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Abstract

Many IP (Internet Protocol) networks use OSPF (Open Shortest Path First) for determining the routing of traffic.
OSPF routers compute routing paths using link weights set bythe network administrator, and the routers send traffic on
all shortest paths to the destination. An interesting question is whether or not a set of prespecified routing patterns can be
realized in an OSPF network. If not, we seek structural properties that explain why no such weights exist. Mathematical
models for finding weights and for combining routing patterns are presented. We show that two possibly non-spanning
routing patterns forming a “valid cycle” cannot simultaneously be obtained in an OSPF network. Two new methods for
finding valid cycles are presented, illustrated by numerical examples, and shown to be faster than those previously known.
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1. Introduction

The Internet consists of a huge number of routing
domains, also called autonomous systems, and each do-
main is supervised by an administrator. The adminis-
trator has several responsibilities, and one of the most
important is to determine how traffic is routed through
the domain. The routing is determined by choosing a
routing protocol, and by setting appropriate values on
routing parameters. There are several different rout-
ing protocols available for autonomous systems, for ex-
ample OSPF (Open Shortest Path First), RIP (Routing
Internet Protocol) and IS-IS (Intermediate-System to
Intermediate-System), see [19], [18], and [12].

We will here study networks where OSPF is used as
routing protocol. In such networks, each link is assigned
a positive integer link weight by the network adminis-
trator, and the routers send traffic on the paths that have
a minimal sum of weights to each destination (called the
shortest paths). If several paths have the same minimal
sum of weights, the router splits the traffic addressed to
the destination evenly on all outgoing links that belong
to a shortest path. A “routing pattern” contains all the
paths that are used for routing.

It is an easy task to compute the routing paths if
the weights are known, and this is in fact exactly what
the routers do when the routing paths are computed.
However, from an administrator’s point of view, it is not
always as easy to find link weights that give a certain

set of desired routing paths. In fact it depends on the
structure of the desired routing paths if such weight
exists. The administrator’s problem is studied in this
paper, i.e. a set of desired routing paths is given, and
the task is to find weights such that all desired paths
are shortest paths with respect to the weights, while any
other path between the same pairs of routers should have
a larger sum of weights. If there are no such weights,
we wish to explain which parts of the routing paths that
are in conflict. Since this problem consists of finding a
set of weights with certain properties, it will be called
the Weight Finding Problem (WFP).

[15], [3] and [9] present mathematical models for dif-
ferent versions of the WFP, and the differences origi-
nate mainly from the structure of the prespecified rout-
ing paths. Some models require that at most one path is
specified between a pair of nodes, while other models
allow more than one. Load balancing can only be used
if several paths are allowed between two nodes. Another
variation is that the desired routing paths sometimes
are directed, and sometimes undirected. The case with
undirected routing paths yields symmetric routing, and
this case is treated in [15] and [3]. The case with span-
ning and directed routing patterns is studied in [9]. Di-
rected routing paths allow non-symmetric routing since
it is possible to specify different paths in the different
directions between two nodes. Symmetric routing can
also be obtained using directed routing paths, simply by
specifying pairs of oppositely directed paths, see [2].
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In previous research, the OSPF protocol has also been
modeled as side constraints in network design models
and flow allocation models, see e.g. [4], [17], [23] and
[14]. A common approach is to introduce integer vari-
ables for the link weights, and let the side constraints
use the weights for ensuring that traffic is routed only
on shortest paths to each destination. There are however
disadvantages with this approach, one of which is a con-
straint coefficient that must be larger than the sum of
weights on any path. This makes the LP-relaxation very
weak, which is a disadvantage when solution methods
are considered.

These difficulties may be avoided if the design model
is not based on the weights. An alternate approach
is therefore to develop network design models based
on routing patterns which are obtainable from OSPF
weights, but not explicitly including the weights. The
OSPF protocol is then modeled by ensuring that the
routing patterns satisfies necessary conditions for the
existence of compatible weights. Such conditions have
been developed by investigating infeasible instances of
the WFP. Necessary conditions for undirected routing
paths are presented in [3], and necessary conditions for
directed and spanning routing patterns are presented in
[11]. (A spanning routing pattern contains paths to/from
all nodes, while in a non-spanning routing pattern, all
nodes are not included.)

In this paper we consider the case with directed rout-
ing patterns and load balancing, and discuss several
models for the WFP. Compared to the model in [11], it
is not required that the routing patterns are spanning. We
show that routing patterns with certain properties can
be combined into a single routing pattern, and describe
the advantages of doing so. We prove that two possi-
bly non-spanning routing patterns can not be obtained
simultaneously if they contain a structure called “valid
cycle”. In [11] this was shown only for spanning routing
patterns. Two new methods for finding valid cycles are
proposed, and computational results indicate that these
new methods are faster than the one previously known,
[6], [11].

The next section contains a detailed description of the
problem and mathematical formulations of the weight
finding problem defined for sets of routing paths. Sec-
tion 3. investigates how non-spanning routing patterns
can be combined into so called SP-graphs. Valid cy-
cles are discussed in Section 4., and methods for find-
ing valid cycles are presented in Section 5.. The case
with symmetric routing paths is discussed in Section 6..
Section 7. contains numerical examples and Section 8.

contains results from computational tests. The last sec-
tion contains conclusions.

2. Problem formulation

We consider the directed graphG = (N, A) with the
set of nodesN and the set of arcsA. A number of node
pairs,(ok, dk), k = 1, . . . , K, is given, and for eachk,
a setSk of paths from nodeok to nodedk is given.Sk

contains the desired shortest paths between these two
nodes.Sk can either contain one single path or several
paths (corresponding to splitting of the traffic), and each
path inSk is represented by the included arcs. The case
when eachSk contains one path is called “the single
path case”. We will also use the set of all arcs in any
of the paths inSk, i.e. Rk =

⋃
p∈Sk

p = {(i, j) : ∃p ∈
Sk : (i, j) ∈ p}. Each arc is included at most once in
Rk, even if it is present in more than one of the paths,
so |Rk| ≤ |A|. We assumeSk contains all paths given
by the arcs inRk.

In an OSPF-network, integral weightswij ≥ 1 are
associated with each link(i, j) ∈ A. The paths used by
the routers are those with minimal sum of weightsw, i.e.
the routers find the shortest paths to the destinations. We
will use the notationW (p) =

∑
(i,j)∈p wij , i.e. W (p)

denotes the total weight of pathp. If W (p) ≤ W (q)
for all pathsq between the same pair of nodes,p is
called aminimal weight path. If W (p) < W (q) for
all pathsq 6= p between the same pair of nodes,p is
called aunique minimal weight path. This notation is
also extended to sets of paths as follows. LetP be a set
of paths between a pair of nodes. IfW (p) = W (p′) for
all pathsp ∈ P , p′ ∈ P andW (p) < W (q) for all paths
p ∈ P and for all pathsq 6∈ P between the same pair
of nodes,P is called aunique minimal weight path set.

The goal is to find weightsw such thatSk becomes
a unique minimal weight path set from nodeok to node
dk, for all k. Such a set of weights is said to be com-
patible with the given paths, so we use the termcom-
patible weights. Obviously, a difficulty is that the same
set of weights are used for all the setsSk. The differ-
ence between two different sets of compatible weights
is unimportant, so the question of whether or not a set of
compatible weights exist is more important than which
to choose. If compatible weights do not exist, we wish
to find a small set of paths or links that prohibits the ex-
istence of compatible weights. Our practical goal then
is to extract information about how to modify the paths,
in order to enable the existence of compatible weights.
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Lemma 1 If a desired routing path contains a directed
cycle, no compatible weights exist.
Proof: Since a cycle leads to an already visited node, it
can only have minimal weight if its total weight is zero
or less. However, since no weight may be less than one,
the total weight of a cycle is positive.2

Let p(s, t) denote a pathp (represented by the in-
cluded arcs) from nodes to nodet, N(p) the set of
nodes included in pathp, andN(Sk) the set of nodes
included in any path inSk.
Definition 1 If p andq are two paths and ifq ⊂ p, then
q is called a subpathof p.
Lemma 2 If p is a minimum weight path with respect
to w and if q(s, t) is a subpath ofp, thenq(s, t) is a
minimum weight path froms to t.
Proof: If not, there exists another pathr(s, t) with
W (r(s, t)) < W (q(s, t)). Then we can replace the sub-
path q(s, t) by r(s, t) in p, and get a path with less
weight, which contradicts the assumption thatp is a
minimum weight path.2

Thus any subpath of any path inSk should be a min-
imal weight path.

There cannot be two different unique shortest paths
between two nodes, so if two desired paths pass the same
pair of nodes, the paths between these two nodes must
be identical. This property has previously been called
suboptimalityin for example [3]. In [3], it is shown that
in the undirected single path case, a necessary condition
for the existence of compatible weights is that all pairs
of desired paths are suboptimal.

We will now generalize the concept of suboptimal-
ity for the case with directed paths and load balancing,
under the name “subpath consistency” (since it is a re-
quirement that certain subpaths shall be consistent). We
say that two sets of desired paths aresubpath inconsis-
tentif both sets contain directed paths from one node to
another, and if these sets are not identical. Two sets of
desired paths which are not subpath inconsistent with
respect to any pair of nodes are calledsubpath consis-
tent. If we let SS

k (s, t) be the set of all subpaths from
nodes to nodet of paths inSk, we can make a precise
definition of subpath consistency.
Definition 2 Sk and Sl are subpath consistent if
SS

k (s, t) = SS
l (s, t) for all s ∈ N and t ∈ N such that

SS
k (s, t) 6= ∅ andSS

l (s, t) 6= ∅.
Thus, ifSk andSl are subpath inconsistent,SS

k (s, t) 6=
∅, SS

l (s, t) 6= ∅, and(SS
k (s, t) \ SS

l (s, t)) ∪ (SS
l (s, t) \

SS
k (s, t)) 6= ∅ for somes, t ∈ N . Clearly, if |N(Sk) ∩

N(Sl)| < 2, there does not exist two such nodes, so two
sets of paths containing at most one node in common are

always subpath consistent. As the definition of subpath
consistency really concerns subpaths, the following is
not surprising.
Lemma 3 If the pathsp1 andp2 are subpath consistent,
then any two subpathsq1 ⊂ p1 andq2 ⊂ p2 are subpath
consistent.
Corollary 1 If Sk andSl are subpath consistent, then
for any subpathp(s, t) of any path inSk, eithers andt

does not both belong toN(Sl), or p(s, t) is a subpath
of some path inSl.
We will now show that subpath consistency is a neces-
sary condition for the existence of compatible weights.
Lemma 4 If two sets of desired paths are subpath in-
consistent, there exist no compatible weights.
Proof: If Sk and Sl are subpath inconsistent, then
there exists a subpathp(s, t) ∈ (SS

k (s, t) \ SS
l (s, t)) ∪

(SS
l (s, t) \ SS

k (s, t)) for some s ∈ N and t ∈ N

such that SS
k (s, t) 6= ∅ and SS

l (s, t) 6= ∅. If
p(s, t) ∈ SS

k (s, t) \ SS
l (s, t), thenp(s, t) should be a

minimal weight path according toSk but not accord-
ing to Sl. If p(s, t) ∈ SS

l (s, t) \ SS
k (s, t), thenp(s, t)

should be a minimal weight path according toSl but
not according toSk. Since none of these cases can be
true, there exist no compatible weights.2

Let us now set up a mathematical model for finding
compatible weights, if they exist. The model should
give weightsw such that all paths inSk should be the
shortest paths from the nodeok to the nodedk. All
other paths should be more expensive. Let us denote
the set ofall paths in the graph from nodeok to node
dk by Pk. We require that all paths inPk \ Sk should
have a larger sum of weights than the paths inSk. Since
the weights will be integral, the least difference will be
one, so we get constraints (1) below. Furthermore, all
shortest paths between a pair of nodes must obviously
have the same cost, which yields constraints (2). (In the
single path case, constraints (2) are not present, as there
is only one path in eachSk.)

P1:
∑

(i,j)∈q

wij−
∑

(i,j)∈p

wij ≥ 1 ∀p ∈ Sk,

∀q ∈ Pk \ Sk, ∀k

(1)
∑

(i,j)∈r

wij −
∑

(i,j)∈p

wij = 0 ∀p ∈ Sk : p 6= r,

∀r ∈ Sk, ∀k (2)

wij ≥ 1, integer ∀(i, j) ∈ A (3)

By construction it is obvious that any feasible solution
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to P1 is a set of compatible weights. On the other hand,
any set of compatible weights must satisfy (1), (2) and
(3), and must therefore be a feasible solution to P1.
Thus we have the following.
Lemma 5 P1 has a feasible solution if and only if there
exists a compatible set of weights.
A feasible solution to P1 is not unique. For example,
multiplying a feasible set of weights with a positive
integer, yields another feasible solution. We consider
all feasible sets of weights as equivalent, although in
practice, unnecessarily large weights might be avoided.
Lemmas 4 and 5 yield the following.
Lemma 6 If two sets of paths are not subpath consis-
tent, then P1 has no feasible solution.
A disadvantage of the model P1 is the large number
of constraints, which comes from the large number of
possible paths in a network. Each path inSk is compared
to all other paths fromok to dk, either in constraint(s)
(4) or in (5).

Letting Ck denote the (unknown) minimal weight of
a path fromok to dk, P1 can be rewritten as follows,
whereCk is variable.

P2:
∑

(i,j)∈q

wij ≥ Ck + 1 ∀q ∈ Pk \ Sk, ∀k (4)

∑

(i,j)∈p

wij = Ck∀p ∈ Sk, ∀k (5)

wij ≥ 1, integer∀(i, j) ∈ A (6)

The number of constraints is less in P2 than in P1
(unless|Sk| = 1 ∀k). By simply using (5) one can
easily verify that any feasible solution of P1 is feasible
in P2, and that any feasible solution of P2 is feasible
in P1. Thus P2 has a feasible solution if and only if P1
has a feasible solution.

According to [16], there exists a node potential,
πi ∀i ∈ N , satisfyingwij + πi − πj ≥ 0 ∀(i, j) ∈ A if
all directed cycles in a graph have a non-negative sum
of weights. Furthermore, the node potentialπ can be
chosen integer-valued ifw is integer-valued. It is also
shown thatp is a minimum weight path if and only if
there is a potential satisfyingwij = πj −πi ∀(i, j) ∈ p.
If we sum up these equalities for a minimal weight
path p starting in nodes and ending in nodet, we
get W (p(s, t)) = πt − πs, since all other node po-
tentials cancel out. A pathq from s to t which is
not a minimum weight path must therefore satisfy
W (q(s, t)) > πt − πs.

In the weight finding problem, we need different node
potentials for each setSk, so we introduceπk

i ∀i ∈
N, ∀k = 1, . . . , K. We have

W (p) = πk
dk

− πk
ok

∀p ∈ Sk, ∀k,

and according to Lemma 2, this applies to any subpath
of p, i.e.

W (p(s, t)) = πk
t − πk

s for all

p(s, t) ∈ SS
k (s, t) ∀s ∈ N(Sk), t ∈ N(Sk) ∀k.

Especially, this applies to subpaths consisting of single
links.

wij = πk
i − πk

j ∀(i, j) ∈ p, ∀p ∈ Sk, ∀k

Here,(i, j) ∈ p, p ∈ Sk is more efficiently written as
(i, j) ∈ Rk, since this avoids representing links more
than once. Furthermore we should have

W (q) ≥ πk
dk

− πk
ok

+ 1 ∀q ∈ Pk \ Sk, ∀k,

(since the weights andπk
i are integer-valued). We

thus get the following model.

P3:

wij + πk
i − πk

j = 0∀(i, j) ∈ Rk, ∀k (7)
∑

(i,j)∈q

wij + πk
ok

− πk
dk

≥ 1∀q ∈ Pk \ Sk, ∀k (8)

wij ≥ 1, integer∀(i, j) ∈ A (9)

Theorem 1 P3 has a feasible solution if and only if P1
has a feasible solution.
Proof: Assume that we have a feasible solution to P1.
Now let πk

i be equal to the minimum sum of weights
from ok to i. We then getwij = πk

j − πk
i ∀(i, j) ∈

Rk, ∀k, so (7) is satisfied. The paths inPk \ Sk are not
minimum weight paths, so all constraints in (8) are sat-
isfied. Constraints (9 are identical to (3), so we conclude
that P3 has a feasible solution.

Assume now that we have a feasible solution to P3.
Summing up constraints (7) over any pathp in Sk yields
W (p) = πk

dk
−πk

ok
. This ensures that constraints (2) are

satisfied. InsertingW (p) = πk
dk

−πk
ok

into (8) immedi-
ately yields constraints (1). Thus a feasible solution to
P3 is also feasible in P1.2

We conclude that P3 has a feasible solution if and
only if there exists a set of compatible weights.



Peter Broström & Kaj Holmberg– Algorithmic Operations Research Vol.4 (2009) 19–35 23

3. Combining paths into SP-graphs

P3 may have a large number of constraints in (8), due
to the large number of paths in the setsPk \ Sk. Each
path inPk \Sk contains at least one subpath (possibly a
single arc) that starts and ends at nodes spanned byRk,
and does not included any arc inRk. These subpaths
are not included in any pathp ∈ Sk, and if we ensure
that these subpaths are not part of a minimal weight
path from nodeok to nodedk, we have ensured that the
paths inPk \ Sk have a larger sum of weights than the
paths inSk. Since many paths inPk \ Sk include the
same subpath, this can be used for reducing the size of
the model.

We may also decrease the size of the model by com-
bining sets of minimum weight paths intoshortest path
graphs, SP-graphs. We will use the term “origin” (“des-
tination”) to denote any node in an SP-graph without
predecessors (successors). An SP-graph is defined to
be a set of arcs which contains at least one path from
each origin to each destination, and does not contain
any directed cycle. (Consequently each SP-graph must
contain at least one origin and at least one destination.)

Rk is an example of an SP-graph with a single origin
and a single destination. Since an SP-graph no longer is
associated with a single node pair(ok, dk), we introduce
the indexl for SP-graphs and letAl denote SP-graphl.

A set of weights is compatible with an SP-graph if
all paths in the SP-graph are minimum weight paths
and any other path from an origin to a destination is
not a minimum weight path. A set of weights is called
compatibleif it is compatible with each SP-graph. Let
us also extend the meaning of subpath consistency to
SP-graphs. LetAS

l (s, t) ⊆ Al denote the set of arcs
included in any path froms to t in Al.

Definition 3 Al′ and Al′′ are subpath consistent if
AS

l′(s, t) = AS
l′′(s, t) for all s ∈ N and t ∈ N such

that AS
l′(s, t) 6= ∅ andAS

l′′ (s, t) 6= ∅.

We will now give a model for finding compatible
weights to a set of SP-graphs (possibly with multiple
origins and destinations). LetVl be the set of node pairs
spanned by eachAl, i.e. letVl = {(s, t) : s ∈ N(Al)
andt ∈ N(Al)}. For each(s, t) ∈ Vl, let T l

st be the set
of paths from nodes to nodet completely outsideAl.
This means that each path inT l

st starts at nodes, ends
at nodet, and does not pass any other node spanned by

Al. We can now formulate the following model.

P4:

wij + πl
i − πl

j = 0 ∀(i, j) ∈ Al, ∀l (10)
∑

(i,j)∈q

wij + πl
s − πl

t ≥ 1 ∀q ∈ T l
st, ∀(s, t) ∈ Vl, ∀l

(11)

wij ≥ 1, integer ∀(i, j) ∈ A

(12)

The first set of constraints is in principle identical to
(7), and ensures that all paths inAl are minimum weight
paths. The second set of constraints ensures that each
subpath that starts and ends inAl and does not pass any
other node spanned byAl is not a part of a minimum
weight path from an origin ofAl to a destination ofAl.
Theorem 2 P4 has a feasible solution if and only if
compatible weights exist.
P4 is in principle a modification of P3. If each SP-
graph is equal to an arc setRk, the result follows from
Lemma 5 and Theorem 1. Below we show how SP-
graphs can be combined into larger and fewer SP-graphs
without changing the feasibility of P4. As an alternative,
a general proof of Theorem 2 is found in [10].

The number of constraints (11) could be large if there
are many nodes not spanned by each SP-graph. How-
ever, if each SP-graph spans all nodes in the node set,
set (11) consists of only

∑
l(|A| − |Al|) constraints, so

here we see an incentive to make the SP-graphs as large
as possible. There are however restrictions on which
sets of paths can be combined. Starting from the case
when each SP-graph has one origin and one destination,
in which case P4 has a feasible solution if and only if
P3 has one, we will increase the sizes of the SP-graphs,
while maintaining the property that P4 has a feasible
solution if and only if compatible weights exist.

Assume that a number of SP-graphs are given. We
now seek the answer to the following question. Does
combining two of them,Al′ andAl′′ , into one SP-graph,
i.e. letting AC = Al′ ∪ Al′′ , yield the same result in
P4 as usingAl′ and Al′′ separately? Let P4s denote
the case whenAl′ andAl′′ are treated separately, and
P4c the case when they are combined. We allow this
combination if either compatible weights exist for both
P4s and P4c, or compatible weights do not exist for any
of P4s and P4c.

We will consider the case whenAl′ andAl′′ has one
and the same origin, denoted byo. Let δ−(N̄) denote
all arcs leaving node set̄N , δ+(N̄) all arcs entering
node setN̄ , andγ(N̄) all arcs with both endpoints in
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Fig. 1. A partition allowing combination.

node setN̄ . N(Ā) denotes the set of nodes spanned by
the arc setĀ.

We find that two SP-graphs can be combined if they
have the same (single) origin, are identical in a subgraph
containing the origin, do not contain any arcs entering
the identical subgraph, and are completely separate in
the rest of the graph. More specifically, letN0 ∪ N1 ∪
N2 = N(Al′∪Al′′ ), i.e. the set of nodes spanned byAl′

andAl′′ is partitioned into the setsN0, N1 andN2. Now
assume thato ∈ N0 andγ(N0) ∩ Al′ = γ(N0) ∩ Al′′ ,
i.e. thatAl′ andAl′′ are identical inN0. Also assume
thatN(Al′) ∩ N2 = ∅ andN(Al′′) ∩ N1 = ∅, i.e. that
no part ofAl′ is in N2 and no part ofAl′′ is in N1.
Furthermore, we require thatAl′ ∩ δ+(N0) = ∅ and
Al′′ ∩ δ+(N0) = ∅, i.e. that no arc inAl′ or Al′′ enters
the node setN0. See Figure 1 for an example of such
a partition. HereAl′ is indicated with dashed lines and
Al′′ by solid lines. Both have node 1 as origin. The
partition is given byN0 = {1, 2, 3, 4}, N1 = {5, 6, 7}
andN2 = {8, 9, 10, 11}. An important consequence of
the assumptions is thatAl′ consists of arcs inγ(N0),
arcs inγ(N1) and arcs directed from nodes inN0 to
nodes inN1. So if a path inAl′ leaves the node setN0,
the path enters and stays insideN1 until the destination
is reached. Similarly,Al′′ consists of arcs inγ(N0), arcs
in γ(N2) and arcs directed from nodes inN0 to nodes
in N2. The paths inAl′′ first visit a sequence of nodes
in N0 and then a sequence of nodes inN2.
Lemma 7 If there exists a partitioningN0∪N1∪N2 =
N(Al′ ∪ Al′′ ), such thato ∈ N0 is the only origin in
Al′ and Al′′ , γ(N0) ∩ Al′ = γ(N0) ∩ Al′′ , N(Al′ ) ∩
N2 = ∅, N(Al′′ ) ∩ N1 = ∅, Al′ ∩ δ+(N0) = ∅ and
Al′′ ∩ δ+(N0) = ∅, then P4c has a feasible solution if
and only if P4s has one. Therefore the SP-graphs may

be combined.
Proof: We study how P4 changes as a result of com-
bining Al′ and Al′′ . The w-variables are the same in
P4s and P4c, but the two sets of node pricesπ1 andπ2

in P4s will be combined into one set,πC , in P4c.
Assume first that P4s has a feasible solution,

(w̄, π̄1, π̄2, . . . , π̄l). The solution remains feasible if
we increase/decrease all components inπ̄2 with a
constant. Lettingπ̂2

i = π̄2
i + (π̄1

o − π̄2
o) ∀i ∈ N

yields π̄1
o = π̂2

o , which implies π̄1
i = π̂2

i ∀i ∈ N0,
sinceAl′ and Al′′ are identical inN0 and since (10)
yields w̄ij = π̄1

j − π̄1
i ∀(i, j) ∈ γ(N0) ∩ Al′ and

w̄ij = π̂2
j − π̂2

i ∀(i, j) ∈ γ(N0) ∩ Al′′ .
P4s and P4c have one constraint in set (10) for each

arc inAC . For arcs inγ(N0), the constraints are iden-
tical, so the sameπ-solution can be used. We setπC

i =
π̄1

i ∀i ∈ N0. Next we note that̄π1 together withw̄

will ensure that (10) is satisfied for arcs inAl′ \ γ(N0),
so we setπC

i = π̄1
i ∀i ∈ N1. Similarly, π̂2 together

with w̄ satisfies (10) for arcs inAl′′ \ γ(N0), so we set
πC

i = π̂2
i ∀i ∈ N2.

What remains is constraint set (11), stating that the
paths completely outsideAC should not be minimum
weight paths. We haveπC

i = π̄1
i ∀i ∈ N0 ∪N1, so P4c

satisfies all constraints from set (11) concerning paths
starting and ending inN0∪N1 without passing nodes in
N2. Similarly, we haveπC

i = π̄2
i ∀i ∈ N0 ∪N2, so P4c

satisfies all constraints from set (11) concerning paths
starting and ending inN0 ∪ N2 without passing nodes
in N1.

Now we study paths starting inN2 and ending inN1.
Suppose that one constraint in set (11) is not satisfied
in P4c, for example the constraint defined for the path
q(s, t) from s ∈ N2 to t ∈ N1. Sinceπ can be chosen
integer-valued ifw is integer-valued, see [16], we then
have

∑
(i,j)∈q(s,t) w̄ij +πC

s −πC
t ≤ 0. Now consider a

pathq = {q(o, s), q(s, t)}, whereq(o, s) is an arbitrary
path fromo to s completely insideAC . We then get

0 =
∑

(i,j)∈q(o,s)

(w̄ij + πC
i − πC

j ) =
∑

(i,j)∈q(o,s)

w̄ij +

πC
o − πC

s ≥
∑

(i,j)∈q(o,s)

w̄ij + πC
o − πC

s

+
∑

(i,j)∈q(s,t)

w̄ij + πC
s − πC

t =
∑

(i,j)∈q

w̄ij + πC
o −

πC
t =

∑

(i,j)∈q

w̄ij + π̄1
o − π̄1

t .

The first equality holds since (10) is satisfied for all
(i, j) ∈ q(o, s). The node prices cancel out in the second
and the fourth equality, and the last equality holds since
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πC
i = π̄1

i ∀i ∈ N0 ∪ N1. The inequality follows from
the assumption that (11) is not satisfied forq(s, t).

We thus get
∑

(i,j)∈q w̄ij + π̄1
o − π̄1

t ≤ 0, i.e.W (q) ≤

π̄1
t − π̄1

o , so the pathq does not have a larger sum of
weights than the path fromo to t in Al′ . The pathq is
not completely insideAl′ sinces ∈ N2, so this contra-
dicts that the solution is feasible in P4s. Thus, assuming
that (11) is not satisfied yields a contradiction, so we
conclude that (11) is satisfied for all paths starting inN2

and ending inN1. This reasoning can be repeated for
paths starting inN1 and ending inN2, so we conclude
that P4c has a feasible solution if P4s has a feasible
solution.

Finally we note that if P4c has a feasible solution
(w̄, π̄C , π̄3, . . . π̄l), we immediately get a feasible solu-
tion to P4s by usingπ1 = π̄C andπ2 = π̄C . 2

The result also holds if the two SP-graphs are iden-
tical in a subgraph containing the common destination,
and completely separate in the rest of the graph. This
means that two SP-graphs can be combined if there
exists a partitioningN0 ∪ N1 ∪ N2 = N(Al′ ∪ Al′′)
such thatd ∈ N0 is the only destination ofAl′ and
Al′′ , γ(N0) ∩ Al′ = γ(N0) ∩ Al′′ , N(Al′ ) ∩ N2 = ∅,
N(Al′′) ∩ N1 = ∅, Al′ ∩ δ−(N0) = ∅ and Al′′ ∩
δ−(N0) = ∅. This can be shown by simply reversing the
roles of origins and destinations in the previous proof.
Corollary 2 If two SP-graphs are subpath consistent
and have the same node as the only origin, they may be
combined.
Proof: Letting N0 = N(Al′) ∩ N(Al′′), it is easy to
see that the assumptions of Lemma 7 are satisfied.2

If N1 = ∅ (i.e. if all destinations ofAl′ are inN0)
in the partitioning in Lemma 7 thenAl′ is a subset of
Al′′ . In that case all sets of weights that are compatible
with Al′′ will also be compatible withAl′ , soAl′ does
not add anything to P4.Al′ andAl′′ may be combined,
but the combination of them will be identical toAl′′ .
Therefore we can simply deleteAl′ . The same applies
to Al′′ if N2 = ∅.

An SP-graph can sometimes be combined with a part
of another SP-graph. This could be useful when two SP-
graphs are similar, but do not have the same origin or
the same destination. Recall thatAS

l (s, t) is the set of
arcs included in any path from nodes to nodet in Al.
Lemma 8 P4 remains feasible/infeasible ifAS

l (s, t) is
defined as a separate SP-graph and added to the set of
SP-graphs, for any pair of nodess and t.
Proof: The lemma is only interesting ifAS

l (s, t) 6= ∅.
If P4 has a feasible solution, it follows from Theorem 2
that some set of weights is compatible with each origi-

nal SP-graph.AS
l (s, t) contains exactly the same paths

from s to t as Al, so the weights are also compati-
ble with AS

l (s, t). Thus P4 remains feasible if the SP-
graphAS

l (s, t) is added. P4 is infeasible when no set
of weights is compatible with each of the original SP-
graphs. Adding an SP-graph cannot change this fact.2

Lemma 7 can be used repeatedly, since several desti-
nations are allowed. If we start fromAl′ = R1, Al′′ =
R2, etc., and repeatedly combine SP-graphs with the
same origin, the resulting SP-graphs will contain an
arborescence. If all resulting SP-graphs are spanning,
each path inT l

st consists of a single arc, so P4 can be
simplified to the following problem.

P5:

wij + πl
i − πl

j = 0 ∀(i, j) ∈ Al, ∀l (13)

wij + πl
i − πl

j ≥ 1 ∀(i, j) 6∈ Al, ∀l (14)

wij ≥ 1, integer ∀(i, j) ∈ A (15)

Letting m denote the number of SP-graphs, we find
that P5 has only|A|(m + 1) constraints since each arc
either is included in (13) or (14). In [11] we prove that,
if all SP-graphs are spanning, P5 has a feasible solution
if and only if there exists a set of compatible weights.

Let us also mention a case where SP-graphs may
not be combined. Assume thato1 ∈ N(Al′) \ N(Al′′),
d1 ∈ N(Al′ ) \ N(Al′′ ), o2 ∈ N(Al′′) \ N(Al′), d2 ∈
N(Al′′ ) \ N(Al′ ), andN(Al′) ∩ N(Al′′ ) 6= ∅. If we
combineAl′ andAl′′ , this SP-graph will not only con-
tain the paths fromo1 to d1 and fromo2 to d2, but also
from o1 to d2 and fromo2 to d1. A feasible solution of
P4s ensures that the paths fromo1 to d1 and fromo2

to d2 are minimal weight paths, but not that the paths
from o1 to d2 and fromo2 to d1 are of minimal weight.
Therefore, P4s being feasible does not imply that P4c
is feasible. Our conclusion is the following.
Lemma 9 Two SP-graphs cannot be combined if they
create a new origin-destination pair.
Thus, if the two sets of paths have at least one node in
common, but different origins and different destinations,
they may not be combined.

4. Valid cycles

Our main goal is to analyze instances that lack com-
patible weights. In [7] this is done by finding unbounded
solutions to the LP-dual of the weight finding problem.
These unbounded solutions are represented by cycles,
in which dual variables can be changed infinitely. Here
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we will not use duality, but verify the effect of such
cycles in another way.

Recall that eachAl contains at least one path from
each origin to each destination, and noAl contains a
directed cycle. Now consider two SP-graphs,Al′ and
Al′′ , and acycleC ⊆ A, C = F ∪ B, whereF is the
set of arcs considered to be usedforward and B the
set of arcs considered to usedbackward, in relation to
SP-graphAl′ .

Definition 4 A cycleC = F ∪ B is called feasibleif
B ⊆ Al′ andF ⊆ Al′′ .

Definition 5 The arc(i, j) is called eligibleif (i, j) ∈
(F \ Al′ ) ∪ (B \ Al′′).

In words, an eligible arc lies inF but not inAl′ or in
B but not inAl′′ .

Definition 6 The cycleC = F ∪B is called improving
if it contains at least one eligible arc.

Definition 7 A cycleC = F ∪B is called validif there
exist two indicesl′ andl′′ such that the cycle is feasible
and improving.

Theorem 3 If there exists a valid cycle, then there exists
no compatible set of weights.

The proof for the spanning case (i.e. when all SP-graphs
span all nodes) is given in [11]. Here we give a more
general proof, covering both the spanning and non-
spanning cases.

Proof: Theorem 3 will be proved by summing the
weights around a valid cycle, once in view of SP-graph
Al′ and once in view of SP-graphAl′′ . Obviously these
two sums should be equal, but we will get a contradic-
tion, verifying that P4 cannot have a feasible solution.

LetΓl(C) denote the sum of weights around the valid
cycleC = F ∪B in view of SP-graphAl. Now we split
C into subpaths, depending on whether an arc is inF

or B and also whether it is inAl′ or not. LetPF
l′ be the

set of subpaths inF ∩ Al′ , PB
l′ the set of subpaths in

B ∩Al′ , QF
l′ be the set of subpaths inF \Al′ , andQB

l′

be the set of subpaths inB \ Al′ . Furthermore, letpF
rl′

denote subpathr in the setPF
l′ , etc.

We require that each subpath starts and ends in
nodes spanned byAl′ , and does not pass any other
node spanned byAl′ . This means that each subpath in
PF

l′ ∪ PB
l′ consists of a single arc, while the subpaths

in QF
l′ ∪ QB

l′ may consist of more than one arc. The
cycleC consists of all these subpaths, and we have the
following.

F ∩Al′=
⋃

r∈P F

l′

pF
rl′ , B ∩Al′=

⋃

r∈P B

l′

pB
rl′ , F \Al′=

⋃

r∈QF

l′

qF
rl′ , B \ Al′=

⋃

r∈QB

l′

qB
rl′ .

We now get the following sum of weights around the
cycle.

Γl′(C) =
∑

(i,j)∈F

wij−
∑

(i,j)∈B

wij =
∑

(i,j)∈F∩A
l′

wij+

∑

(i,j)∈F\A
l′

wij −
∑

(i,j)∈B∩A
l′

wij −
∑

(i,j)∈B\A
l′

wij =

∑

r∈P F

l′

∑

(i,j)∈pF

rl′

wij+
∑

r∈QF

l′

∑

(i,j)∈qF

rl′

wij−
∑

r∈P B

l′

∑

(i,j)∈pB

rl′

wij−

∑

r∈QB

l′

∑

(i,j)∈qB

rl′

wij

Now introduce s by letting wij = πl
j − πl

i +

sl
ij ∀(i, j) ∈ A. We havesl

ij = 0 ∀(i, j) ∈ Al, due to
constraint 4.1. We also note that for any pathp(s, t)
for anys andt, we have

W (p(s, t)) =
∑

(i,j)∈p(s,t)

(πl
j − πl

i + sl
ij) = πl

t −

πl
s +

∑

(i,j)∈p(s,t)

sl
ij .

For Γl′(C), theπ’s cancel if we make this substitu-
tion, so we get

Γl′(C) =
∑

r∈P F

l′

∑

(i,j)∈pF

rl′

sl′

ij +
∑

r∈QF

l′

∑

(i,j)∈qF

rl′

sl′

ij −

∑

r∈P B

l′

∑

(i,j)∈pB

rl′

sl′

ij −
∑

r∈QB

l′

∑

(i,j)∈qB

rl′

sl′

ij .

Now we note thatQB
l′ = ∅, sinceB ⊆ Al′ , so the

last term is equal to zero. Furthermoresl
ij = 0 for each

arc in Al′ , i.e. for each arc inpF
rl′ and in pB

rl′ . That
makes terms one and three equal to zero, so only term
two remains. Now we note that ifF ⊆ Al′ , we have
QF

l′ = ∅, which means thatΓl′(C) = 0. The other
possibility is F 6⊆ Al′ , which impliesQF

l′ 6= ∅. Each
pathr ∈ QF

l′ starts and ends at nodes inN(Al′) and does
not pass any other node spanned byAl′ , so there is one
constraint in 4.2 for eachr ∈ QF

l′ . Therefore, we have∑
(i,j)∈qF

rl′

sl′

ij ≥ 1 ∀r ∈ QF
l′ , i.e. Γl′(C) > 0. There

are thus two possibilities, namelyQF
l′ = ∅, which yields

Γl′(C) = 0, andQF
l′ 6= ∅, which yieldsΓl′(C) > 0.

Let us now calculateΓl′′ (C), which is the sum of
weights around the same cycle, but takingAl′′ into ac-
count. Doing the same kind of partitioning of the arcs
in the cycle, we get

Γl′′(C) =
∑

r∈P F

l′′

∑

(i,j)∈pF

rl′′

sl′′

ij +
∑

r∈QF

l′′

∑

(i,j)∈qF

rl′′

sl′′

ij −
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∑

r∈P B

l′′

∑

(i,j)∈pB

rl′′

sl′′

ij −
∑

r∈QB

l′′

∑

(i,j)∈qB

rl′′

sl′′

ij .

Now we know thatF ⊆ Al′′ , soQF
l′′ = ∅. Further-

more,sl′′

ij = 0 for all (i, j) ∈ Al′′ , i.e. for all (i, j) in
pF

rl′′ or in pB
rl′′ . This makes the first three terms above

equal to zero, so only the last term remains. As above
we can show that the this term is zero ifQB

l′′ = ∅, and
negative ifQB

l′′ 6= ∅. So again there are two possibili-
ties, namelyQB

l′′ = ∅, which yieldsΓl′′ (C) = 0, and
QB

l′′ 6= ∅, which yieldsΓl′′ (C) < 0.
Thus Γl′(C) = Γl′′(C) = 0 if and only if QF

l′ =
∅ and QB

l′′ = ∅. A valid cycle hasF 6⊆ Al′ and/or
B 6⊆ Al′′ , while QF

l′ = ∅ if F ⊆ Al′ andQB
l′′ = ∅ if

B ⊆ Al′′ , so for a valid cycle, at least one of the sets
QF

l′ andQB
l′′ is non-empty. IfΓl′(C) = 0 thenQF

l′ = ∅,
which implies thatQB

l′′ 6= ∅ andΓl′′(C) < 0. On the
other hand, ifΓl′′(C) = 0 thenQB

l′′ = ∅, which implies
thatQF

l′ 6= ∅ andΓl′(C) > 0. A third possibility is that
QF

l′ 6= ∅ andQB
l′′ 6= ∅, which yieldsΓl′(C) > 0 and

Γl′′(C) < 0.
It is in neither of these cases possible thatΓl′(C) =

Γl′′(C). Thus there is a contradiction, which proves the
theorem.2

This verifies that the existence of a valid cycle im-
plies that a compatible set of weights does not exist, re-
gardless of whether or not the SP-graphs span all nodes.
However, the fact that no valid cycle exists is not enough
to guarantee that compatible weights exist. Since valid
cycles are obtained by comparing only two SP-graphs, it
is important to include as much information as possible
in each SP-graph. This is done by combining as many
sets of desired paths as possible into each SP-graph.

There are instances that do not have compatible
weights or valid cycles. In such cases, there are more
complicated structures that can be used to explain the
lack of compatible weights, see [8]. However, such
structures cannot be found as efficiently as valid cy-
cles. By combining sets of paths, one might transform
such a complicated structure into a valid cycle, thereby
enabling the usage of the more efficient method in
Section 5..
Lemma 10 A valid cycle must contain at least three
nodes and three arcs.
A proof of Lemma 10 is given in [11]. A stronger result
is true if subpath consistency holds.
Lemma 11 If the SP-graphs are subpath consistent, a
valid cycle must contain at least four nodes and four
arcs.
Proof: Since an SP-graph may not contain a directed

cycle, a valid cycle with three arcs must contain two
arcs inF and one inB (or two arcs inB and one in
F ). Then the two arcs of the same type,F (or B), must
be adjacent, and thus form a path from one node,i,
to another,j. Furthermore, the remaining arc, inB (or
F ), must also lead fromi to j, in order to complete the
cycle. So there are two different desired paths fromi to
j. Now either both of these paths are contained in both
SP-graphs, in which case no arc in this cycle can be
eligible, or both of these paths are not contained in both
SP-graphs, in which case the SP-graphs are not subpath
consistent.2

The same reasoning can be used to show that, under
subpath consistency, a valid cycle with four arcs and
nodes cannot contain adjacent arcs inF (or B). How-
ever, as shown in Section 7., a valid cycle can contain
four arcs and nodes if it is alternating between arcs inF

and inB. One might want to use this in the method pre-
sented in Section 5., but unfortunately there is probably
no way of checking subpath consistency that is signif-
icantly faster than the methods in Section 5.. If this is
true, it is best to use our methods for simultaneously
checking for valid cycles and subpath consistency.
Lemma 12 If two SP-graphs are subpath inconsistent,
there exists a valid cycle.
Proof: If Ak andAl are subpath inconsistent there ex-
ists somes ∈ N(Ak)∩N(Al) andt ∈ N(Ak)∩N(Al)
such thatAS

k (s, t) 6= ∅, AS
l (s, t) 6= ∅ and (AS

k (s, t) \
AS

l (s, t)) ∪ (AS
l (s, t) \ AS

k (s, t)) 6= ∅. A valid cycle
is now obtained by lettingB be a path froms to t in
AS

k (s, t) andF a path froms to t in AS
l (s, t), where at

least one arc inB lies in AS
k (s, t) \AS

l (s, t) or at least
one arc inF lies in AS

l (s, t) \ AS
k (s, t). 2

Furthermore, there are examples (see Section 7. and
[11]) with SP-graphs that are subpath consistent, but still
have valid cycles. Therefore we can draw the following
conclusion.
Lemma 13 The absence of a valid cycle is a stronger
necessary condition for the existence of compatible
weights than subpath consistency.

5. Methods for finding valid cycles

A practical method for finding valid cycles must con-
sider each pair of SP-graphs,l′ = 1, . . . , m − 1 and
l′′ = l′ + 1, . . . , m. The arcs in one of the SP-graphs
will be used backwards, if they are included in the cy-
cle, and are therefore labeled with B. The arcs in the
other SP-graph are used forwards, if they are included
in the cycle, and are therefore labeled with F. Arcs with
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one label, B or F, are eligible, while arcs labeled with
both are not, and arcs with no label are not used at all.
This can be seen as constructing a graphḠ which con-
tains the arcs in one of the SP-graphs and the reversed
arcs in the other SP-graph.

After this, one can either remove parts of the graph
that cannot be a part of a cycle, or start to search for
a valid cycle. The first approach is used inVC0, the
method given in [7], and inVC1, the first of our new
methods, while the second approach is used inVC2,
the second of our new methods.

After removing arcs and nodes that cannot be a part
of a feasible cycle, VC0 proceeds as follows. An eligi-
ble arc is chosen, and we try to find a feasible cycle con-
taining this arc. If there exists no such cycle, the eligi-
ble arc is removed. If an isolated subgraph (a subgraph
with in-degree or out-degree zero containing no eligible
arc) is found in the process, this subgraph is also elimi-
nated. This kind of graph reduction is repeated until the
whole graph is eliminated, or a valid cycle is found.

The new variations of the method are based on
strongly connected componentsof Ḡ (i.e. subgraphs
containing a directed path between each pair of nodes).
Clearly each feasible cycle corresponds to a directed
cycle in Ḡ, and all nodes in a directed cycle must
belong to the same strongly connected component of
Ḡ. Arcs between two strongly connected components
cannot be part of a feasible cycle.
Lemma 14 A valid cycle lies within one strongly con-
nected component of̄G.
A valid cycle must contain an eligible arc, so if a
strongly connected component contains no eligible
arc, it contains no valid cycle. On the other hand, if it
contains an eligible arc, this arc is included in at least
one directed cycle of̄G (i.e. in at least one feasible
cycle), so a valid cycle exists. We have thus proved the
following.
Lemma 15 A valid cycle exists if and only if a strongly
connected component of̄G contains an eligible arc.
Lemma 10 states that a valid cycle contains at least three
nodes, so strongly connected components that consist of
less than three nodes cannot contain valid cycles. One
may also note that all arcs in̄G are reversed if the order
of the SP-graphs are changed. The strongly connected
components are the same in the reversed graph as in the
original graph, so it suffices to investigate each pair of
SP-graphs once.

We now specify the two new methods for finding
valid cycles. The first method, VC1, finds strongly con-
nected components using Tarjan’s method, [22], and is

similar to VC0 in that it uses reductions in order to re-
duce the size of the graph.

The following parts ofḠ cannot be part of a valid
cycle, and can therefore be removed.
• All arcs with endpoints in two different strongly con-
nected components.
• All strongly connected components with less than
three nodes.
• All strongly connected components that does not con-
tain any eligible arc.

Comparing to VC0, we find the following. The main
difference is that we do not need to return to the re-
duction phase. Eliminating a whole strongly connected
component does not affect the other components. Fur-
thermore, VC0 needs to use a shortest path method in
order to try to find a valid cycle, starting from one end-
point of a certain eligible arc and searching for a path
to the other endpoint of the eligible arc. If no path ex-
ists between these two nodes, the arc is removed, and
the original reduction phase is reentered. In the new
methods, however, we know that a valid cycle exists
and it can easily be found by a simple depth first search
(DFS) between the endpoints of the eligible arc. Just as
in VC0, we have the following result.
Lemma 16 If the graph is completely eliminated by the
reduction phase, there exists no valid cycle with the two
SP-graphs considered.
Let us now present this method in an algorithmic form.
First we give Tarjan’s method.S is a stack.

Tarjan’s method
(1) Setk = 1. Setv(i) = 1 ∀i ∈ N . SetS = ∅.
(2) For eachi ∈ N , if v(i) = 1 then do SEARCH(i).

Procedure SEARCH(k)
(1) Setv(i) = 0, n(i) = k andk = k + 1.
(2) Setl(i) = n(i), and pushi ontoS.
(3) For each nodej such that(i, j) ∈ A do:

If v(j) = 1 then
(a) SEARCH(j).
(b) Setl(i) = min(l(i), l(j)).
else if n(j) < n(i) and j is on S then l(i) =
min(n(j), l(i)).

(4) If l(i) = n(i) then repeat popx fromS until x = i.
The main algorithm will be as follows.

Algorithm VC1
(1) Choice of SP-graphs:If all pairs of SP-graphs

have been compared, go to 6. Otherwise choose
two SP-graphsAl′ and Al′′ not previously com-
pared.

(2) Graph construction: Construct a graphḠ by
adding the arcs inAl′ to the reversed arcs ofAl′′ .
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Arcs in (Al′ \ Al′′ ) ∪ (Al′′ \ Al′) are marked
eligible.

(3) Reduction phase: Find the strongly connected
components in̄G with Tarjan’s method.
Remove all arcs between two different strongly
connected components.
Remove all strongly connected components with
less then three nodes.
Remove all strongly connected components that
do not contain an eligible arc.
Remove nodes with only one adjacent arc.

(4) Cycle check:If all nodes are eliminated: No valid
cycle found. Go to 1. Otherwise, there exists a
valid cycle. (Optionally: Terminate the method.)

(5) Find valid cycle: Form a valid cycle by finding an
eligible arc(i, j) ∈ Al′′ and a path from nodej to
nodei, or an eligible arc(i, j) ∈ Al′ and a path
from nodei to nodej. Terminate the method. No
compatible weights exist.

(6) No valid cycle found: No valid cycle exists. Ter-
minate the method. (Compatible weights may ex-
ist.)

If the optional stopping criterion in step 4 is used, we
will know that there exists a valid cycle, but we will not
find it. In step 5, the path is found by a simple depth-
first search.

The second method, VC2, uses Kosaraju’s method,
[20], for finding strongly connected components. The
method is based on two depth-first searches. The first
DFS starts at an arbitrary node and number the nodes in
postorder (i.e. the nodes are numbered in the order the
DFS backs up from the nodes). The graphḠ is then re-
versed, and the next DFS starts at the node with highest
number. A strongly connected component is found each
time the second DFS terminates, and the nodes reached
belong to the same component. As long as the second
DFS have not reached all nodes, the DFS is restarted
at the unreached node with highest number. When all
strongly connected components are found, we investi-
gate if some component contains an eligible arc. If this
is the case, a valid cycle can be found by a DFS. The
other possible result is that no strongly connected com-
ponent contains an eligible arc, and Lemma 15 then tells
us that no valid cycle exists.

Kosaraju’s method
(1) Perform a DFS of̄G and number the nodes in order

of completion of the recursive calls.
(2) Reverse the directions of every arc in̄G.
(3) Perform a DFS on the reversed graph, starting the

search from the highest numbered node according

to the numbering assigned in step 1. If the DFS
does not reach all nodes, start the next DFS from
the highest numbered remaining node.

(4) Each tree in the resulting spanning forest is a
strong component of̄G
Algorithm VC2
Replace steps 3 and 4 in VC1 by the following:

3. Find strongly connected components: Find
the strongly connected components ofḠ with
Kosaraju’s method.

4. Cycle check:If no strongly connected component
contains an eligible arc: No valid cycle found. Go
to 1. Otherwise, there exists a valid cycle. (Op-
tionally: Terminate the method.)

Theorem 4 After a finite number of steps, algorithms
VC1 and VC2 will terminate, either with a valid cycle
or a proof that no valid cycle exists.
The complexity of finding strongly connected compo-
nents in a graph withn nodes anda arcs isO(n + a)
both with Tarjan’s method and with Kosaraju’s method,
see [1] and [13]. These methods are used on graphs with
|N | nodes and at most2|AL| arcs, where|AL| denotes
largest number of arcs in an SP-graph. An eligible arc
can be found inO(|AL|), so if m is the number of SP-
graphs, the complexity of VC1 and VC2 isO(m2(|N |+
|AL|)). For complete SP-graphs (i.e. extremely much
splitting) we would haveO(|AL|) = O(|N |2), while for
simple spanning trees we getO(|AL|) = O(|N |), and
for non-spanning SP-graphs|AL| might be even less.

If a valid cycle is found, modification of the SP-
graphs can be made as described in [7], in order to pro-
duce compatible weights. In short, one can either make
a feasible cycle infeasible, by removing an arc from one
SP-graph, or make an improving cycle non-improving,
by adding an arc to one SP-graph (and thereby making
an eligible arc non-eligible). Moving an arc within an
SP-graph may sometimes yield both effects at the same
time. In [7], we only considered spanning SP-graphs,
which often made removing arcs from SP-graphs impos-
sible. Allowing SP-graphs that are not spanning, makes
removing arcs from SP-graphs a possible alternative to
adding or moving arcs.

6. The symmetric single path case

Some network operators require that the routing
paths should be symmetric, which means that the same
path should be used in both directions between two
nodes. Some operators also require that the routing
paths should be unique. We call this case thesymmet-
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ric single path case. Our models have been developed
for the more general case, i.e. when the desired paths
not necessarily have to be symmetric and unique, but
we can deal with the symmetric single path case as
well. For our models, the symmetric single path case is
obtained by including a single path in each setSk, and
by ensuring that the reversed path is included in some
other setSk′ .

The symmetric single path case has previously been
treated by using undirected graphs. The desired routing
paths are represented by undirected paths, and we letφl

denote the desired path between nodeol and nodedl.
Mathematical models for the symmetric single path case
in undirected graphs are presented in [3]. A directed
model also allows the same weight to be used, but may
also give different weights for the different directions.
Some operators require that the same weight should be
used in both directions of a link, which is possible by
using an undirected model (or a directed model with the
constraintswij = wji ∀(i, j) ∈ A, see e.g. [5]).

Let us now describe how undirected paths can be
converted to symmetric SP-graphs, so that our methods
can be used. Two SP-graphs are introduced for each
undirected pathφl, andAl′ consists of the arcs in the
directed path fromol to dl visiting the same nodes in
the same order asφl, andAl′′ contains the reversed arcs
in Al′ . This way we will consider both “directions” of
each undirected path, so all information from the given
undirected paths is retained. Furthermore, the directed
path in each SP-graph can be found in an undirected
path, so no additional requirements have been intro-
duced. The symmetric single path case has now been
converted from undirected paths to directed SP-graphs,
so P4 can be used for finding compatible weights and
a valid cycle method can be used for explaining why
no compatible weights exists. We may also use Lemma
7 and Lemma 8 in order to combine the SP-graphs as
much as possible.

If this approach is used on undirected paths that are
suboptimal, the constructed SP-graphs will be subpath
consistent. It then follows from Corollary 2 that two SP-
graphs with the same origin can be combined to an out-
tree with two branches. The combined SP-graph con-
tains the same paths as the original two SP-graphs, so it
is subpath consistent with any other SP-graph. We can
therefore use Lemma 7 repeatedly and combine all SP-
graphs with the same origin to an out-tree with several
branches. (Due to Lemma 8, we may also use subpaths
of the original paths.) The same holds for SP-graphs
with the same destination, so we may also construct

SP-graphs formed as in-trees.
In [3] two necessary conditions for the existence of

compatible weights, stronger than subpath consistency,
are given for the undirected case, namely thecyclic com-
patibility conditionand thegeneralized cyclic compat-
ibility . In Section 7., examples from [3] are treated by
the above approach. We find valid cycles in instances
not satisfying the cyclic compatibility condition, in in-
stances satisfying the cyclic compatibility condition and
not satisfying the generalized cyclic compatibility con-
dition, and in instances satisfying the generalized cyclic
compatibility condition. In other words, these cyclic
conditions are not stronger necessary conditions for the
existence of compatible weights than the absence of
valid cycles. We have not been able to prove that there
exists a valid cycle for each instance without compat-
ible weights where the cyclic compatibility condition
or the generalized cyclic compatibility condition is not
satisfied, but have not found any instance satisfying
the cyclic compatibility condition and the generalized
cyclic compatibility condition that has no valid cycle
either.

In [3], no efficient method for checking if the cyclic
compatibility condition or the generalized cyclic com-
patibility condition is satisfied is given. The straight-
forward way would be to enumerate for each edge all
cycles containing the edge and checking all the desired
paths with both endpoints on the cycle. Doing this, as
described here, can obviously not be done in polyno-
mial time. We believe that a more efficient approach is
to convert the undirected routing paths to directed SP-
graphs, and then search for valid cycles. This can be
done in polynomial time.

7. Examples

Let us first study an example from [7]. Two subpath
consistent SP-graphs are shown in Figures 2a-b. We
construct the graph̄G by adding the arcs inA2 and the
reversed arcs inA1, see Figure 2c. Note that arc(1, 6) is
the only arc which is included in both SP-graphs, so all
arcs except(1, 6) are eligible. The strongly connected
components of̄G are{1, 6} and{2, 3, 4, 5}, see Figure
2d. The first strongly connected component has only
two nodes, and in addition contains no eligible arc, so
it is removed. The second component contains several
eligible arcs, so we know that a valid cycle exists. We
get the cycle 2 - 4 - 3 - 5 - 2, and conclude that there
do not exist any compatible set of weights for these two
SP-graphs.
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(d)Fig. 2. (a) The in-treeA1; (b) the out-treeA2; (c) the graph
Ḡ; (d) the strongly connected components ofḠ.

The next example comes from [3]. Five undirected
paths are given; 5-6, 1-4-5, 2-3-5, 3-1-6 and 4-2-6. The
paths do not satisfy the cyclic compatibility conditions,
so we know that there do not exist any compatible
weights. The directed SP-graphs are constructed as de-
scribed in Section 6.. Figures 3a-b show those that give
a valid cycle. When a valid cycle method is applied,
these SP-graphs are combined to the directed graph in
Figure 3c, and its strongly connected components are
{1, 2, 3, 4} and{5, 6}, see Figure 3d. The last one does
not contain any eligible arc, but the first one does, so a

1

4 3

5

6

2

(a)

1

4 3

5

6

2

(b)

1

4 3

5

6

2

(c)

B B

B

BF

F F

F F
B

1

4 3

5

6

2
B

BF

F F
B

(d)
Fig. 3. (a) The out-tree from node 5; (b) the in-tree to node 6;
(c) the graphḠ; (d) the strongly connected components ofḠ.

valid cycle is found.
In [3] another, similar, example is given, which satis-

fies the cyclic compatibility condition, but not the gener-
alized cyclic compatibility condition. However, exactly
the same valid cycle as found in the previous example
is present. So, at least in these two examples, the dif-
ference between the cyclic compatibility condition and
the generalized cyclic compatibility condition seems to
be unrelated to the possible existence of a valid cycle.

Our next example also comes from [3]. It is based on
the undirected graph and the undirected routing paths in
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Fig. 4. (a) Undirected graph and routing paths; (b) the in-tree
to node 3; (c) the in-tree to node 5.

Figure 4a. These paths satisfy all necessary conditions
presented in [3], but there exists no compatible set of
weights.

A set of SP-graphs is constructed as described in
Section 6.. Now we apply a valid cycle method, and
a valid cycle is found when the in-tree to node 3 and
the in-tree to node 5 are investigated, see Figures 4b-c.
The valid cycle method finds three strongly connected
components, namely{1, 2, 4, 6}, {3} and{5}. The first
component consists of four eligible arcs, and a depth
first search results in the valid cycle 1-6-4-2-1. If we
analyze the valid cycle, we find that the eligible arcs
originate from the routing paths 2-1-3, 3-4-6, 2-4-5 and
5-1-6. It can be verified that discarding any of these
routing paths eliminates this particular conflict.

Let us finally consider an example which shows
the advantages of combining SP-graphs. There is no
valid cycle for the SP-graphsA1 = {(1, 3), (3, 2)},
A2 = {(1, 4), (4, 5)}, A3 = {(6, 4), (4, 2)} and
A4 = {(6, 3), (3, 5)}. Now combineA1 and A2 into
A5, andA3 andA4 into A6, which is possible accord-
ing to Lemma 7. Applying VC1 or VC2 toA5 and
A6 yields the strongly connected components{1}, {6}
and {2, 3, 4, 5}. The last component contains several
eligible arcs, forming the valid cycle 2-3-5-4-2.

8. Implementation and computational tests

Computational tests are performed on random net-
works with 10 to 90 nodes (RAND) and on real life net-
works from the survivable network design data library
[21]; COST266,DI-YUAN , FRANCE, GERMANY50, and
PIORO40. We use five different groups of test instances;
RC, TR, RND, RM1 andRM5. The computer used is a
2x750 MHz Sun-Blade-1000 with 3Gb physical mem-
ory.

The test instances have been generated by computing
spanning shortest path graphs to each node in the net-
work with respect to a set of weights, and then changing
one or several SP-graphs such that it is not certain that
compatible weights exist. The instances in groupRC

are generated by adding one arc to a random SP-graph.
(The added arc belongs to a shortest path if the weight
is decreased by one.) A random arc is added to a ran-
dom SP-graph inTR, and a random number (between 1
and|N |) of random arcs are added to random SP-graphs
in RND. The instances in groupRM1 are generated by
removing one arc from a random SP-graph, and the in-
stances in groupRM5 are generated by repeating this
five times. We ensure that each SP-graph is connected.
Furthermore, an instance is discarded if a modified SP-
graph contains a directed cycle, and this is why groups
TR andRND sometimes contain fewer instances.

We have also generated test instances with non-
spanning SP-graphs. A spanning SP-graph contains
routing paths from one or several origins to one des-
tination, and we generate non-spanning SP-graphs by
computing the setsAS

l (ol, dl) for each origin and desti-
nation of each SP-graph. The non-spanning SP-graphs
can be combined back to the spanning SP-graphs us-
ing Lemmas 7 and 8, so a non-spanning instance has
compatible weights if the spanning instance it was gen-
erated from has compatible weights. This also means
that the spanning and non-spanning versions contain
the same information, so they constitute two different
ways of solving the same basic problem.

Computational results forRAND networks and in-
stances with spanning SP-graphs are summarized in Ta-
ble 1. We use instances from groupsRC and TR. N

denotes the number of nodes in the group,I denotes
the number of instances in the group, andNA denotes
the average number of arcs in the SP-graphs. Column
NV shows the number of instances with valid cycles,
and the remaining two columns show the solution times
for VC1 and VC2. These columns show the total solu-
tion time (in seconds) for all instances in the different
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groups, so by dividing these numbers with the numbers
of instances, the average time for one instance can be
obtained.

Table 1

N I NA NV VC1 VC2
10 40 9.8 18 0.02 0.08
15 40 15.1 34 0.04 0.06
20 40 20.6 33 0.09 0.10

RAND 30 40 32.6 33 0.45 0.32
40 40 42.8 39 1.10 0.78
50 40 53.3 39 1.97 1.39
90 40 101.4 38 11.30 8.48

Computational results forRAND networks
and spanning SP-graphs

If we compare the solution times for VC1 and VC2,
we find that VC1 is faster for smaller instances and that
VC2 is faster for larger instances. VC0 was applied to
the same random instances (with 10-30 nodes) in [6].
Comparing the solution times for VC0 with the ones ob-
tained for VC1 and VC2, we find that the newer methods
are up to 500 times faster then the original method. VC1
and VC2 has time complexityO(m2(|AL|+ |N |)) and
VC0 has time complexityO(m2|N |2|AL|) (reduced to
O(m2|N |) for the single path case), wherem is the
number of SP-graphs andAL is the SP-graph with
the largest number of arcs. However, VC0 was imple-
mented in Tcl/Tk (www.tcl.tk) within the framework of
the graphical package VINEOPT (www.vineopt.com).
Tcl/Tk is a scripting language and much slower than an
implementation in C (VC1) and C++ (VC2).

Table 2 shows computational results obtained for
spanning SP-graphs and real-life networks. The solution
times for the two methods are very similar. The average
solution times per instance are smaller than 0.04 sec-
onds for all groups, so we conclude that both methods
work well for these types of instances.

In [6], the LP-problem P5 was solved for the same in-
stances, with the codeLPSOLVE(lpsolve.sourceforge.net).
We find, for example, that theCOST266 instances took
approximately 40 seconds per instance on average, the
PIORO40 instances approximately 200 seconds and the
GERMANY50 instances approximately 500 seconds.
We thus conclude that it ismuchquicker to use VC1
or VC2 than to try to solve P5. We also recall that P5
cannot be used for non-spanning instances; instead we
would have to use P3, which has more constraints and
will take even longer time to solve.

Table 3 shows computational results obtained for
the RAND networks and the non-spanning SP-graphs.
Column NS shows the average number of SP-graphs
in each group. As for the previous groups of test in-
stances, we find that VC1 is faster for smaller instances
and that VC2 is faster for larger instances.

We also find that test instances with non-spanningSP-
graphs requiremuchmore solution time than the span-
ning ones. (Recall that these non-spanning instances
contain the same paths as the spanning, and that they
are separated as much as possible.) For an instance with
90 nodes, a valid cycle method investigates approxi-
mately 4000 pairs of spanning SP-graphs or 5600000
pairs of non-spanning SP-graphs when no valid cycle
can be found. However, investigating a pair of spanning
SP-graphs require only 13% more solution time than a
pair of the non-spanning ones. Our conclusion is clearly
to combine SP-graphs as much as possible.

9. Conclusions

The problem of finding weights that gives prespec-
ified routing patterns in IP networks using the OSPF
protocol is considered. We discuss models that yield
compatible weights, and use them to analyze the situ-
ation when no compatible weights exist. We show that
the absence of valid cycles is a necessary condition for
the existence of compatible weights for possibly non-
spanning SP-graphs. We present two new methods for
finding valid cycles by investigating strongly connected
components. Computational experiments indicate that
the new methods are faster than the previously known
method. We show that SP-graphs with certain properties
can be combined into a single SP-graph. Computational
experiments indicate that the methods are faster if SP-
graphs are combined as much as possible. Furthermore,
we show how to apply our methods to the symmetric
single path case (instead of using undirected models).

An interesting direction for future research is to in-
clude a valid cycle method into a framework for find-
ing the optimal design of an OSPF network, or into a
framework for optimizing the performance of existing
OSPF networks.
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Table 2

Computational results for real-life networks and spanningSP-graphs.

COST266: 37 nodes, 114 arcs DI-YUAN : 11 nodes, 84 arcs
I NA NV VC1 VC2 I NA NV VC1 VC2

RC 30 38.56 25 0.47 0.34 30 10.94 3 0.02 0.05
TR 29 38.57 27 0.35 0.20 30 10.94 7 0.02 0.04

RND 30 38.96 30 0.08 0.03 30 11.33 15 0.01 0.06
RM1 30 38.51 26 0.36 0.26 30 10.76 2 0.03 0.05
RM5 30 38.40 30 0.03 0.03 30 10.45 7 0.02 0.03

FRANCE: 25 nodes, 90 arcs GERMANY50: 50 nodes, 176 arcs
I NA NV VC1 VC2 I NA NV VC1 VC2

RC 30 26.28 28 0.11 0.10 30 54.26 27 0.99 0.75
TR 30 26.28 28 0.10 0.12 29 53.91 29 0.50 0.27

RND 29 26.57 29 0.03 0.04 27 54.35 27 0.06 0.06
RM1 30 26.20 23 0.18 0.10 30 54.22 27 1.06 0.77
RM5 30 26.04 29 0.03 0.03 30 54.14 30 0.20 0.10

PIORO40: 40 nodes, 178 arcs
I NA NV VC1 VC2

RC 30 42.18 27 0.39 0.32
TR 30 42.18 27 0.49 0.27

RND 30 42.64 30 0.05 0.04
RM1 30 42.13 23 0.75 0.59
RM5 30 42.03 30 0.11 0.10

Table 3

Computational results forRAND networks and non-spanning SP-graphs.

N I NS NA NV VC1 VC2
10 40 59.9 2.09 18 0.36 1.16
15 40 115.4 2.89 34 1.55 3.11
20 40 210.2 3.25 33 5.83 9.43

RAND 30 40 422.8 4.10 33 48.44 59.36
40 40 762.0 4.93 39 243.67 245.67
50 40 1099.7 5.84 39 610.71 549.67
90 40 3344.0 8.66 38 14422.50 10690.67
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