 4, 0, and
−3, respectively.

agt-- -a-gt agt-
||

-gtac gtac- gtac

Fig. 2. Three Alignments for Two Sequences

The total objective function for the 2-sequence align-
ment problem has the form

∑

i,j

Ssitj
−Gopen(Ns + Nt)−Gext(Ms + Mt),

where the sum is over aligned characters,si from
sequences with tj from sequencet. The number of
gaps opened isNs in sequences andNt in sequence
t; the number of gap characters (-) is Ms in sequence
s andMt in sequencet. In the example of Figure 2, if
Gopen=2 andGext=1, the gap penalties are 7, 9, and 3,
respectively.

There are different scoring methods, but this is the
common one, which we shall use. One way to evaluate
an MSA is by summing pairwise scores. Figure 3 shows
an example. Using the same scoring matrix as above,
the sum-of-pairs score is shown for each column. For
example, column 1 has3Saa + 3Sac = 3. The sum of
pairwise scores for column 2 is zero because we do not
score the gaps by columns; they are penalized for each
sequence (row of alignment). The total objective value
is 31− 28 = 3.

Gap penalty
a-gagt-act--- 8
aagtat--at--- 7
a--tataa----t 8
c-gta--actcct 5

score: 3066020606002 28 = Total
Total = 31

Fig. 3. A Multiple Alignment of Four Sequences

3.1.1. QBP Model and Test Data
The QBP model is as follows. Let

xiℓk =











1 if ithcharacter of sequenceℓ is
assigned to columnk

0 otherwise

yℓk =

{

1 if sequenceℓ has a gap in columnk ;
0 otherwise.

zℓk =

{

1 if sequenceℓ opens a gap in columnk ;
0 otherwise.

Then, the QBP for the MSA of sequencess1, . . . , sm

is given by:
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max
∑

k

∑

ℓ′>ℓ

∑

i,j≤k Ssℓ
i

sℓ′

j
xiℓkxjℓ′k

−
∑

k,ℓ (Gopenzℓk + Gextyℓk) :
∑

k≥i xiℓk = 1 ∀ i, ℓ
∑

k′>k xi+1,ℓk′ ≥ xiℓk ∀ i < Lℓ, ℓ, k ≥ i
∑k−1

k′=i−1 xi−1,ℓk′ ≥ xiℓk ∀ 2 ≤ i ≤ Lℓ, ℓ, k ≥ i

yℓk +
∑

i≤k xiℓk = 1 ∀ k, ℓ

yℓk − yℓk−1 − zℓk ≤ 0 ∀ k, ℓ (yℓ0 = 0)

x ∈ {0, 1}, 0 ≤ y, z ≤ 1.

where Lℓ is the length of sequencel. We do not
explicitly requirey, z to be binary; that is implied byx
binary for basic solutions. (An interior solution yields
fractional values ofz if Gopen=0.)

The first sum in the objective is the sum-of-pairs
score, from which we subtract the total gap penalty.
The index conditionℓ ′ > ℓ is to avoid double counting;
the conditionsi, j ≤ k reflect the fact that we cannot
assign a character to a column number that is less than
the character’s position. For example, we cannot assign
character 5 to column 4.

The first constraint requires that each character,i, in
each sequence,ℓ, be assigned to some column,k (≥ i).
The next two constraints preserve the character order
of each sequence — if theith character of stringℓ is
assigned to columnk (xiℓk = 1), its successor (i + 1)
must be assigned to a subsequent column (k′ > k),
while its predecessor must be assigned to a previous
column (k′ < k). The fourth constraint requires that,
for each column of each sequence, either a character
is assigned or it is in a gap. Finally, the last constraint
requires that a gap is opened (i.e.,zℓk is forced to 1) if
it changed from no gap assignment (yℓ k−1 = 0) to a
gap assignment (yℓk = 1).

The number of binary variables is the size of the
domain ofx:

∣

∣{(i, ℓ, k) : k ≥ i}
∣

∣ =
m

∑

ℓ=1

Lℓ
∑

i=1

(N − i + 1)

=

m
∑

ℓ=1

(

(N + 1)Lℓ −
1
2Lℓ(Lℓ + 1)

)

= N

m
∑

ℓ=1

Lℓ −
1
2

m
∑

ℓ=1

Lℓ(Lℓ − 1), (6)

whereN is the number of columns in the alignment.
We do not know in advance how many columns

will be in the alignment; that depends on gap lengths.
Theoretically, there could be

∑m

ℓ=1 Lℓ columns (align-
ing no letter), but our implementation does the fol-
lowing. Define Lmax = maxℓ Lℓ, so the minimum
number of columns isLmax, and we setNmax =
min{2Lmax,

∑

ℓ Lℓ}. After solving the QBP, we re-
move trailing gaps that have no character assignment.
We do this with auxiliary variables, called “excess,”ek,
for k = Lmax + 1, . . . , Nmax. The column assignment
constraint is modified as follows:

yℓk +
∑

i≤k xiℓk = 1 for ℓ, k = 1, . . . , Lmax

yℓk +
∑

i≤k xiℓk + ek = 1 for ℓ, k = Lmax + 1, . . . ,

Nmax

ek ∈ {0, 1}.

The only way to haveek = 1 is to have no character
assignment forany string (xiℓk = 0 for all i, ℓ) and
no gap assignment (yℓk = 0 for all ℓ). Thus, the entire
column is the gap character, which contributes zero to
the score. IfGext > 0, nothing more is needed, but
if Gext = 0, we want to be sure that the excess is
composed of trailing columns, which can then be cut to
produce the final alignment. We thus add the constraint:

ek+1 ≥ ek for k = Lmax + 1, . . . , Nmax − 1.

The total number of binary variables in QBP is
the size of the domain ofx, given by equation (6),
plusNmax − Lmax excess variables. In addition, it has
2mNmax linear variables (y, z domain size). For exam-
ple, the QBP to align three sequences of lengths 20,
50, and 100 has 100 excess variables plus200(170)−
1
2 (20×19+50×49+100×99) x-variables, for a total
of 27,735 binary variables. This is a very large QBP
despite the biology problem being fairly small.

Our implementation economizes on the domain of
the quadratic form by excluding terms with zero score.
This happens for amino acid sequence alignments,
using a standard scoring matrix like the one we used:
BLOSUM50 [13].

We ran three problems, called small, medium, and
large, with the characteristics shown in Table 2. They
were obtained from an example in the MATLAB R© Bioin-
formatics User’s Guide, starting with human and mouse
open reading frames. The actual sequence lengths were
greater than 100, so we truncated them to derive two
subsequences. These were copied and modified to create
the sequences used.
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Table 1

# Binary
Problem m Lengths Variables

small 3 13, 16, 17 1,247
medium 4 52, 63, 82, 83 36,560
large 6 41, 58, 59, 60, 78, 88 54,887

Characteristics of MSA Problems

Table 3 shows the numbers of auxiliary variables
and constraints required by each linearization. It is
interesting to note how compact Glover’s formulation
is compared to the other linearizations. The Standard
linearization requireswiℓjℓ ′k to replace the product
xiℓkxjℓ ′k. The domain is determined as follows. The
domain of the summation is

S = {(i, ℓ, j, ℓ ′, k) : ℓ ′ > ℓ, i ≤ k, j ≤ k}.

We can, however, discard indexes for which the score
is zero, and we can partition the nonzero scores to add
only upper or lower bounds, not both, according to the
sign of the score:

S− = {(i, ℓ, j, ℓ ′, k) ∈ S : Ssℓ ′

i
sℓ

j
< 0}

S+ = {(i, ℓ, j, ℓ ′, k) ∈ S : S
sℓ ′

i
sℓ

j

> 0}.

The domain ofw is S− ∪ S+, and the auxiliary
constraints are

wiℓjℓ ′k ≥ xiℓk + xiℓk − 1 for (i, ℓ, j, ℓ ′, k) ∈ S−

wiℓjℓ ′k ≤ xiℓk, wiℓjℓ ′k ≤ xiℓk for (i, ℓ, j, ℓ ′, k) ∈ S+

(not counting the non-negativity restrictions overS−).
The sizes of these domains are given in Table 3 for
the three test problems. For example, in the Standard
linearization the small problem requires|S−|+ |S+| =
13, 021 auxiliary variables and|S−|+2|S+| = 17, 820
auxiliary constraints.

Our partial RLT formulation was constructed by mul-
tiplying the character-assignment constraints by each
character-assignment variablexi′ℓ ′k′ for all (i′, ℓ, k′)
with ℓ ′ > ℓ andk′ ≥ i′:

∑

k≥i

xiℓk = 1 ∀ i, ℓ

implies
∑

k≥i

xiℓk xi′ℓ ′k′ = xi′ℓ ′k′ ∀ i, ℓ, i′, ℓ ′ > ℓ, k′ ≥ i′.

Table 2

Problem Standard RLT Glover

small Variables 13,021 502,632 1,230
Constraints 17,820 36,286 1,230

medium Variables 3,155,499 495,656,781 36,477
Constraints 3,803,991 7,723,834 36,477

large Variables 7,252,773 1,242,683,653 54,799
Constraints 8,485,328 17,430,037 54,799

Variables and Constraints Added for Linearizations of MSA

Upon substitutingwiℓki′ℓ ′k′ for xiℓk xi′ℓ ′k′ we obtain
the RLT constraints:

∑

k≥i

wiℓki′ℓ ′k′ = xi′ℓ ′k′ ∀ i, ℓ, i′, ℓ ′ > ℓ, k′ ≥ i′,

which were added to the Standard linearization. Note
that the auxiliary variablesw have all six indexes (as op-
posed to the five indices of the Standard linearization),
and thus the domain ofw is limited only by the domain
of the binary variables and the domain of summation:

domRLT(w)={(i, ℓ, k, i′, ℓ ′, k′) : ℓ ′ > ℓ, i ≤ k, i′≤k′}.

The number of auxiliary variables is

|domRLT(w)| =
m−1
∑

ℓ=1

Tℓ

m
∑

ℓ ′=ℓ+1

Tℓ ′ , (7)

whereTℓ = Lℓ

(

Nmax −
1
2 (Lℓ − 1)

)

. The number of
auxiliary constraints equals the number in the Standard
linearization plus the number of equations, given by

#Eqns =

m−1
∑

ℓ=1

Lℓ

m
∑

ℓ ′=ℓ+1

Tℓ ′ . (8)

(See this article’s supplement site for the derivation of
(7) and (8).)

Glover’s linearization requires an auxil-
iary variable, wiℓk, to represent the product,
xiℓk

∑

j≤k,ℓ ′>ℓ Ssℓ ′

i
sℓ

j
xjℓ ′k (for i ≤ k). The size of

this domain cannot exceed the number ofx-variables;
it is less if the sum is identically zero for some(i, ℓ, k).
Such is the case in our problems upon comparing the
number shown in Table 3 with the associated number
of binary variables shown in Table 2.

3.1.2. Warm and Hot Starts
The warm start aligns the sequences with just one

gap at the end for sequences whose length is less than
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the maximum sequence length. In the model, this means
for all sequences (ℓ):

xkℓk = 1 for k = 1, . . . , Lℓ

yℓk = 1 for k = Lℓ + 1, . . . , Lmax

zℓ Lℓ+1 = 1 if Lℓ < Lmax

ek = 1 for k = Lmax + 1, . . . , Nmax

All other variables equal zero. This is illustrated by the
diagram in Figure 4.

−−−−

= 1 y = 1 e = 1
−−−−−−−−−

maxL

x

Fig. 4. MSA Warm Start

The hot start takes the solution from the Bioinformat-
ics Toolbox in MATLAB , which is the same algorithm
used in practice. All MATLAB solutions were obtained
in less than one second, and the m-files are posted at
this article’s supplement site.

3.1.3. Numerical Results
Our numerical results are shown in Table 4, where we

report the CPU times and best objective values found
for each case. A case is defined by three specifications:

Problem instance: small, medium, or large.
Linearization strategy: Standard, RLT, Glover,

or None.
Start condition: cold, warm, or hot.

We found thatCPLEX terminated before confirming
an optimal solution due to reaching our time limit (1 hr)
or our memory limit (16 GB).

Glover’s linearization clearly outperformed the other
three reformulation methods for the small problem.
Interestingly, it found the best solution overall from
a cold start. Further, no reformulation method made
any progress with the medium and large problems —
they did not find a feasible solution from a cold start,
and they did not improve upon the warm and hot start
values. In addition, the RLT linearization aborted due to
memory errors for all start conditions. These memory
errors occurred beforeCPLEX was able to process the
initial solution, which is why we put the value of
“none” in the Value column. Finally, while CQPR was
not quite as effective as Glover’s linearization, it still

performed quite well. Using CQPR has the advantage
that it can be passed directly toCPLEX as a quadratic
program, without the use of a linearization method.
We experienced similar results under Windows, except
that CQPR ran out of memory, rather than time. Also,
Glover’s linearization obtained a score of only 178 from
a cold start. It improved the hot start for the small
problem, but not as much; it gave an alignment with a
score of 272, instead of 279.

The performance by Glover’s linearization is encour-
aging because it obtained a better solution than the
heuristic used by MATLAB . This heuristic is the same
as is currently used in practice, and most scientists
believe they are getting the best alignment possible. The
improved alignment for the small problem is shown in
Figure 5. Note that both alignments have the same core
conservation region but differ in where they place the
gaps and their lengths.

Table 5 summarizes the warm and hot start values,
along with the overall best objective values found for
each problem under Unix.

Table 4

Warm Hot
Problem Start Start Best Method

small 14 270 280 Glover
medium 179 1,930 1,930 Hot start
large 2,856 4,352 4,352 Hot start

Solution Summary for MSA

3.2. Lattice Protein Folding Problem

The protein folding problemis among the most
celebrated problems in molecular biology that have used
global optimization models for energy minimization.
Dill [14] introduced a biological simplification of the
full model that considers six forms of energy interac-
tions. He kept only the effect of hydrophobicity, which
is dominant in globular proteins. (A full biological
explanation, with benefit of hindsight, is given by Dill
et al. [15].) Hart and Istrail [26,27] approached Dill’s
lattice model as a combinatorial optimization problem,
and they developed a foundation for Lattice Protein
Folding (LPF) approximation algorithms. We formulate
that problem here as a QBP.

The LPF Problem is to determine an assignment
of a sequence of amino acids to grid points, in 2
or 3 dimensions, so as to maximize the number of
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Table 3

Linearization No linearization
Standard RLT Glover (CQPR)

Problem Start CPU Value CPU Value CPU Value CPU Value

small cold T 96 T 245 T 280 T 239
warm T 156 T 17 T 255 T 239
hot T 270† T 270† T 279 T 270†

medium cold T none M none T none T none
warm T 179† M none T 179† T 179†

hot T 1,930† M none T 1,930† T 1,930†

large cold T none M none T none T none
warm T 2,856† M none T 2,856† T 2,856†

hot T 4,352† M none T 4,352† T 4,352†

†Same as initial value; M out of memory (16 GB); T out of time (1 hr).

Unix CPU Times and Best Values Found for QBP of MSA

--CACGTAACATCT-C-- -C--ACGTAACATCT---C-
ACGACGTAACATCTTCT- ACG-ACGTAACATCTT--CT
A-AACGTAACATCT-CGC A--AACGTAACATCT-CGC-

(a) Hot Solution (b) Improved Alignment

Fig. 5. Improved Alignment of small Problem

hydrophobic acids that become neighbors. Figure 6
gives an example. Each amino acid in the given
sequence is mapped into a binary sequenceH such
that Hi = 1 means theith acid is hydrophobic. Two
hydrophobic neighbors are created, shown by the dark,
dashed lines connecting acids 1-6 and 2-5.

123

4 5 6

789

H=110011100

Fig. 6. Fold for HP Example (• is hydrophobic;◦ is
hydrophyllic)

3.2.1. QBP Model and Test Data
The QBP model is as follows. Let

xip =

{

1 if acid i is assigned to pointp ;
0 otherwise.

Let H denote the set of hydrophobic acids (i.e.,H =
{i : Hi = 1}). Further, letN (p) denote the neighbors
of point p (excludingp). For a square grid, we use the
Manhattan distance to define neighbors:

N (p) = {q : |Xp −Xq|+ |Yp − Yq| = 1},

where(Xp, Yp) denotes the coordinates of pointp.
Then, the QBP for the LPF Problem for a sequence

of n amino acids is:

max
∑

p

∑

q∈N (p)

∑

i,j∈H:j>i+1 xipxjq
∑

p xip = 1 ∀ i
∑

i xip ≤ 1 ∀ p
∑

q∈N (p) xi+1,q ≥ xip ∀ p, i < n
∑

q∈N (p) xi−1,q ≥ xip ∀ p, i > 1

x ∈ {0, 1}.

The objective scores a 1 when hydrophobic acidsi

andj are assigned to neighboring pointsp andq (xip =
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xjq = 1). The added conditionj > i + 1 is to avoid
counting those that are already adjacent in the given
sequence.

The first constraint requires that each acid be assigned
to exactly one point; the second requires that at most
one point is assigned to an acid. The last two constraints
require backbone neighbors to remain neighbors in the
fold — that is, if acidi is assigned to pointp (xip = 1),
acidi±1 must be assigned to some neighbor (xi±1,q =
1 for someq ∈ N (p)).

We must addsymmetry exclusionconstraints [6] —
any rigid motion, like translation and rotation, appears
as an alternative optimum since the variables have
different values, however, such groups are the same fold.
For example, the fold in Figure 6 can be rotated, as
shown in Figure 7. We rotated it 90o clockwise about
the middle acid (#5).

1

2

3
4

5

6 7

8

9

H=110011100

Fig. 7. Rotation of Fold in Figure 6

Without symmetry exclusion, branch-and-bound
would take unnecessary searches for what would appear
to be a potentially better subtree. Here are (global)
symmetry exclusion constraints:

Fix middle acid at mid-point of grid:

xmpm
= 1

Restrict acid 1 to the upper half of quadrant III:
∑

p∈Q x1p = 1 .

Fixing the middle acid prevents translation, and restrict-
ing acid 1 to the upper half of quadrant III prevents
equivalent folds by some rotations and reflection about
the 45o line. Figure 8 shows the grid for a sequence of
length 9, with the example of Figure 6 assigned to the
horizontal axis. (Point # 5 is the middle acid, which is
fixed at the middle point of the grid.)

In our preliminary computations, this model, with all
grid points defined for the domain of each acid, could

1
5

9

Q

45o line

H=110011100
Fig. 8. Excluding Some Symmetries

not be solved (with confirmed optimality), even for
small proteins. Note that the number of points in the grid
is n2, so the domain size of the assignment variables is
n3. Thus, for a modest-size protein of only 100 acids, we
have 1,000,000 binary variables! We therefore consider
making the set of admissible points depend upon the
acid number. Fixing the middle acid makes its domain
just one, namely the middle point; the predecessor and
successor acids are therefore restricted to only four
points. As the acid number is farther from the middle
acid, its number of possible point assignments is greater.
The condition that limits the number of points that are
possible assignments for acidi is that the distance from
the middle acid (m) must be within its distance along
backbone:

P(i) = {p : |Xp −Xm|+ |Yp − Ym| ≤ |m− i|}.
(9)

With only this reduction, the number of binary variables
for an n-acid protein is about

(

n
2

)2
. Thus, a 100-acid

protein has about 2,500 binary variables, rather than
1,000,000 in the original model.

Further reductions are possible. For example, we can
exclude pointpm from eachP (i) for i 6= m. More
significantly, points inP(i) must be within 1 of points
in P(i ± 1) (1 < i < n), which we could take into
account by fanning out fromm. For example, Figure 9
shows points inP(m ± 3), as defined by (9), that can
be removed.

The general case is thatP(m± i) contains alternate
diamonds around the middle point. Define theith

diamond:

D(i) = {p : |Xp −Xm|+ |Yp − Ym| = |m− i|}.
(10)
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Fig. 9.P(m ± 3) — Points Not Filled Can Be Removed

LetP(m),P(m± 1),P(m± 2) be given by (9). Then,
fan out fromm as:

P(m± i) = D(i) ∪ P(m± (i− 2)) for i = 3, . . . , m.

(11)

The reduced LPF model that we implemented is thus:

max
∑

i,j∈H:j>i+1

∑

p∈P(i)

∑

q∈N (p)∩P(j) xipxjq
∑

p∈P(i) xip = 1 ∀ i
∑

i:p∈P(i) xip ≤ 1 ∀ p
∑

q∈N (p)∩P(i+1) xi+1,q ≥ xip ∀ i < n, p ∈ P(i)
∑

q∈N (p)∩P(i−1) xi−1,q ≥ xip ∀ i > 1, p ∈ P(i)

x ∈ {0, 1}.

We do not need symmetry exclusion constraints because
they are represented by the construction of the point
domains, with the added restriction on the assignment
of the first residue:

P(1)← P(1) ∩
{

p : Xp ≤ Xm, Yp ≤ Ym,

(Xm −X0)(Yp − Y0) ≥ (Ym − Y0)(Xp −X0)
}

,

where(X0, Y0) is the origin. (These added constraints
correspond to being inQ, shown in Figure 8.) The LPF
and MSA problems highlight an important modeling
practice:

Restrict domains by model logic, not by
constraints on the variables.

We ran four problems, using proteins from the PDB,
with the characteristics shown in Table 6. Table 7
shows the number of auxiliary variables and constraints
required by each linearization. We omit the details of

Table 5

# Acids # Hydrophobic # Points # Binary
Problem n |H| | ∪ P(i)| Variables

1abo 72 20 2,663 32,618
1bbz 69 17 2,515 28,848
1kwa 88 31 3,959 59,036
1n5z 106 29 5,723 102,508

Characteristics of LPF Problems

the Standard and Glover linearizations; our implemen-
tations are described in theAMPL source codes, which
are included at this article’s supplement site. Our partial
RLT formulation was constructed by multiplying the
acid assignment constraints by each hydrophobic acid
xjq for j ∈ H, q ∈ P(j) with i < j:

∑

p∈P(i) xip = 1 ∀ i⇒
∑

p∈P(i) xipxjq = xjq ∀ i, j ∈ H, q ∈ P(j), i < j⇒
∑

p∈P(i) wipjq = xjq ∀ i, j ∈ H, q ∈ P(j), i < j.

Table 6

Protein Standard RLT Glover

1abo Variables 76,142 130,440,588 9,175
Constraints 152,284 442,380 9,175

1bbz Variables 52,008 45,575,468 7,376
Constraints 104,016 210,648 7,376

1kwa Variables 282,904 6.09×108 20,611
Constraints 565,808 1,535,709 20,611

1n5z Variables 307,772 1.14×109 23,905
Constraints 615,544 1,796,760 23,905

Variables and Constraints Added for Linearizations of LPF

3.2.2. Warm and Hot Starts
The warm start assigns the acids along the horizontal

mid-line to the midpoint, then folds back, like a
horseshoe. In the model, this means

for i = 1, . . . , n
2 : xip = 1 for p : Xp = i, Yp = Ym

for i = n
2 + 1, . . . n : xip = 1 for p : Xp = n− i + 1,

Yp = Ym + 1.

(Round n
2 when n is odd.) This is illustrated in

Figure 10.
The hot start uses a new heuristic by Rego et al. [32].

(We include the solution files provided by César Rego
and MATLAB scripts that convert them to ourAMPL hot
start files at this article’s supplement site.)
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1 m

m + 1n

Fig. 10. LPF Warm Start

3.2.3. Computational Results
Our numerical results are reported in Table 8, and we

summarize our findings in Table 9. The results indicate
thatCPLEX had difficulty with all reformulations of the
LPF Problem — it did not find a feasible solution to any
cold start, and it did not improve upon the warm and hot
start values. These results are not particularly surprising
given the enormous number of binary variables (c.f.,
Table 6). Further, it is likely that the hot start solutions
are optimal since the heuristic [32] used to determine
the values is known to produce the best solutions in
the literature. Our results were similar under Windows,
except for proteins 1kwa and 1n5z, for which the
Standard linearization reached the memory limit and
produced no feasible solution, even with warm and hot
starts.

Table 8

Warm Hot
Problem Start Start Best Method

1abo 4 16 16 Hot start
1bbz 0 14 14 Hot start
1kwa 3 26 26 Hot start
1n5z 5 23 23 Hot start

Solution Summary for LPF

3.3. Protein Comparison by Contact Maps

Thecontact mapof a protein is a graph,G = [V, E],
whereV represents its sequence of amino acids that
bonded to form the protein. We presume we know its
native state, and we define an edge between two nodes
if their distance is within some threshold (our data used
4.5Å).

Given the contact maps of two proteins,G1, G2, we
define their similarity to be the largest subgraphs that are
isomorphic. Here, “largest” is measured by the number

of edges. The Contact Map Overlap (CMO) Problem is
to find the largest isomorphic subgraphs, constrained to
have the same node ordering (to preserve the backbone
order). Measuring protein similarity is a longstanding
problem in molecular biology. Sequence alignment is
one measure; CMO is another.

The MILP approach was introduced by Lancia
et al. [30]. They developed deep cuts by exploiting
the problem structure, particularly with respect to
constraining the same backbone order. Recently, Xie
and Sahinidis [37] presented a reduction-based, exact
algorithm.

The preservation of the backbone order is equivalent
to not having anycrossing— that is, associationsi↔ j

and ℓ ↔ k such thati < ℓ but j > k. The situation
is depicted in Figure 11. Our model must disallow any
crossing, but it is sufficient to eliminate all 2-crossings.

i l

k j

2-crossing

3-crossings

 violatedis  )( kjli

Fig. 11. Crossings to be Excluded

3.3.1. QBP Model and Test Data
The QBP model is as follows. Let

xij =

{

1 if node i∈V1 is associated with nodej∈V2 ;
0 otherwise.

Then, the QBP for the CMO Problem is:

max
∑

(i,k)∈E1

(j,ℓ)∈E2

xijxkℓ

∑

j xij ≤ 1 ∀ i,
∑

i xij ≤ 1 ∀ j

xij + xkℓ ≤ 1 for 1 ≤ i < k < |V1|, 1 ≤ ℓ < j < |V2|

x ∈ {0, 1}.

The objective scores a 1 when edge(i, k) ∈ E1

is associated with edge(j, ℓ) ∈ E2. That happens
when the endpoint nodes are associated. The first
constraint limits a node inV1 to be associated with
at most one node inV2. The second is likewise. The
conflict constraints preserve the backbone ordering by
disallowing any 2-crossing.
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Table 7

Linearization No linearization
Standard RLT Glover (CQPR)

Protein Start CPU Value CPU Value CPU Value CPU Value

1abo cold T none M none T none T none
warm T 4† M none T 4† T 4†

hot T 16† M none T 16† T 16†

1bbz cold T none M none T none T none
warm T 0† M none T 0† T 0†

hot T 14† M none T 14† T 14†

1kwa cold T none M none T none T none
warm T 3† M none T 3† T 3†

hot T 26† M none T 26† T 26†

1n5z cold T none M none T none T none
warm T 5† M none T 5† T 5†

hot T 23† M none T 23† T 23†

†Same as initial value; M out of memory (16 GB); T out of time (1 hr).

Unix CPU Times and Best Values Found for QBP of LPF

Figure 12 shows an example with the optimal solu-
tion. The dashed lines indicate the seven pairs of nodes
that are associated. The darkened edges are associated,
for a total score of 5.

G1

G2

Fig. 12. Example of Two Contact Maps with Associated
Nodes

The 2-crossing conflict constraints are known to be
weak, compared to easily-derived stronger systems of
inequalities (e.g., see [30]), but our experiments use this
model with just the degree-2 inequalities.

We ran four problems, using proteins from the
PDB, with the characteristics shown in Table 10. We
include comparing 1f22 with itself, which has 55 edges.
Table 11 shows the number of auxiliary variables and
constraints needed by each linearization.

We once again omit the details of the Standard and
Glover linearizations, and refer the reader to theAMPL

models included at this article’s supplement site. Our
partial RLT formulation was constructed by multiplying

both sets of association constraints by edge indexes —
that is, the first set is multiplied byxkh for (i, k) ∈ E1,
and the second set is multiplied byxkh for (j, h) ∈ E2:

∑

j xij ≤ 1 ∀ i ⇒
∑

j xijxkh ≤ xkh ∀h, (i, k) ∈ E1

⇒
∑

j wijkh ≤ xkh ∀h, (i, k) ∈ E1
∑

i xij ≤ 1 ∀ j ⇒
∑

i xijxkh ≤ xkh ∀ k, (j, h) ∈ E2

⇒
∑

i wijkh ≤ xkh ∀ k, (j, h) ∈ E2.

Table 9

# Binary
Proteins Nodes Edges Variables

1avy 1f22 58 48 56 55 2,784
1qr8 1qr9 54 55 75 72 2,970
1f22 1f22 48 48 55 55 2,304
8msi 9msi 58 59 108 112 3,422

Characteristics of CMO Problems

3.3.2. Warm and Hot Starts
The warm start associates the firstn nodes of each

graph in their given order, wheren = min {|V1|, |V2|}.
In the model, this means

xii = 1 for i = 1, . . . , n.
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Table 10

Proteins Standard RLT Glover

1avy 1f22 Variables 3,080 310,964 2,784
Constraints 6,160 12,038 2,784

1qr8 1qr9 Variables 5,400 431,427 2,970
Constraints 10,800 18,813 2,970

1f22 1f22 Variables 3,025 250,415 2,304
Constraints 6,050 11,330 2,304

8msi 9msi Variables 12,096 740,620 3,422
Constraints 24,192 37,060 3,422

Variables and Constraints Added for Linearizations of CMO

The hot starts were provided by Giuseppe Lancia, based
on [30]. (We include those solution files and a MATLAB

code to convert them into ourAMPL hot start file at this
article’s supplement site.)

3.3.3. Computational Results
Our numerical results are reported in Table 12, and

we summarize our findings in Table 13. The RLT stands
out, as it solved three of the problems to optimality, and
for problem 1avy1f22, it found a better solution from a
cold start than the other methods. It is encouraging that
CQPR found the optimal solution for problem 1f221f22
from a cold start (although it was unable to confirm
optimality). Both the Standard and Glover linearizations
performed poorly.

Table 12

Warm Hot
Proteins Start Start Best Method

1avy 1f22 5 21 21 Hot Start
1qr8 1qr9 24 61 61 RLT
1f22 1f22 55 55 55 RLT
8msi 9msi 10 105 105 RLT

Solution Summary for CMO

3.4. Rotamer Assignment

Part of the protein folding problem is knowing the
side-chainconformations— that is, knowing the torsion
angles of the bonds. The rotation about a bond is called
a rotamer, and there are libraries that give likelihoods
for each amino acid. The Rotamer Assignment (RoA)
Problem is to find an assignment of rotamers to sites
that minimizes the total energy of the molecule. For
the protein folding problem, we know the amino acid

at each site. There are about 10 to 50 rotamers per
amino acid, depending upon what else we know (such
as knowing that the amino acid is located in a helix),
so there are about10n to 50n rotamer assignments for
a protein of lengthn.

Besides its role in determining a protein’s structure,
the RoA Problem is a useful tool in drug design.
Specifically, the RoA Problem can be used to determine
a minimum-energy docking site for aligand, which is a
small molecule, such as a hormone or neurotransmitter.
The ligand-protein docking problem is characterized by
only a few sites because a ligand is (by definition) a
small molecule. If the protein is known, the problem
dimensions are small enough that the RoA Problem can
be solved exactly within a minute. But, if the protein is
to be engineered, there can be about 500 rotamers per
site (20 acids @ 25 rotamers each). (Fung et al. [18,19]
considered protein design without rotamer assignments,
just the amino acid assignments, which are at most
20 per site.) There are other bioengineering problems
associated the RoA Problem, such as determining
protein-protein interactions. While the mathematical
structure is the same, the applications have different
energy data which can affect algorithm performance.

We note that it is often useful to determine multiple
near-optimal solutions to the RoA Problem because the
energy data is approximate. The QBP approach provides
a distinct advantage over heuristics, not only because
it can (theoretically) guarantee optimality, but also
because binary solutions can be ranked by sequentially
eliminating previous solutions with the exclusionary
constraints:

∑

j∈σ(xk)

xj ≤
∣

∣σ(xk)
∣

∣− 1 for all k,

where xk is a previously generated solution and
σ(xk) = {j : xk

j = 1} (called thesupport setof xk).
The use of indexj is generic, and the above applies to
any QBP. The domain ofx for the RoA Problem is a
double index, defined in the next section.

There are several approaches for solving the
RoA Problem in the literature. Gordon et al. [22]
used a strengthened form of Dead-End Elimination
(DEE) [21,23], and Kingsford et al. [12] considered
semi-definite bounding instead of LPR. Xie and
Sahinidis [36] applied a global optimization algorithm
using iterative reductions with DEE, combined with
local search. Here, we develop a QBP formulation,
equivalent to that of Fung et al. [18,19].
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Table 11

Linearization No linearization
Standard RLT Glover (CQPR)

Proteins Start CPU Value CPU Value CPU Value CPU Value

1avy 1f22 cold T none T 4 T 1 T none
warm T 5† T 5† T 5† T 5†

hot T 21† T 21† T 21† T 21†

1qr8 1qr9 cold T none 28.75 61 T 2 T none
warm T 24† 29.80 61 T 24† T 24†

hot T 61† 21.25 61† T 61† T 61†

1f22 1f22 cold T 2 17.99 55 T 1 T 55
warm T 55† 16.46 55† T 55† T 55†

hot T 55† 16.49 55† T 55† T 55†

8msi 9msi cold T none 16.90 105 T none T none
warm T 10† 17.73 105 T 10† M none
hot T 105† 15.32 105† T 105† M none

†Same as initial value; M out of memory (16 GB); T out of time (1 hr).

Unix CPU Times and Best Values Found for QBP of CMO

3.4.1. QBP Model and Test Data
Our QBP model is as follows. Letr ∈ Ri = set of

rotamers that can be assigned to sitei, and

xir =

{

1 if rotamerr is assigned to sitei ;
0 otherwise.

Then, the QBP for the RoA problem is the quadratic
semi-assignment problem:

min
∑

i

∑

r∈Ri



Eirxir +
∑

j>i

∑

t∈Rj

Eirjtxirxjt



 :

∑

r∈Ri
xir = 1 ∀ i, x ∈ {0, 1}.

The objective function includes two types of energy:
(1) within a site,Eir , and (2) between rotamers of two
different sites,Eirjt for i 6= j. The summation condition
j > i is to avoid double counting, whereEirjt = Ejtir .

We ran four problems, based on proteins from the
PDB; the “Full” indicates that many rotamers are
possible for each site, using energy data provided
by Diana Roe, Sandia National Laboratories, from
her molecular dynamics simulation. Table 14 contains
problem characteristics, and Table 15 contains the
number of auxiliary variables and constraints needed
by the linearizations. We include the search space size
in Table 14 to have a comparative sense of problem
size, particularly with the test problems used in [18].
(For rotamer assignment and for thede novoprotein

design problem, there could be additional conflict
constraints that reduce the search space by disallowing
combinations of assignments, particularly at neighbor
sites, but this would not reduce the number of binary
variables.)

Table 13

Sites Rotamers # Binary Search Space Size
Protein n

∑

n

i=1
|R(i)| Variables

∏

n

i=1
|R(i)|

1aboFull 10 1,546 1,546 3.4181021

1bbzFull 10 1,614 785 4.6021021

1ddvFull 6 1,016 1,016 9.1111012

Characteristics of RoA Problems

Table 14

Protein Standard RLT Glover

1aboFull Variables 247,635 1,044,837 1,546
Constraints 490,274 13,914 1,546

1bbzFull Variables 146,443 264,873 785
Constraints 290,046 7,065 785

1ddvFull Variables 369,676 392,052 1,016
Constraints 725,828 5,080 1,016

Variables and Constraints Added for Linearizations of RoA

Since the only constraints of the RoA Problem are
assignment equations, we implemented the full level-1
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RLT formulation. That is, we multiplied the assignment
constraints byxjt for all (j, t) with j 6= i:

∑

r∈Ri

xir = 1 ∀ i ⇒
∑

r∈Ri

xirxjt = xjt ∀ i, j, t, j 6= i.

Upon substitutingxirxjt with wirjt for i < j we obtain
the RLT constraints:

∑

r∈Ri

wirjt = xjt ∀ i < j, t ∈ Rj (12)

∑

r∈Ri

wjtir = xjt ∀ i > j, t ∈ Rj

The auxiliary constraints of the Standard linearization
are implied by (12) withw ≥ 0, so we do not
include them. (This observation is implied by the
reductions discussed in the seminal work of Adams and
Sherali [5].)

The full level-1 RLT is thus:

min
∑

i

∑

r∈Ri

(

Eirxir +
∑

j>i

∑

t∈Rj
Eirjtwirjt

)

:
∑

r∈Ri
wirjt = xjt ∀ i < j, t ∈ Rj

∑

r∈Ri
wjtir = xjt ∀ i > j, t ∈ Rj

w ≥ 0, x ∈ {0, 1}.

Note in Table 15 that the level-1 RLT has more
auxiliary variables than the Standard linearization, but
has significantly fewer auxiliary constraints. This is
because the continuous relaxation of the RLT is at
least as tight as the Standard linearization. In fact, it is
typically much tighter!

3.4.2. Warm and Hot Starts
The warm start assigns the min-energy rotamer

to each site, ignoring energies across sites. This is
equivalent to minimizing just the linear term:

min
x

∑

i

∑

r∈Ri

Eirxir =
∑

i

min
r∈Ri

Eir.

The hot start uses DEE in an algorithm by William Hart
(unpublished), who provided the hot start files.

3.4.3. Computational Results
Our numerical results are presented in Table 16.

What is striking is that Glover’s linearization solved all
problems to confirmed optimality in less than a minute,
even with a cold start! RLT also solved each problem
to optimality and took less time than Glover’s in two of

the test problems (consistent with [18]). Note that the
objective value in some cases appears to be the same as
the optimal value (found by Glover’s linearization and
the RLT), but that is due to rounding within the table. For
example, the optimal value for 1bbzFull is−58.294, but
the closest that the other two methods came is−58.124.

The Standard linearization performed poorly — it
could not obtain a feasible solution for any of the cold
starts, nor could it improve upon the warm and hot
starts. The CQPR did quite well, and actually found the
optimal solution to 1aboFull, although it was not able
to confirm optimality. We mention that our tests under
Windows were very similar in nature; there were no
memory errors for any of the problem instances.

Table 17 summarizes the solutions. Overall, these
experiments suggest that the RLT and Glover’s lin-
earization are well suited to RoA, and the Standard
linearization is not. We suggest that CQPR should be
explored for further development.

Table 16

Warm Hot
Protein Start Start Best Method

1aboFull 131 −54 −59 RLT & Glover
1bbzFull 1.3×106 −58 −58 RLT & Glover
1ddvFull −34 −35 −35 RLT & Glover

Solution Summary for RoA

Fung et al. [18] did a comprehensivestudy of different
RLT formulations. Their analysis differs from ours
in that they considered several variations. The main
issue, given the question we address throughout this
study, is that the RLT formulations requirewirjt to be
defined even ifEirjt = 0. Our test problems are much
larger than theirs, and the sparsity becomes increasingly
important as we increase the number of sites and/or
the number of possible assignments per site. Thede
novoprotein problem that they address with the same
quadratic semi-assignment model has 20 amino acids
per site, whereas our small test problems have more
than five times that number. Their results combined with
ours suggest that RLT is an excellent approach when
the problem size is small enough that memory is not an
issue, but its need for huge amounts of memory may
make it prohibitive to use for very large QBP.
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Table 15

Linearization No linearization
Standard RLT Glover (CQPR)

Protein Start CPU Value CPU Value CPU Value CPU Value

1aboFull cold T none 2.71 −59 0.15 −59 T −59
warm T 131† 2.82 −59 0.14 −59 T −59
hot T −54† 2.76 −59 0.14 −59 T −59

1bbzFull cold T none 0.30 −58 0.74 −58 T −58
warm T 1.3×106† 0.34 −58 0.73 −58 T −58
hot T −58† 0.34 −58 0.56 −58 T −58†

1ddvFull cold T none 0.83 −35 0.42 −35 T −30
warm T −34† 0.87 −35 0.45 −35 T −34†

hot T −35† 0.89 −35 0.44 −35 T −35†

†Same as initial value; CPU is minutes; T out of time (1 hr).

Unix CPU Times and Best Values Found for QBP of RoA

4. Conclusions

In this paper we proposed QBP models of four
problems in computational molecular biology and stud-
ied their effectiveness under a general solver. Such
a unified approach has three main advantages. First,
each problem can be solved using standard optimization
software. This allows us to benefit from the robustness
of mixed-integer programming software and provides
an alternative to the tailored algorithms used in practice,
which can be difficult to implement and maintain.
Second, we could easily include additional constraints
without a new algorithm design. Third, while current
solution methods consist of heuristic and approximation
algorithms, QBP models could, in theory, be used to find
exact solutions. Further, as software and hardware im-
prove, we could generate a ranked list of solutions that
include alternative and near-optimal solutions. These
are grand goals, and our study suggests that we are not
quite able to fulfill them for all problems considered.
There are, however, many signs of encouragement, and
we suggest some avenues for further research.

One avenue is to consider a preprocessor at the
modeling level that would exploit problem structure and
generate strong cuts before passing the problem to the
solver. We did this by partially applying the level-1 RLT
to selected constraints. For both simplicity and consis-
tency, we applied the RLT to the assignment constraints
contained in our problems, but more research could be
done in selecting constraints and variables from which
to generate the RLT restrictions. Such research would
need to find a balance between the strength offered by

the RLT constraints and the memory requirements of
implementing them.

Beyond the use of RLT for LPR strengthening, there
are other avenues to explore forgenericcut generation,
such as the derivation of clique inequalities for the
CMO Problem. The goal, however, is to exploit general
properties of these biology problems without relying on
knowledge of the specific problem is at hand. This pre-
processing would be done at the symbolic model level,
rather than on a particular instance.

In addition topre-solve processing, one could develop
an interrupt capability in the interface between modeling
and solving routines such that model-driven directives
could be applied, such as symmetry exclusion con-
straints for the LPF Problem. Moreover, local branch-
and-bound information could be used to selectively
generate RLT restrictions.

Another avenue for future work is to adapt the state-
of-the-art solution strategies that have been developed
around the RLT-methodology for theQuadratic As-
signment Problem[4] and Quadratic Knapsack Prob-
lem [10] to these QBPs. These successful implementa-
tions of the RLT have been achieved by exploiting the
block-diagonal structure found within the RLT formula-
tions. While it is unlikely that such tailored algorithms
would directly compete with current methods used in
practice, especially because heuristics seem to produce
good answers quickly, they have the potential to confirm
optimality, find an improved solution, and/or add insight
to the solution(s) found.

An investigation into extensions of the QBP mod-
els will result in a more comprehensive analysis of
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our fundamental question. The MSA problem can be
extended to find abest local alignmentby dropping
the constraint that every character be assigned and add
a contiguity assignment constraint. The LPF problem
can be extended to allow anycollection of properties
to score neighbors, besides hydrophobicity, such as
their charge, by indexingH for each property. The
CMO problem can be extended to use edge values
that measure closeness or bond strength to measure
the “goodness” of an edge-pair association, making
CMO a weighted-overlapproblem. The RoA problem
can be extended by addingconflict constraintsthat
disallow certain combinations of rotamer assignments.
Such model enhancements generally invalidate current
heuristics that have been tailored to the original form,
but we can simply revise the QBP models.

In conclusion, our QBP approach seems viable for
both the the RoA and CMO problems, while we had
limited success for the MSA and LPF Problems. Our
results show that the RLT is well-suited for the CMO
Problem, while both the RLT and Glover’s linearization
work well for the RoA Problem. The RLT formulation
appears to be a good choice when the size of the QBP
model is not too large, whereas Glover’s linearization
seems to be a well-rounded approach, performing well
under most circumstances. We emphasize the potential
for the convex reformulation approach, which has the
immediate advantage that it can be submitted directly
to a solver without incurring auxiliary variables and
constraints. Finally, we hope that our formulations will
provide operations researchers who specialize in QBP
an opportunity to extend current solution approaches.
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