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Abstract

Determining the “active manifold” for a minimization problem is a large step towards solving the problem. Many
researchers have studied under what conditions certain algorithms identify active manifolds in a finite number of
iterations. In this work we outline a unifying framework encompassing many earlier results on identification via the
Subgradient (Gradient) Projection Method, Newton-like Methods, and the Proximal Point Algorithm. This framework,
prox-regular partial smoothness, has the advantage of not requiring convexity for its conclusions, and therefore extends
many of these earlier results.
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1. Introduction

Our theme in this work is the idea of an “active man-
ifold”. To motivate our terminology, consider what is
perhaps the canonical example of a nonsmooth function
in optimization:

f(x) = max
i=1,2,...,n

fi(x),

where each functionfi : R
m → R is twice contin-

uously differentiable. Consider a local minimizerx̄ ∈
R

m satisfying the classical second-order sufficient con-
ditions: the set of “active” gradients{∇fi(x̄) : i ∈ I}
(whereI = {i : fi(x̄) = f(x̄)}) is linearly independent
and contains zero in the relative interior of its convex
hull, andf restricted to the “active manifold”

M = {x ∈ R
m : fi(x) = fj(x) for all i, j ∈ I}

grows quadratically around̄x. If we somehow knew the
active manifold (or equivalently the index setI), the
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problem of locally minimizing the nonsmooth function
f reduces to solving a set ofm+|I|+1 smooth equations
in m + |I| + 1 variablesx ∈ R

m, λ ∈ R
I , µ ∈ R:

∑

i∈I

λi∇fi(x) = 0

∑

i∈I

λi = 1

fi(x) = µ (i ∈ I).

Some traditional methods for constrained optimization
aim precisely to estimate the active setI. Our aim in
this work is to study how a variety of fundamental algo-
rithms “identify” a suitably generalized notion of “ac-
tive manifold” (the generalization we use is formally
defined in Definition 2..2).

Viewed in this light, the study of active manifolds
dates back to at least 1976, when it was noted that
if a minimization problem of the formminx∈S f(x)
had particularly favorable structure, certain algorithms
would terminate after a finite number of iterations, [1]
[2]. More precisely, an active manifold consisting of
a single point could be identified in a finite number
of iterations. We say an algorithmidentifiesan active
manifold if all iterates of the algorithm must lie on the
active manifold after a finite number of iterations.

Early examples of active manifold identification im-
posed restrictive conditions (S being a box, for exam-
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ple). By the early 1990’s it was found that, even in the
absence of finite termination, for favorably structured
problems the active manifold could be identified by var-
ious algorithms [3–12]. In these later works the “fa-
vorable structure” requirements for the problem were
greatly relaxed and more general notions of active man-
ifold were considered.

In this paper we consider a particular notion of active
manifold, and study the identification results that follow.
We do not aim to develop new algorithms that identify
active manifolds, (although we address this to a small
degree), instead our goal is to show how previous results
on active manifold identification can be understood in a
unifying framework:prox-regular partial smoothness.
In many cases this extends previously known results by
removing the convexity assumptions on the constraint
sets and objective functions.

The idea of prox-regularity was first introduced by
Poliquin and Rockafellar in [13]; we use an equiv-
alent definition [14, Thm 1.3]. Simply put, a set is
prox-regular at a point if the projection mapping is
single-valued near that point. Both convex sets and sets
defined by a finite number of smooth constraints are
prox-regular [15, Ex 13.30] and [15, Ex 13.33] (with
[15, Def 10.29]), so prox-regularity includes most (if
not all) of the constraint setsS examined in previous
approaches to active manifold identification. As such,
prox-regularity is an elegant way to unify properties of
convex or smoothly constrained sets.

Partial smoothness was introduced in [16] to study
stability properties of active manifolds. The full defi-
nition appears in Section 2. of this paper: for now we
observe, loosely speaking, that a set is partly smooth
at a point along an active manifold if the normal cone
at points on the manifold behaves continuously and a
certain regularity condition holds.

A subsequent paper [17] showed that when prox-
regularity and partial smoothness are combined, the pro-
jection mapping is not only single-valued (as ensured
by prox-regularity), but is even smooth and can be used
in a certain sense to identify the active manifold of the
partly smooth set or function [17, Thm 3.3, Thm 4.1
& Thm 5.3]. In this paper we apply this result to var-
ious optimization algorithms and show how, as a con-
sequence, many of the previous results on finite con-
straint identification can be recaptured. Specifically we
show how results onSubgradient (Gradient) Projection
Methods[1,3,4,10,11]Newton-like Methods[5,11], and
theProximal Point Algorithm[2,8,12] can all be under-
stood in this single framework.

It should be noted that, although our framework does
remove the assumptions of convexity from the finite
identification process, our goal is not so much a broader
framework as a more unified theory. With the excep-
tions of [5] and [11], previous results on active mani-
fold identification focused on a single algorithm. Nei-
ther [5] nor [11] consider the proximal point method or
the subgradient projection method.

Computational practice is not our primary concern
here: most of the algorithms we analyze are concep-
tual rather than implementable. When outlining iterative
methods, we do not discuss step size choices and stop-
ping criteria, instead focusing on the core idea of the
algorithm. In particular, we sidestep the key question of
the convergence of particular algorithms, by simply as-
suming convergence.Nonetheless, the analysis sheds in-
teresting light on both conceptual algorithms and prac-
tical variants, and our assumptions are no stronger than
the earlier frameworks we seek to unify.

1.1. Notation

We follow the notation of [15] and refer there for
many basic results.

We denote the distance of a pointx ∈ R
m to a set

S ⊂ R
m and the projection of the point onto the set by

dist(x, S) := inf{|x − s| : s ∈ S}

and
PS(x) := arg min{|x − s| : s ∈ S}.

Here,| · | denotes the Euclidean norm.

We also make use of theregular (or Fréchet) subdif-
ferentialof a functionf at a pointx̄ ∈ R

m wheref is
finite,

∂̂f(x̄) :={v ∈ R
m :f(x)≥f(x̄)+〈v, x−x̄〉+o(|x−x̄|)}

(the regular subdifferential being empty at any point
wheref is infinite), and thesubdifferential,

∂f(x̄) := lim sup
x→x̄, f(x)→f(x̄)

∂̂f(x)

(also known as thelimiting Fréchet subdifferential).
Correspondingly we have theregular (or Fréchet) nor-
mal coneand the(limiting) normal cone, to a setS at
a pointx̄ ∈ S, defined by

N̂S(x̄) := ∂̂δS(x̄) and NS(x̄) := ∂δS(x̄),
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(whereδS is the indicator function ofS). Both normal
cones are defined to be empty for anyx̄ /∈ S. We say
S is (Clarke) regularat x̄ ∈ S if it is locally closed at
x̄ and these two normal cones agree. Furthermore, we
sayf is regular at x̄ if its epigraph

epi f := {(x, r) ∈ R
m × R : r ≥ f(x)}

is regular at(x̄, f(x̄)): in this case,̂∂f(x̄) = ∂f(x̄).
We refer to a point̄x as acritical point for a regular

functionf if 0 ∈ ∂f(x̄). If 0 ∈ rint ∂f(x̄) (whererint
denotes the relative interior) we callx̄ a nondegenerate
critical point, and if 0 ∈ int∂f(x̄) we call x̄ a strict
critical point. When we consider minimizing aC1 func-
tion f over a constraint setS, the condition of being
a critical point, nondegenerate critical point, or strict
critical point become, respectively,−∇f(x̄) ∈ NS(x̄),
−∇f(x̄) ∈ rintNS(x̄) and−∇f(x̄) ∈ intNS(x̄).

2. Building Blocks and Tools

The primary goal of this paper is to develop a frame-
work that encompasses many of the past results on
active manifold identification. The framework we de-
velop is based on two ideas: prox-regularity and partial
smoothness. We define these concepts next. We begin
with prox-regularity.
Definition 2..1 (Prox-regularity) A closed setS ⊆
R

n is prox-regularat a point x̄ ∈ S if the projection
mappingPS is single valued near̄x.

A lower semi-continuous functionf : R
m → R̄ is

prox-regularat a pointx̄ with f(x̄) finite if its epigraph
is prox-regular at(x̄, f(x̄)).

Like prox-regularity, we define partial smoothness in
terms of sets and then form the definition for functions
via epigraphs.
Definition 2..2 (Partly Smooth) A set S ⊂ R

m is
partly smoothat a pointx̄ ∈ S relative to a setM ⊆ S
if M is a smooth (C2) manifold aboutx̄ and the fol-
lowing properties hold:

(i) S ∩M is a neighbourhood of̄x in M;
(ii) S is regular at all points inM near x̄;
(iii) NM(x̄) ⊆ NS(x̄) − NS(x̄); and
(iv) the normal cone mapNS(·) is continuous at̄x

relative toM.
We then refer toM as theactive manifold(of partial
smoothness).

If a function f : R
m → R̄ is finite at x̄, we call

it partly smoothat x̄ relative to a setM if M is a

smooth manifold about̄x andepi f is partly smooth at
(x̄, f(x̄)) relative toM̂ := {(x, f(x)) : x ∈ M}.

Note that the definition of partly smooth functions
implicitly forces f to be smooth onM, as otherwise
M̂ is not a manifold. The original definition of partial
smoothness based directly on the function can be found
in [16], while the equivalence of this definition to the
original can be found in [17, Thm 5.1].

As mentioned, all convex sets are prox-regular. The
next example shows that with a standard constraint qual-
ification, sets defined by a finite number of smooth con-
straints are also partly smooth.
Example 2..1 (Finitely Constrained Sets)Consider
the set

S := {x : gi(x) ≤ 0, i = 1, 2, . . . , n},

wheregi ∈ C2.
For any pointx̄ ∈ S defineAS(x̄) := {i : gi(x̄) =

0}. If the active gradientsof S at x̄, {∇gi(x̄) : i ∈
A(x̄)}, form a linearly independent set, thenS is prox-
regular at̄x and partly smooth there relative to the active
manifold

Mg := {x : AS(x) = AS(x̄)}

([13, Cor 2.12] and [16, 6.3]). 2

A second example of prox-regular partial smoothness
is generated by examining strict critical points.
Example 2..2 (Strict Critical Points) If the setS ⊆
R

n is regular at the point̄x ∈ S and the normal cone
NS(x̄) has interior, thenS is partly smooth at̄x relative
to the manifold{x̄}.

Indeed, as{x̄} is a singleton conditions (i) and (iv)
hold true. Condition (ii) is given, while condition (iii)
follows fromNM(x̄) = R

n andNS(x̄) having interior.
2

Examples 2..1 and 2..2 show that the class of prox-
regular partly smooth sets encompasses a large collec-
tion of commonly studied constraint sets. Both of these
examples are easily transferable to functions.

Our use of prox-regular partial smoothness hinges on
the next theorem, a small extension of [17, Thm 4.1 &
5.3].
Theorem 1 (Active Manifold Identification) Consider
a setS that is partly smooth at the point̄x relative to
the manifoldM and prox-regular atx̄. If the normal
vectorn̄ is in rintNS(x̄) and the sequences{xk} and
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{dk} satisfy
xk → x̄ anddk → n̄ (1)

then

dist(dk, NS(xk)) → 0 iff xk ∈ M for all large k.
(2)

Similarly, suppose the functionf is partly smooth
at the pointx̄ relative to the manifoldM, and prox-
regular there, with0 ∈ rint∂f(x̄). If yk → x̄ and
f(yk) → f(x̄), then

dist(0, ∂f(yk))→0if and only ifyk∈M for all largek.

Proof: (⇒) See Theorem 4.1 of [17].
(⇐) Note if xk ∈ M for all k large, then condition

(iv) of partial smoothness impliesNS(xk) → NS(x̄).
Applying regularity (condition (ii) of partial smooth-
ness) and [15, Cor 4.7] we seedist(dk, NS(xk)) =
dist(0, NS(xk) − dk) → dist(0, NS(x̄) − n̄) = 0.

The case of functions is found in [17, Thm 5.3].2

3. Algorithms

3.1. Subgradient (Gradient) Projection Methods

As outlined in [1, p. 174], the gradient projection
algorithm first appeared in the mid 1960’s through
the works of Goldstein (1964) and Levitin and Polyak
(1965). The idea is to use gradient information to de-
termine a descent direction, and then apply projections
to maintain feasibility. Extending the idea to nondif-
ferentiable functions is loosely a matter of replacing
gradient vectors with subgradient vectors. This leads to
the algorithm defined by

xk+1 ∈ PS(xk − skwk), (3)

wheresk > 0 is a step size andwk ∈ ∂f(xk). When
the functionf is C1 the term gradient projection is used,
since the subdifferential consists of the single gradient
vector.

In [1] Bertsekas shows that, with several assumptions
on the directional derivatives and Hessian mapping of a
function, the active manifold of a minimization problem
over a “box” can be identified in a finite number of
iterations [1, Prop 3]. In this case the active manifold is
the face of the box on which the solution lies.

In 1987 Dunn replaced the assumptions of Bertsekas
on the directional derivative and Hessian mapping with

the restriction that the minimum be a “uniformly iso-
lated zero” and a nondegenerate critical point [3, Thm
2.1]. His work shows that, under these conditions, the
active manifold for a linearly constrained minimization
problem could be finitely identified [3, Thm 2.1]. Cala-
mai and Moré expanded Dunn’s results into an if and
only if statement on active manifold identification for
linear constraint sets [4, Thm 4.1]. Like Dunn, the work
of Calamai and Moré assumes nondegeneracy.

In 1993 Wright moved beyond linear constraints and
considered what he calledidentifiable surfaces. Identi-
fiable surfaces are defined to be manifolds contained in
the convex constraint set with respect to which the nor-
mal cone is continuous [11, Def 2]. (Although Wright
never uses the term “manifold”, his definition clearly
makes use of one.) Wright showed the projected gra-
dient method would identify such surfaces in a finite
number of iterations when the algorithm converged to
a nondegenerate critical point.

In the case of nondifferentiable functions, active
manifold identification for thesubgradient projection
methodhas been studied by Flåm [10]. In particu-
lar, [10, Thm 3.1 & 4.1] shows that a nondegeneracy
assumption leads to finite identification of the active
manifold for constraint sets defined by a finite number
of smooth constraints via the subgradient projection
method. Like Theorem 2 below, these results require
the assumption that the subgradients used to generate
the iterates of the subgradient projection algorithm
converge.

Theorem 2 below encompasses the results of Bert-
sekas, Dunn, Calamai and Moré, Flåm and Wright, and
extends them to a nonconvex setting. Like them, we as-
sume that a collection of iterates generated via the sub-
gradient projection method converge to nondegenerate
critical point and that the step sizes used are bounded
below. For gradient projection no further assumptions
are required, while in the case of subgradient projec-
tion we assume (like Flåm) that the subgradient vectors
also converge. Under these conditions if the constraint
set is prox-regular and partly smooth then finite identi-
fication of the active manifold occurs. The sets used by
Bertsekas, Dunn, Calamai and Moré, and Flåm are eas-
ily confirmed to be both prox-regular and partly smooth
while the active manifolds they consider are precisely
the active manifold of partial smoothness. The equiva-
lence of identifiable surfaces to convex partly smooth
sets is shown in [16, Thm 6.3].
Theorem 2 For a functionf and a constraint setS,
suppose the Subgradient Projection method is used to
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create iterates{xk} which converge tōx. Further sup-
pose that eitherf ∈ C1, or that these iterates are gen-
erated at each iteration by using subgradient vectors
wk ∈ ∂f(xk) that converge tow̄. If the step sizesk

satisfieslim infk sk > 0, then

dist(−wk, NS(xk)) → 0.

In this case, ifS is prox-regular atx̄ and partly smooth
there relative to a manifoldM and−w̄ ∈ rintNS(x̄),
thenxk ∈ M for all large k.
Proof: First note thatf ∈ C1 can be considered a spe-
cific example of the converging subgradient case (set
wk = ∇f(xk) → ∇f(x̄) = w̄). As such we only con-
sider the case when the iterates are created by using
subgradient vectorswk ∈ ∂f(xk) which converge tōw.

Recall, if y ∈ PS(x) thenx − y ∈ NS(y) [15, Ex
6.16 & Prop 6.5]. Applying this to the iteration point
xk+1 immediately yields

xk − skwk − xk+1 ∈ NS(xk+1),

so (asNS is a cone)

1

sk

(xk − xk+1) − wk ∈ NS(xk+1).

Thus we have,
dist(−wk+1, NS(xk+1)) ≤ | − wk+1 − ( 1

sk

(xk−
xk+1) − wk)|

≤ 1
sk

|xk+1 − xk|+
|wk − wk+1|.

As xk and wk converge, andsk is bounded
below, the right hand side converges to 0. Thus
dist(−wk, NS(xk)) → 0 as desired.

Theorem 1, withdk = −wk andn̄ = −w̄, completes
the proof. 2

3.2. Newton-like Methods

We now turn our attention toNewton-likemethods.
This classical method can be outlined as follows: find

x̃k ∈ arg min
x

{〈∇f(xk), x − xk〉 +
1

2
〈x − xk,

Hk(x − xk)〉 : x ∈ S},
then setxk+1 = xk + sk(x̃k − xk), for some step size
sk (Hk is selected to somehow approximate the Hessian
of f while simultaneously ensuring convergence).

In 1988 Burke and Moré examined Newton-like

methods and the idea of “open facets”, a generalization
of polyhedral faces to any surface of a set that locally
appears flat, proving that such methods identify the
open facet on which a nondegenerate critical point lies
in a finite number of iterations [5, Thm 4.1]. In 1993
Wright extended the work of Burke and Moré from
open facets to identifiable surfaces.

Theorem 3 below encompasses both of these works,
as all open facets are identifiable surfaces, and identi-
fiable surfaces are equivalent to partial smoothness in
the convex case [16, Thm 6.3]. It further extends the
above results by replacing the condition of convexity
with prox-regularity. We assume that the sequence of
iterates created by the Newton-like method converges
to a nondegenerate critical point, that the step sizes are
eventually equal to 1, and the matricesHk are bounded
in norm. All of these conditions are also assumed in [5]
and [11].

In [9], Al-Khayyal and Kyparisis showed that if
the optimal point of a convex constrained optimiza-
tion problem was a strict critical point then convergent
algorithms could be modified to ensure finite conver-
gence to the solution. Their technique involved creating
a Newton-like point for every iteration, and proving
that, if the original algorithm converges, then these
points must converge finitely [9, Thm 3.1]. Although
Example 2..2 strongly suggests that this result can be
encompassed in Theorem 3 below, the convergence of
the Newton-like points relies heavily on the local strict
convexity of the constraint set and cannot be easily
assured without it. A solution to this problem can be
found in [21].

Theorem 3 Consider the problem of minimizing aC1

functionf over a constraint setS. Suppose a Newton-
like method is used to generate a sequence of iteratesxk

that converge tōx ∈ S. If eventually the step sizesk is
always 1, and the matricesHk are uniformly bounded,
then

dist(−∇f(xk), NS(xk)) → 0.

In this case, ifS is prox-regular at x̄ and partly
smooth there relative to a manifoldM and−∇f(x̄) ∈
rintNS(x̄) thenxk ∈ M for all large k.

Proof: Without loss of generality we assume the step
size is1 for all k.

Define the function

qk(x) := ∇f(xk)(x − xk) +
1

2
〈x − xk, Hk(x − xk)〉.

Note that the algorithm begins by finding̃xk a mini-
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mizer of qk over S. Thus−∇qk(x̃k) ∈ NS(x̃k) [15,
Thm 8.15]. This yields

dist( −∇f(x̃k), NS(x̃k)) ≤ |∇f(x̃k) −∇qk(x̃k)|
= |∇f(x̃k) −∇f(xk) − Hk(x̃k − xk)|
≤ |∇f(x̃k) −∇f(xk)| + ||Hk|| |x̃k − xk|.

Since the step size is always one,xk+1 = x̃k, thus
dist(−∇f(xk), NS(xk))

≤ |∇f(xk+1) −∇f(xk)| + ||Hk|| |xk+1 − xk|. (4)

As Hk is bounded,f ∈ C1, and xk converges we
must have the right hand side converge to zero. Thus
dist(−∇f(xk), NS(xk)) → 0.

Applying Theorem 1 withdk = −∇f(xk) and n̄ =
−∇f(x̄) completes the proof. 2

3.3. Proximal Point Methods

To study the proximal point algorithm we define the
proximal (or Moreau) envelopeand theproximal point
mapping:

eR(x) := miny{f(y) + R
2 |y − x|2},

PR(x) := argminy{f(y) + R
2 |y − x|2}.

A function is calledprox-boundedif there exists some
point and scalar for which the proximal envelope is
finite.

The proximal point method was first introduced by
Martinet in [18, Sec 4]. The method selects its iterates
by solving

xk+1 ∈ PR(xk).

In 1976 Rockafellar showed some of the first finite
convergence results for the proximal point algorithm
[2]. Specifically, strict critical points of a convex func-
tion can be identified via a finite number of iterations of
the proximal point algorithm. He further showed that in
the case when the function is polyhedral, the proximal
point algorithm identifies the active face of the poly-
hedron of the minimization problem regardless of the
behaviour of the subdifferential [2, Prop 8].

Ferris furthered this work by considering convex
functions which grew sharply in directions away from
the set of minima (see [8, Def 1]). For such functions
the proximal point method was shown to converge in
a finite number of iterations [8, Thm 6]. Ferris’s ideas
are captured in the sharpness conditions of partial
smoothness.

More recently, work by Mifflin and Sagastizábal on

“fast tracks” has shown that the proximal point method
identifies fast tracks for a convex function in a finite
number of iterations [12]. In [19] it is shown that convex
functions containing a fast track are always prox-regular
and partly smooth, with the active manifold of partial
smoothness being equivalent to the fast track.

Theorem 4 below unifies the identification aspects of
the works of Rockafellar, Ferris, and Mifflin and Sagas-
tizábal, and extends them to a nonconvex setting. Un-
like Rockafellar’s work, Theorem 4 makes the assump-
tion that the proximal point algorithm converges. In the
nonconvex case this is necessary, as without this as-
sumption the iterates may converge to an alternate crit-
ical point. The works of Ferris and Mifflin and Sagas-
tizábal, show that whenxk is sufficiently close to the
minimal value, the next iterate identifies the active man-
ifold. This is equivalent to the convergence assumption
we use. Like Theorem 4, Rockafellar, Ferris, and Mifflin
and Sagastizábal all use nondegenerate critical points;
furthermore, all the functions they consider are convex
(therefore prox-regular) and partly smooth.
Theorem 4 Suppose the functionf is prox-bounded,
and prox-regular at the point̄x. Suppose the proximal
point algorithm is used to generate a sequence of iter-
atesxk that converge tōx. If R > 0 is sufficiently large
then

f(xk) → f(x̄) and dist(0, ∂f(xk)) → 0. (5)

If f is furthermore partly smooth at̄x relative to a
manifoldM, and 0 ∈ rint ∂f(x̄), then for any point
z sufficiently close tōx one findsPR(z) ∈ M. Thus
xk ∈ M for all large k.

It is worth noting that in the case of a convex function
the phrase ‘R sufficiently large’ reduces to ‘R > 0’.

Before proving Theorem 4 we require a lemma relat-
ing proximal points and prox-regularity.
Lemma 5 [20, Thm 2.3] Suppose the functionf
is prox-bounded and prox-regular at̄x and that
0 ∈ ∂f(x̄). Then forR sufficiently large

(i) the proximal envelopeeR is C1 near x̄ with
eR(x̄) = f(x̄) and,

(ii) the proximal point mappingPR is single valued
and Lipschitz continuous near̄x, and satisfies
PR(x̄) = {x̄}.

As in Theorem 4, in the case of a convex function ‘R
sufficiently large’ reduces to ‘R > 0’. We now proceed
with the proof of Theorem 4.

Proof of Theorem 4: We begin by selectingR large
enough that Lemma 5 may be applied.
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Consider any sequence of pointszk converging tōx.
(Since Lemma 5 applies we assume the related proximal
points are unique, and setyk = PR(zk).)

By Lemma 5 (ii) we knowyk → x̄, thus R
2 |yk −

zk|2 → 0. CombiningeR(zk) = f(yk) + R
2 |yk − zk|2

with Lemma 5 (i) then shows thatf(yk) → f(x̄).
Next notice, asyk ∈ argmin{f(y) + R

2 |y − zk|2},
we must have0 ∈ ∂(f(·)+ R

2 | · −zk|2)(yk) for eachk.
This simplifies to

0 ∈ ∂f(yk) + R(yk − zk).

AsR(yk−zk) converges to 0 we havedist(0, ∂f(yk)) →
0.

Equation (5) is the special case whenzk = xk. The
rest of the result follows from Theorem 1. 2

4. Necessity of Nondegeneracy

Section 3. unifies many of the previous results on
active manifold identification under the framework of
prox-regular partial smoothness. To do this it repeatedly
makes use of Theorem 1, and therefore nondegenerate
critical points. In this section we provide three simple
examples showing the necessity of nondegeneracy in
identifying active manifolds.
Example 4..1 (Nondegeneracy and GradientProjec-
tion)
Consider the problem,

min{y : |(x, y)| ≤ 1, x ≥ 0}.

The constraint setS := {|(x, y)| ≤ 1, x ≥ 0} is convex
and partly smooth at the point(x̄, ȳ) := (0,−1) relative
to the active manifoldM := {(0,−1)}. Although this
point is the unique minimizer forf(x, y) = y overS,
it is not a nondegenerate critical point.

Suppose we approached the problem via the gradient
projection method, and that iterate(xk, yk) is located on
the setŜ := {(x, y) : |(x, y)| = 1, y < 0, x > 0} ⊆ S.
Then the next iteration yields,

(xk+1, yk+1) = PS((xk, yk) − sk(0, 1))

=
(xk, yk − sk)

|(xk, yk − sk)| ∈ Ŝ.

Although this converges in limit, it will never identify
the active manifold of the problem,M, asxk+1 is never
equal to0. 2

Example 4..2 (Nondegeneracy and Newton)Consider
the problem

min{x2 + x3 : x ≥ 0}.

The constraint setS := {x ≥ 0} is convex and partly
smooth at the point̄x := 0 relative to the active manifold
M := {0}. Although this point is the unique minimizer
for f(x) = x overS, it is not a nondegenerate critical
point.

Suppose we approached the problem via Newton’s
method, using the exact Hessian and a constant step size
of 1. Then, given any current iteratexk, we obtain

xk+1 = x̃k = argmin{〈∇f(xk), x − xk〉+
1
2 〈x − xk,∇2f(xk)(x − xk)〉 : x ≥ 0}

=
−2xk−3x2

k

2+6xk

+ xk =
3x2

k

2+6xk

.

Thusxk converges tōx, but never identifies the active
manifold of the problem,M. 2

Example 4..3 (Nondegeneracy and Proximal Points)
Consider the problem

min f(x) where f(x) :=

{
−x x ≤ 0
x3 x ≥ 0

Thenf is convex and partly smooth at the pointx̄ = 0
relative to the manifoldM = {0}. Although this point
is the unique minimizer off , it is not a nondegenerate
critical point.

Suppose we approached the problem via the proximal
point algorithm. Then given an iteratexk ∈ (0, 1) the
next iteratexk+1 = PRf(xk) is equal to

xk+1 = argminy≥0{y3 + R
2 (y − xk)2}

= 1
6 (
√

R2 + 12Rxk − R).

As R andxk are both strictly positive,xk+1 is strictly
positive. Therefore, regardless of how closexk is to
the pointx̄, the next iterate never identifies the active
manifold of the problemM. 2

5. Concluding Remarks

In this paper we developed a unifying framework en-
compassing many earlier results on identification via
the Subgradient (Gradient) Projection Method, Newton-
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like Methods, and the Proximal Point Algorithm. This
framework, prox-regular partial smoothness, has the ad-
vantage that it does not demand convexity of the con-
straint set, nor of the objective function, and therefore
extends the results of [1–5,7,8,10–12] to a nonconvex
setting. Finally, we provide three key examples which
demonstrate the need for nondegenerate critical points
for the finite identification of active manifolds.
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gradient methods for linearly constrained problems,
Mathematical Programming, Vol. 39, No. 1, pp. 93–116,
1987.
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