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Abstract

Given a graphG = (V, E) with |V | = n, we consider the following problem. Placem = n points on the vertices
of G independently and uniformly at random. Once the points are placed, relocate them using a bijection from the
points to the vertices that minimizes the maximum distance between the random place of the points and their target
vertices.We look for an upper bound on this maximum relocation distance that holds with high probability (over the
initial placements of the points). For general graphs and inthe casem ≤ n, we prove the#P -hardness of the problem
and that the maximum relocation distance isO(

√
n) with high probability. We present a Fully Polynomial Randomized

Approximation Scheme when the input graph admits a polynomial-size family of witness cuts while for trees we provide
a 2-approximation algorithm. Many applications concern the variation in whichm = (1− ǫ)n for some0 < ǫ < 1. We
provide several bounds for the maximum relocation distanceaccording to different graph topologies.
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1. Introduction

Given a set ofn uniform random points inside a given
squareD ⊆ IRd andn points of a square grid covering
D, an interesting question is the “cost” of ordering the
random pointsP on the grid vertices. A natural cost
function is the measure of the distance that the random

⋆ The research was partially funded by the project “AL-
PAGE” of the ANR “Masse de données: Modélisation, Sim-
ulation, Applications”, the project “CEPAGE” of INRIA,
the European FET project AEOLUS, the European projects
COST Action 293, “Graphs and Algorithms in Communica-
tion Networks” (GRAAL), and COST Action 295, “Dynamic
Communication Networks” (DYNAMO). Preliminary results
concerning this paper appeared in [16,19].
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points have to move in order to achieve the grid order
(see for instance Figure 1).

Among all the possible bijectionsf : P → Grid, we
are interested in minimizing the maximum distance be-
tweenP andf(P ), i.e.minf max1≤i≤n ||pi − f(pi)||1
with pi ∈ P . In [17,25,26], the relation between two ba-
sic, fundamental structures like Uniform Random points
andd-dimensional Grid points was studied. Those pa-
pers show that the expected minimax grid matching
distance isΘ(log(n)3/4) for d = 2 andΘ(log(n)1/d)
for d > 2. In a more general setting, we are interested
in thePoints and Verticesproblem for arbitrary graphs
G = (V, E) with |V | = n which can be described as
follows:

(1) Thrown points independently and randomly onto
then vertices ofG.

(2) Remap the points onG such that the load of each
vertex is exactly 1, minimizing the maximal dis-
tance that any point has to move (onG).

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Brunswick: Centre for Digital Scholarship Journals

https://core.ac.uk/display/268157082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


134 Ralf Klasing et al. – From Balls and Bins

Figure 1. An example of a matching between points randomly thrown onto grid locations and the grid vertices. The radius of
each circle associated to the grid vertices is proportionalto the number of random points initially thrown on them.

In the following we distinguish such a problem from
its variation calledUnbalanced Points and Verticesin
which the thrown points arem = (1−ǫ)n for some0 <
ǫ < 1 and the remapping function is slightly different.
The final setting, in fact, is given byat mostone point
per vertex.

The Points and Vertices problem and the Unbalanced
version may be viewed as an extension of the classical
Balls into Binsproblem, wherem balls are thrown (in-
dependently and uniformly at random) inton bins, by
adding graph-structural properties to the bins. The bins
become vertices and there is an edge between two ver-
tices if they are “close” enough (see e.g., [4,6,11,24]
for a formal definition of the Balls into Bins problem
and some of its variations). Usually, in the Balls into
Bins problem the aim is to find out the distribution of
the most loaded bin. In the Points and Vertices prob-
lem, instead, we are interested in the accumulation of
several vertices, not only one.

The interest in the Points and Vertices problem arises
from the fact that it captures in a natural way the “dis-
tance” between therandomnessof throwing points (in-

dependently and uniformly at random) onto the vertices
of G, and theorderof the points being evenly balanced
onG. In fact, our problem can be considered as the op-
posite of the “Discrepancy” (see for instance [3]).

Besides the pure theoretical interest, thePoints and
Verticesproblem has applications in several fields. E.g.,
in the field of robot deployment as well as in sensor
networks, one of the main problems is how to organize
a huge number of randomly spread devices. The goal
is usually to obtain a nearly equidistant formation so as
to maximize the coverage of interesting areas [7,8]. In
the field of computer graphics, the mapping of points
onto cells (pixels) of a regular grid is a well-studied
topic [1]. Another application in which our study can
be applied concerns Geometric Pattern Matching prob-
lems [10]. In fact, we can derive good bounds on the
number of edges of the bipartite graph. For more gen-
eral topologies, instead, we can consider the token dis-
tribution [21,23] and load balancing problems [11,22].
The general case is constituted by a set ofm tokens that
must be assigned ton processors connected by a gen-
eral graph. Our problem appears when the tokens are
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arriving randomly uniformly and when the cost is the
maximum distance that some token has to travel.

From the hardness point of view, the remapping dis-
tance in the Unbalanced version turns out to be much
easier to capture than the perfectly balanced case. This
is due to the fact that it becomes a much more local
property. From the applications point of view this can
be translated into solving the problem locally in a dis-
tributed way. This is very important for instance in the
field of sensors networks where global information is
rather hard to be collected.

As noted before, in Sensor Networks and Robotics,
one of the main problems is to organize devices in
order to maximize the coverage of the area of inter-
est [7,8,9,20,27]. One of the main applications is given
by wireless communications. Given an area of interest
that can be partitioned into a setS of subareas such that
|S| = n, and a setD of devices such that|D| = (1−ǫ)n,
the goal is to minimize the spent transmission capacity
and/or energy needed for movements of the devices in
order to monitor as many subareas as possible.

For general topologies of the underlying graph, an-
other way to view the problem is that of havingn sen-
sors distributed over a grid (or a general graph) ofn
vertices but since, as in reality, a base station (a graph
vertex) can handle many sensors, we can assume some
capacity for each grid vertex hence again obtaining an
unbalanced version of the Points and Vertices.1

Due to its locality another very interesting issue in
which our Unbalanced Points and Vertices problem can
be applied concerns hierarchy. In the field of sensors
networks as well as for the internet, hierarchy turns out
to be the easiest way to build a communication network
while minimizing the needed resources. In fact, a net-
work in which all the vertices have the same capabili-
ties could be too expensive and sometimes useless. It is
sufficient to consider problems like localization in sen-
sor networks where some of the sensors are powered
by GPS devices called anchors (see for instance [2]). It
is easy to understand how expensive a solution could
be where all the sensors have this capability. A natural
question is then of finding suitable ratios between the
desired level of hierarchy. An interesting issue where
the unbalanced points and vertices can be applied is in
exploring hierarchy problems by means of recursively
solving the problem. Starting from the bottom level of
the network, that is, spreading simple sensors, one ques-
tion could be to understand which should be the right

1 Indeed this corresponds to making the grid thicker.

number of smarter (or more powerful) sensors in or-
der to cover the whole network. Clearly the higher is
the hierarchy level the less will be the thrown sensors,
hence, since the underlaying network does not change,
this is translated into solving the Unbalanced Points an
Vertices problem withǫ bigger and bigger.

1.1. Our Results

We formalize thePoints and Verticesproblem by
defining a random variableρ(G) for the remapping dis-
tance onG. This distance turns out to be somewhat
difficult to capture since it is related to global phenom-
ena onG. We studyρ(G) for general graphs and trees.
(Note that results for classical topologies like paths and
grids can be found in [17,25,26].) More specifically, we
obtain:
(1) #P -hardness for the general case.
(2) A Fully Polynomial Randomized Approxima-

tion Scheme (FPRAS) when the graph admits a
polynomial-size family of witness cuts.

(3) ρ(G) = O(
√

n) with high probability for any con-
nected graphG.

(4) A greedy algorithmA that remaps the points on
any treeT with remapping distanceρA(T ) ≤
2ρ(T ).

We then concentrate our attention to the formaliza-
tion of the Unbalanced Points and Verticesproblem.
While the approach is somehow quite similar to its orig-
inal problem, the obtained results are very interesting
due to the described locality issues. In particular, again
we define a random variableρ′(G) for the remapping
distance onG where we allow some imperfect (i.e. not
totally balanced) remapping of the points onG. We
study the behavior ofρ′(G) for classical topologies like
paths, trees andd-dimensional grids but also for gen-
eral graphs. We derive the following results, all of them
achieved with high probability:
(1) ρ′(Gd) = Θ( d

√
log n) for the d-dimensional

square gridGd, d ≥ 2.
(2) ρ′(Hd) = Θ(1) for thed-dimensional hypercubes

Hd.
(3) ρ′(Pn) = Θ(log n) for the pathPn of n vertices,

andρ′(G) = O(log n) for any graphG.
The paper is organized as follows. Section 2. pro-

vides a formal definition of thePoints and Vertices
problem. Section 3. contains some general observations
from which we derive the related computational hard-
ness results. In Section 4., the greedy algorithm on arbi-
trary trees that computes the remapping distance up to
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a factor of 2 is presented. Section 5. provides a formal
definition of theUnbalanced Points and Verticesprob-
lem. Section 6. presents the achieved results for vari-
ous topologies such asd-dimensional grids, hypercubes,
paths, trees and general graphs. Finally, Section 7. gives
some conclusive remarks and points out possible direc-
tions for further investigations.

2. Formalizing the Points and Vertices Problem

We study how far is a random structure from a fixed
one assuming that two structures are close if there exists
a “short” bijection from one to the other.

Actually, we are interested in bounding the maximum
distance performed by the movement of the points ran-
domly and uniformly distributed over the vertices of
a graphG = (V, E) to the verticesV by moving the
points over the edgesE in such a way that the final
setting is given by one point per each vertex.
Definition 1 Given a metric space with metricd and
̺ ∈ IR+, a one-to-one mappingf : A → B is called
mapping with stretch̺ from a setA to a setB if
d(x, f(x)) ≤ ̺ for all x ∈ A.
Definition 2 Given a metric space with metricd and
two setsA andB, we defineδ(A, B) as the minimum
̺ ∈ IR+ such that there exists a one-to-one mapping
with stretch̺ from A to B.

Let G = (V, E) be a graph withn = |V (G)| ver-
tices. In what follows,Ω = V (G)n is the probabilis-
tic space associated to uniform independent choices of
n points over the nodesV (G). The events will either
be considered as (indexed) sets or as positive integral
weight functions on the ground setV (G) with the ad-
equate measure.

On graphs, we use the usual distance metric assuming
edges of unitary length.
Problem 1 Given a graphG with n = |V (G)| vertices
and a random setP (G, ω), ω ∈ Ω of n pointslying on
the vertices ofG, the aim is to study the random variable
ρ(G, ω) = δ(P (ω), V (G)). In particular, what is the
minimum̺ ∈ IR+ such that there exists a one-to-one
mapping with stretch̺ from P (ω) to V (G)?

Problem 1 can be generalized as follows:
Problem 2 Given a graphG, a set of locationsL ⊆
V (G) and a random setP (L, ω) of pointschosen ac-
cording to a distribution2 F , with ω ∈ Ω and |P | =

2 In the rest of the paper, we will assume such a distribution
to be the Uniform one unless differently specified.

|L|, the aim is to study the random variableρ(L, ω) =
δ(P (L, ω), L). In particular, what is the minimum̺ ∈
IR+ such that there exists a one-to-one mapping with
stretch̺ from P (L, ω) to L?

In what follows, for any graphG and any̺ ∈ IR+, we
will denote byµ(G, ̺) the probability that there exists
a stretch̺ one-to-one mapping fromP (G, ω) to V (G),
and we defineρ(G, ω) = min{̺ ∈ IR+|µ(G, ̺) =
1 − o(1)}. For instance,ρ(G, ω) =

√
n means that

there exists a functionf ∈ o(1) such thatµ(G,
√

n) >
1− f . Whenever it will not be ambiguous, we omit the
parametersG andω.

3. Hardness Results

We will often replace our process by a Poisson pro-
cess with intensity1, since the points and vertices pro-
cess is simply the Poisson process conditioned by the
fact that the total number of points is|V |. 3 Note that
the Poisson process will always fail when the num-
ber of points is not|V |. It follows that, denoting by
µPoisson(G, ̺) the probability of finding a stretch̺
one-to-one mapping for the Poisson model, we have
µ(G, ̺) ∼ µPoisson(G, ̺)

√

2π|V |.

3.1. Perfect matching and Duality

The Points and Vertices problem can also be stated
in terms of perfect matchings. Given a set of random
points P , we build the following auxiliary bipartite
graph. On one side of the graph we take as vertices
the random points and on the other side the original
vertices. We then connect any random point to the ver-
tices at distance at most̺. A stretch̺ mapping from
P to V (G) is exactly a perfect matching in the auxil-
iary graph. It follows that for any fixed eventω, ρ(G, ω)
can be computed in polynomial time, moreover dual-
ity can be used to prove bounds onρ(G, ω). In order
to apply the König-Hall theorem (see for instance [5],
Theorem 2.1.2) to the associated bipartite graph, we
need the following notation. For any setX ⊆ V (G)
and any eventω ∈ Ω, we denote byη(X, ω) the num-
ber of random points that lie insideX . For any set
X ⊆ V (G), let Γ̺(X) = {v ∈ V |d(X, v) ≤ ̺} and
∂̺(X) = Γ̺(X)\X . The König-Hall theorem can then
be expressed as follows:

3 The intensity of a Poisson process represents the mean of
the number of events occurring per time unit.
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Lemma 1 ρ(G, ω) = min{̺ ∈ IR+ | ∀X ⊆ V (G) :
|η(X, ω) − |X || ≤ |∂̺(X)|}.

For a givenω, we will say thatX is a bad ̺-cut
whenever|η(X, ω) − |X || > |∂̺(X)|. The lemma im-
plies that the graph expansion properties are strongly
related to the distribution ofρ(G, ω). The random vari-
ableη(X, ω) will “usually” be distributed almost like
the sum of|X | independent Poisson variables with in-
tensity 1 4 . So, η(X, ω) will be concentrated around
its mean|X | in a normal way,Pr(|η(X, ω) − |X || ≥
t
√

|X |) ∼ e−t2

√
2t

.

It follows that, given a fixedt > 0, whenever there
exists a setX such that|X | ≤ n

2 , |∂̺(X)| ≤ t
√

|X |,
the probability forX to be a bad̺ -cut will be non-
vanishing (arounde−t2).

Isoperimetric properties may also lead to some upper
bounds, but these will usually not be tight, indeed by
the first moment method it follows:

µ(G, ̺) = Pr(∀X ⊆ V, X is not a bad̺ -cut)

≤
∑

X⊆V (G)

Pr(X is not a bad̺ -cut).

Note that such a bound is usually weak since when there
exists a bad cut it is likely to happen that the event
induces a very high number of bad cuts. Moreover, the
bound is not easy to estimate since among the2|V (G)|

cuts some are much more likely to be bad cuts than
others (e.g., in the2-dimensional grid a disk is much
more likely to be bad than a random set of vertices).

3.2. Computational Issues

Our problem consists in computing the number of
points in a polytope defined by an exponential number
of constraints but that admits a polynomial time sepa-
ration oracle (namely the perfect matching algorithm).
Let the vector(x1, x2, . . . , xn) with

∑n
i=1 xi = n rep-

resent the event withxi points at vertexvi, then the
polytopeF of feasible events for̺ = 1 is the set satis-
fying the linear constraints:

{(x1, ..., xn) : ∀X ⊆ V (G), |
∑

vi∈X

xi−|X ||≤|∂(X)|}

and we wish to compute
∑

x∈F ℓ(x) where ℓ(x) is a
discrete measure derived fromΩ (e.g.,Pr(xi = k) ∼
1
k! ).

4 This is not true when|X| is too small or too close ton.

This suggests connections with#P counting prob-
lems or volume estimation and with#P problems for
which the decision problem is inP : matchings, Eule-
rian cycles and in particular reliability estimation prob-
lems. With the next theorem we prove that Problem 2
is #P -hard by means of a reduction from the problem
of counting the number of matchings in a graph.
Theorem 1 Problem 2 is#P -hard.
Proof. Let us assume that it is possible to compute
µ(G, 1) for any graphG = (V, E) in polynomial time.
Let G′ = (V ′, E′) be the graph obtained fromG by
replacing each edgee ∈ E by a path of length two
(note that|V ′| = |V | + |E| and |E′| = 2|E|). We set
as locationsL the nodes corresponding to the original
vertices ofG, that is,|L| = |V |. Let F be a distribution
of random points obtained by choosing|V |

2 vertices of
G′ and placing2 points in each one. In order to obtain
the number of matchings inG, it is then sufficient to
multiply the probability to have a bijection between the

thrown points andL with
(|V ′|

|V |
2

)

. 2

Our sample space is extremely simple, and we can
check if ρ(G, ω) ≤ ̺ in polynomial time. So, for any
fixed graphG, it is “usually” easy to compute a(1+ε)-
approximation ofµ(G, ̺) (resp.1−µ(G, ̺)) using the
Monte Carlo method. It is efficient only as long as suc-
cessful (resp. failing) events can be observed. Indeed, as
noted by Karp and Luby [15] if an event has probability
p, a Monte Carlo estimation withO( log n

ǫ2p ) samples is

a (1 + ε)-approximation ofp with probability 1
n . Since

our goal is not to approximateµ(G, ̺) when it is close
to zero (since then we would consider̺′ > ̺), we are
left with the problem of computing an approximation
of 1 − µ(G, ̺) whenµ(G, ̺) is close to1.

3.3. FPRAS to estimate 1 − µ(G, ̺) when there is a
small set of witness cuts

We say that a familyF of cuts is a family ofWitness
Cuts, whenever the probability that some cutC ∈ F is
a bad̺ -cut, conditioned on the fact that some bad̺-cut
exists is almost1.

In the case we have a polynomial-size family of wit-
ness cuts, following [14], we can evaluate the probabil-
ity that an event violates a cut of the family, conditioned
on the fact that the event is bad. Then, we can estimate
the probability of a conjunction of “simple” events like
in the case of DNF formulas [15]. We refer to Vazi-
rani [28] for a detailed comprehensive presentation.

Let Cw, w ∈ W be a set of witness cuts,Aw be
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the eventCut Cw fails (i.e. Aw is true when the cut
fails), andpw be the probability that this happens. By
hypothesis, we have that(1 − µ(̺)) ∼ Pr(A1 ∨ A2 ∨
. . . ∨ Aw).

Let c(ω) denote the number of cuts violated
by an event ω. We have E[c(ω)] = E[c(ω) |
ω fails]Pr(ω fails), andE[c(ω)] is simply

∑

w∈W pw.
It follows that computing(1 − µ(̺)) reduces to com-
putingE[c(ω) | ω fails].
Consider the following sampling process:

(1) Chooseω with probability pw
∑

v∈W
pv

.

(2) Pick uniformly an eventω failing for Aw.
(3) Outputω with weight 1

c(ω) .
This process samples the space of true events, more-

over each true event is sampled with uniform probabil-
ity. In order to get a sample space with measurem we
need in the worst case|W |m steps. If now we want to
estimate, usingT Monte Carlo trials, the value ofc(ω)
under the failed condition, we simply need to count
∑

1,2,...,T c(ω) 1
c(ω) = T and to divide by the sample

measure
∑

t=1,2,...,T
1

c(ω) .
So, using a sample withT elements we have

(1 − µ(̺)) ∼
∑

w∈W

pw

∑

t=1,2,...,T
1

c(ω)

T

In order to show that our algorithm is polynomial, we
simply need to check thatpw can be estimated and that
the spaceΩ | Cw fails can be sampled.

In the case ofi.i.d. points, this is straightforward,
pw is obtained via a closed formula and sampling
Ω | Cw fails simply means conditioning on the event
η(Cw) whose distribution is also known.

3.4. Graphs with no polynomial set of witness cuts

Unfortunately, there exist graphs on which in order
to solve the points and vertices problem, we have to
consider an exponential number of cuts. In the example
below, for any polynomial family of cuts, most of the
events will satisfy all the cut inequalities while still
violating some random5 cut inequality.

Let us consider the following graphG. We start from
a clique withk vertices and addℓ “leaves” that are con-
nected to all the clique nodes. The diameter ofG is 2, so
µ(2) = 1. Let us studyµ(1) with the Poisson paradigm.
For any setX of leaves, we have|Γ(X)| = |X |+k, and

5 In the Kolmogorov acceptation.

a cut fails ifη(X, ω) > |X |+ k or η(X, ω) < |X | − k.
So, only two cuts induce the failure, but they are ran-
dom, that is, the set of leaves with at least1 point or
the set of leaves with0 points.

Since the probability for a vertex to receivep points
is 1

p!e , we find aboutℓe leaves with0 points and aboutℓe
extra points in the set of leaves with1 or more points.
So the set of vertices with1 or more points is a bad cut
with high probability as soon ask < ℓ

e(1 − ǫ).
Taking for instancek = n1−ǫ and ℓ = n − k it

follows thatµ(1) is exponentially small. If we consider
now a fixed cutX , it follows that |∂(X)| ≥ k = n1−ǫ

and the probability thatη(X, ω) deviates from|X | by
more thant

√
n is exponentially small. Consequently,

in this graph, the probability that no matching exists
is exponentially larger than the probability for a cut to
fail. This means that cuts are not correlated and that the
failure probability is induced by an exponential number
of cuts. Note that to get an example withµ(1) ∼ 1, we
can choose an appropriatek ∼ ℓ

e .

3.5. Consequences for general graphs

Let Pn be a path withn vertices. It is well-known
that ρ(Pn, ω) =

√
n (see for instance [26]). From this

example, we derive a general result for arbitrary graphs.
Intuitively, paths look like the graphs with the worst

possibleρ. We can motivate this intuition as follows.
Since for any graphG, G3 contains a Hamiltonian
path [13], we conclude that for any graphPr(ρ(G, ω) ≥
3k

√
n) ≤ e−k2

and soµ(G,
√

n log n) ∼ 1.
Theorem 2 For any graphG, ρ(G, ω) = O(

√
n).

The following example shows that for some graph
G0, ρ(G0, ω) >>

√
D >> 1 (whereD is the diameter

of G0), i.e.Pr(ρ(G0, ω) ≥
√

D) is small. Consider two
complete graphs withn nodes connected with a path of
length ℓ, with ℓ ≤

√

n/4. If the number of points in
one of the complete graphs deviates by more thanℓ (this
happen with finite probability),ρ(G0, ω) is larger thanℓ,
so we haveD =

√
n andρ(G0, ω) = Θ(D) = Θ(

√
n)

with large probability. Note that we can replace the
complete graphs by binary trees to get a bounded-degree
example.

4. Trees

Previous results for paths and grids can be found
in [17,25,26]. In this section, we consider tree topolo-
gies and we show thatµ(̺) is quite well described by a
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few cut inequalities. Hence, we describe a greedy algo-
rithm that for a given treeT and a set of pointsP (T, ω)
evaluates up to a factor of2 the valueρ(T, ω).

4.1. A greedy approximation algorithm

We use a labeling process, each nodev receives a
family of labels. Label+ℓ (resp.−ℓ) means that one
point (resp. vertex) at distanceℓ from v in the subtree
rooted atv need to be assigned an image (resp. a pre-
image) outside the subtree.

To each leaf we associate a label−1 if there are no
points inside it,0 if there is1 point, p − 1 times+1 if
there arep points. Then for each subtree whose vertices
are already labeled except for the root, we compute the
number of positive labels minus the number of negative
labels. Let us calls such a number. Ifs > 0 we label the
root with the smallests−1 positive numbers contained
in the previous labels increased by1 and a+1 for each
point contained in it. Ifs < 0, let s′ be the number of
points contained in the root. Ifs′ > |s| then we label the
root withs′+s−1 times+1 (hence with0 if s′+s−1 =
0); if s′ < |s| then with the biggest|s| − s′ negative
numbers contained in the previous labels decreased by
1 and a−1; if s′ = |s| just with a−1. We can then
continue the process until the whole tree is labeled.
Since we are considering a number of points equal to
the number of vertices, the last vertex will be labeled
by just a0, see Figure 2.

Let m(v) be the biggest absolute value appearing as
a label for a nodev, it is possible to prove by induction
that any matching will have to use a path with length at
leastm(v) going throughv. This property is due to the
fact that the algorithm always pushes up the smallest
possible set of “ordered” labels (according to the posi-
tive cone orderu > v whenu− v is a positive vector).
It follows that if M is the biggest absolute value of a
label, thenρ ≥ M .

Now, remark that we can easily find a matching with
stretch2M by associating positive labels with negative
labels.

4.2. Analysis of the algorithm

In order to compute the probability of finding a
matching between random points and the tree vertices,
we would normally apply the Hall theorem to every
vertex-subset of the tree. The greedy algorithm tells
us that we can actually reduce our attention to specific
subsets obtained that correspond to edge-cuts. There

are 2(n − 1) such subsets, reducing the number of
witness cuts from an exponential to a linear number.
Definition 3 For a given treeT , T ′ < T if T ′ is one of
the two subtrees obtained by removing one edge ofT .
Lemma 2 Given a treeT = (V, E), T ′ < T and
stretch̺, it is possible to compute in polynomial time
the probability thatT ′ induces a bad cut for̺.
Proof. Using standard binomial coefficient evaluation,
we can compute

Pr[η(T ′, ω) > |Γ̺(T ′)|] =

|V |
∑

i=|Γ̺(T ′)|+1

(|V |
i

)( |T ′|
|V |

)i

(

1 − |T ′|
|V |

)|V |−i

;

and do the same forPr[η(T ′, ω) < |Γ̺(T ′)|] . 2

Theorem 3 Given a treeT = (V, E) and any stretch
̺, it is possible to approximate1−µ(T, ̺) within 2|V |.
Proof. From the previously described labeling scheme,
1 − µ(̺) ≤ Pr(∃T ′ < T such thatη(T ′, ω) ≥
|Γ2̺(T ′)|) and

∑

T ′<T Pr(η(T ′, ω) ≥ |Γ2̺(T ′)|) ≤
2(|V | − 1)maxT ′<T Pr(η(T ′, ω) ≥ |Γ2̺(T ′)|).

Moreover, maxT ′<T Pr(η(T ′, ω) > |Γ2̺(T ′)|) ≤
1 − µ(2̺) ≤ 1 − µ(̺). It follows that 1 − µ(̺) ≤
2(|V | − 1)maxT ′<T Pr(η(T ′, ω) ≥ |Γ2̺(T ′)|) ≤
(1 − µ(̺))2(|V | − 1). Since by Lemma 2 such proba-
bilities can be computed in polynomial time, the claim
holds. 2

The previous proof can be interpreted as follows. If
there exists a bad cut then there exists a bad cut that is
defined by a subtree obtained by removing one edge.
This means that we can usen witness cuts and get
a good estimation of the probability of failing using
simple cut considerations. Since on the line there is only
one witness cut (the half line) we wonder if the same
happens for trees. Consider a subdivided star withk
branches of lengthk, we see that for̺ =

√
k no cut

is likely to be bad. Now, consider an event, with high
probability any branch will containk + Θ(

√
k log k)

points, and then each branch is an independent Poisson
process conditioned on its number of points. LetCi, i =
1, 2, . . . , k be the set containing thek/2 points of branch
i that are at distance at leastk/2 from the central node.
Since we havek branches, one of them will deviate
by about

√
m log k wherem is its mean. So for some

Ci, |η(Ci, ω) − |Ci|| = Θ(
√

k log k) and we need̺ =

Θ(
√

k log k) to getµ(̺) ∼ 1
2 , andµ(t

√
k) ≤ e−t2k.

On this graph we find aboutk =
√

n “independent”
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(F)

[-3;-2;-2;-1]

[+2]

[-1]

[-3;-3;-2;-1]

[+1;+1;+1;+1]

[-1]

[-1] [-1] [+1] [+1]

0

0

0 0 0 0

[-2;-1]

[+1;+1]

0

0

[+2;+2;+1]

(A) (B) (C)

(D) (E)

Figure 2. An example of the labeling process. The maximum absolute value obtained isM = 3.

cuts and̺ is chosen such that the probability of each
of these cuts to be bad is less than1√

n
.

5. Formalizing the Unbalanced Points and Vertices
Problem

In this section we slightly modify the previous prob-
lem by assuming less points than vertices. We then study
how far is a random structure from an almost fixed one,
in the sense that now points have some degree of lib-
erty in order to be distributed. Again, we assume that
two structures are close if there exists a “short” map-
ping from one to the other. We make use of a positive
numberǫ and we consider a function that has to map
(1−ǫ)n objects inton by following predetermined roots
(the edges of a given graph).

Actually, we are interested in bounding the maximum
distance performed by the movement of the points to the
closest available vertices in such a way that in the final
setting each vertex has associated at most one point.
Definition 4 Given a metric space with metricd and
̺′ ∈ IR+, a mappingf : A → B is calledmapping with
stretch̺′ from a setA to a setB if d(x, f(x)) ≤ ̺′ for
all x ∈ A.

Definition 5 Given a metric space with metricd and
two setsA andB, we defineδ′(A, B) as the minimum
̺′ ∈ IR+ such that there exists a mapping with stretch
̺′ from A to B.

The above definitions differ from Definition 1, 2, re-
spectively, by the fact that the mapping functionf is
not one-to-one anymore.
Problem 3 Given 0 < ǫ < 1, a graphG with n =
|V (G)| verticesand a random set ofpointsP (ω), with
ω ∈ Ω and|P | = (1−ǫ)n, lying onV (G), the aim is to
study the random variableρ′(G, ω) = δ′(P (ω), V (G)).

In what follows, for any graphG and any̺ ′ ∈ IR+,
we will denote byµ′(G, ̺′) the probability that there
exists a stretch at most̺′ mapping fromP (ω) to V (G),
and we defineρ′(G) = min{̺′ ∈ IR+|µ′(G, ̺′) =
1 − o(1)}.

6. Achieved Bounds

In this section we consider the Unbalanced Points
and Vertices problem on various topologies for the un-
derlying graph. As defined we will useµ′(̺′) to denote
the probability that a stretch̺′ mapping from the points
to the vertices exists and̺′0 to denote the minimum̺′
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such thatµ′(̺′) ∼ 1.

6.1. Case of the d-dimensional grids

Theorem 4 For d-dimensional gridsµ′(cǫ,d
d
√

log n) =
1 − 1

log n andµ′(dǫ,d
d
√

log n)) ≤ 1
2 for some constants

cǫ,d ≤ dǫ,d.
Proof. Note that for technical reasons we considerǫ <
1
2 . Anyway, from a practical point of view, the problem
becomes much easier asǫ increases since we have less
points to remap.

For some constantcǫ to be specified, we partition reg-
ularly Gd into subgrids (boxes) containing on average
cǫ log n points, and hencecǫ

log n
1−ǫ vertices. We prove that

the points can be rearranged inside each box of the par-
tition. Let Xi be the number of random points belong-
ing to thei-th box, the points can be rearranged in this
box wheneverXi ≤ cǫ

log n
1−ǫ . From Chernoff (see [12])

and from the assumption thatǫ < 1
2 , we have

Pr(Xi ≥ (1 +
ǫ

1 − ǫ
)cǫ log n) ≤ e−(( ǫ

1−ǫ
)2cǫ log n)/3

So, for cǫ ≥ 3
(

1−ǫ
ǫ

)2
, Pr(Xi cannot be rearranged

locally ) ≤ 1
n . Since there areΘ( n

log n ) boxes, from the

union bound, none will fail with probability1 − 1
log n .

Now, the diameter of each box isd
(

cǫ

1−ǫ

)1/d

×
(log n)1/d. The result follows by settingcǫ,d =

d
(

cǫ

1−ǫ

)1/d

.

In order to estimate a lower bound it is possible to
apply [24] when the number of bins is(1+ ǫ)n and the
number of balls isn in order to show, with high proba-
bility, that one bin containsO( log n

log log n ) balls. Therefore,

one of those balls has to move at leastO( d

√

log n
log log n )

vertices in order to achieve the desired matching.
We now give a matching lower bound for Theo-

rem 4. LetL = Θ(log n) to be specified exactly later.
We consider a partition ofG into n

L boxes containingL
vertices and average number of pointsµ′ = L(1 − ǫ).

Let δ′ > 0. For a given boxB, the probability that
n(B) deviates byδ′µ′ is as follows:

(

eδ′

(1 + δ′)1+δ′

)µ′

= f(δ′)µ′

= f(δ′)(1−ǫ)L

Note thatf(δ′) < 1.

We say that a boxB with L vertices fails whenever
n(B) ≥ (1 + δ′)µ′ = (ǫ − ǫ2)L. Let δ′ = 2ǫ and
L = log n

−3 log f(δ′)(1−ǫ) . The probability that a box fails

is aboutn
1

3 , and the number of failing boxes is bigger
thann

2

3

√
L. Since the number of failing boxes is a mar-

tingale6 [29], we conclude that with high probability
the number of failing boxes isn

2

3

√
L + Θ(

√
n).

It follows that a box withL = log n
−3 log f(δ′)(1−ǫ) =

g(ǫ) log n fails, hence such a box missesh(ǫ)(ǫ− ǫ2)L
vertices.

Each boxB has side lengthL1/d. Let Γ̺′

(B) =
{v ∈ V |d(B, v) ≤ ̺′}, in order to findh(ǫ)L points
in Γ̺′

(B), we need̺′Ld−1d ≥ h(ǫ)L. So, ̺′ ≥
L1/dh(ǫ) = f(ǫ)1/dh(ǫ)L1/d = f(ǫ)1/dh(ǫ)g(ǫ)1/d

(log n)1/d. 2

6.2. Extreme case of the d-cube

The graphHd = P d
2 is a limit case of grids or tori,

since we cannot divide at all the sides that are too short.
To get a tight result we need to partition the cube into
small radius balls, that is exactly what error correcting
codes are doing (see for instance [18]). For instance,
using a1 bit perfect correcting code when it exists,
determines an exact partition into2

d

d balls with radius
1. Those balls will be large enough (whenǫ is close
enough to1), andµ′(2) ∼ 1 for ǫ close to1. For larger
density of points we need larger boxes, balls of radius
2 with size

∑2
i=0

(

d
i

)

> d2/2 will be large enough for
any fixedǫ (andd large enough). Since almost perfect
error correcting codes for distance2 exist we have:
Lemma 3 For any ǫ, µ′(Hd, 4) ∼ 1 whend → ∞.

6.3. Paths and General Graphs

As it was for the balanced version of the problem,
paths look like the graphs with the worst possibleρ′.
Again, since for any generic graphG, G3 contains a
Hamiltonian path [13], we conclude that for any graph
Pr(ρ′(ω) ≥ 3k

√
n) ≤ e−k2

and soµ′(
√

n log n) ∼ 1.
Theorem 5 For any graphG, ρ′(G) = O(log n).

Using the same idea as for grids we can try to partition
the graph into boxes of small radius containing at least
f(ǫ) log n vertices for some functionf depending just
on ǫ.

6 Indeed boxes are almost independent and we could use
L = log n

−3 log f(δ′)(1−ǫ)
.
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Theorem 6 µ′(̺′0) ∼ 1 for ρ′0 = min{̺′ | ∀x ∈
V (G), |∂̺′

({x})| ≥ f(ǫ) log n}
Proof. Let ρ′0 = min{̺′ | ∀x ∈ V (G), |∂̺′

({x})| ≥
f(ǫ) logn}. Using the usual covering and packing argu-
ment, we can greedily prune disjoint radius̺′0 disks un-
til any vertex is at distance less than̺′0 from the pruned
set. The remaining vertices are then spread arbitrarily
into the existing disks. It follows that we can partition
the graph into sets with size at leastf(ǫ) log n that have
eccentricity2̺′0, and hence diameter at most4̺′0.

Using the same analysis as in the case of grids, with
high probability we can find a matching in each subset.
2

For tree topologies it is enough to note that an almost
identical proof to the one presented in Section 4. still
holds, hence obtaining a constant approximation factor.
Theorem 7 Given a treeT = (V, E) and any stretch
̺′, it is possible to approximate1 − µ′(T, ̺′) within
2|V |.

7. Conclusion and Future Work

We have introduced thePoints and Verticesproblem
for a graphG, which captures in a natural way the “dis-
tance” between therandomnessof throwing points (in-
dependently and uniformly at random) onto the vertices
of G, and theorderof the points being evenly balanced
on G. We have derived several results on the problem
with exact balancing of the points. Besides the pure the-
oretical interest, thePoints and Verticesproblem turns
out to be of relevant interest in several fields motivating
further investigation.

As a variation of thePoints and Verticesproblem, we
have also introduced theUnbalancedversion in which
the thrown points are less than the vertices of the un-
derlying graphs. After showing that this new problem
has many applications in many interesting field such
as robotics and wireless networking, we have derived
bounds according to different topologies of the under-
lying graph. The obtained results confirm the intuition
that this new mapping distance is much more local with
respect to the original one, hence much more suitable
for distributed and parallel environments.

As future work, further investigation concerning other
topologies can be approached as well as experimental
results concerning derived solutions for basic problems
such as clustering or leader election in sensor networks.

The model suggests to investigate a similar problem
which is very important in the field of sensor networks.

Considering in fact(1 − ǫ)n points andn vertices, a
natural problem could be to distribute the points in such
a way that the final setting not only has at most one point
per vertex but also it should guarantee the maximum
coverage of the area of interest. For maximum coverage
we intend to spread the points (sensors) as much as
possible according to their power transmission range
in such a way that the induced graph according to the
neighborhood of each point is connected.

Also the variation of the Points and Vertices prob-
lem for which more points with respect to the number
of vertices are thrown is of interest. From the applica-
bility point of view, in the field of sensor networks, for
instance, this can be translated into having some more
sensors that can use less energy in order to achieve the
desired communications. This would suggest to deter-
mine a suitable trade-off between the minimum number
of sensor that must be thrown and the maximum trans-
mission range that each sensor has to guarantee.
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