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Abstract

Given a weighted graphG = (V, E, w), we investigate the problem of constructing a sequence ofn = |V | subsets of
verticesM1, . . . , Mn (called groups) with small diameters, where the diameter of a group is calculated using distances
in G. The constraint on thesen groups is that they must beincremental: M1 ⊂ M2 ⊂ · · · ⊂ Mn = V . The cost
of a sequence is the maximum ratio between the diameter of each group Mi and the diameter of a groupN∗

i with i

vertices and minimum diameter:max2≤i≤n

n

D(Mi)
D(N∗

i
)

o

. This quantity captures the impact of the incremental constraint

on the diameters of the groups in a sequence. We give general bounds on the value of this ratio and we prove that the
problem of constructing an optimal incremental sequence cannot be solved approximately in polynomial time with an
approximation ratio less than 2 unlessP = NP . Finally, we give a 4-approximation algorithm and we show that the
analysis of our algorithm is tight.

Key words: incremental sequence, graph, approximation algorithms

1. Introduction

We are given a weighted undirected graphG =
(V, E, w) where w is a function that assigns posi-
tive weights to the edges. We usedG(u, v) to de-
note the distance betweenu and v in G, that is,
the weight of a minimum weight path betweenu
and v in G. The diameter of a groupM ⊆ V is
D(M) = max{dG(u, v) : u, v ∈ M}. Let n = |V |.
A group of sizei, 1 ≤ i ≤ n, of minimum di-
ameter is a groupN∗

i ⊆ V with |N∗
i | = i, and

D(N∗
i ) = min{D(M) : M ⊆ V, |M | = i}. Our

goal in this paper is to construct a sequence of groups
M1, M2, . . . , Mn such thatM1 ⊂ M2 ⊂ · · · ⊂ Mn

and eachMi has a diameter that is close to the optimal
diameter (the diameter ofN∗

i ). We measure the quality
of an incremental sequenceM1, M2, . . . , Mn by the
maximum ratio between the diameter of eachMi and
the diameter of the correspondingN∗

i .

Definition 1. An incremental sequence of groupsis a se-
quenceM1, M2, . . . , Mn such thatM1 ⊂ M2 ⊂ · · · ⊂
Mn = V and|Mi| = i for all i, 1 ≤ i ≤ n. Thecost of
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an incremental sequence of groupsM1, M2, . . . , Mn is

cost(M1, . . . , Mn) = max
2≤i≤n

{

D(Mi)

D(N∗
i )

}

.

Since we compare the diameter of successive incremen-
tal groups to groups of minimum diameter that are not
constrained to be incremental, this cost measures the im-
pact on the diameter of the constraint that the sequence
of groups must be incremental.

Definition 2. An optimal incremental sequenceis an in-
cremental sequenceNopt

1 , N
opt
2 , . . . , Nopt

n of minimum
cost:

cost(Nopt
1 , . . . , Nopt

n ) = min{cost(M1, . . . , Mn) :
M1 ⊂ · · · ⊂ Mn = V, |Mi| = i, 1 ≤ i ≤ n}.

Our main contribution in this paper is a new cost mea-
sure, thecost of an incremental sequence, which allows
the study of the impact of an incremental constraint on
the quality of approximate solutions toNP -hard opti-
mization problems. In this paper, we use the measure
to study a diameter problem and a related eccentricity
problem, but the approach is general and can be used
to study other problems.

Our cost measure and our approach differ in several
important ways from common previous approaches to
studying approximation algorithms. Perhaps the most
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common approach assumes that an entire problem in-
stance is given in advance and the performance of the
algorithm is measured in terms of the quality of the final
solution. There are no constraints on the intermediate
solutions produced by the algorithm and the cost mea-
sure does not take them into account. Theapproxima-
tion ratio is used to measure the intrinsic difficulty of
constructing a solution in polynomial time compared to
the best (non-polynomial time) solution. See [1,5,6,8]
for comprehensive treatments of approximation algo-
rithms. The major differences of our approach are that
it requires that the final solution be built incrementally
and the quality of the intermediate solutions is taken
into account by our cost measure.

Another popular approach is to assume that a problem
instance is revealed one element at a time. The quality
of algorithms for theseon-lineversions of problems is
measured using thecompetitive ratiowhich compares
the final solution to the best that can be achieved by
an off-line algorithm that knows an entire instance in
advance. In one variant, changes to the existing partial
solution are allowed when a new element is revealed;
in another variant, changes are disallowed. See [2,3] for
further references on on-line problems. The most im-
portant differences of our approach are that an entire in-
stance is known in advance, and the order that elements
are added is chosen by the algorithm.

The approach taken in [7] is to construct a sequence
of incrementaltrees to cover successive groups. The
main difference from our approach is that the successive
groups are not chosen by the algorithm in [7]; they are
given in advance.

Beyond theoretical interest in the incremental cost
measure, a sequence of incremental groups could be
used in applied situations such as the following. Sup-
pose that the graph models a point to point network
interconnecting a cluster of computers that is shared
among several applications. Each application is allo-
cated a subset of the computers that are available when
it starts. An application starts with one active computer.
As the need for computational power increases, com-
puters are added, one by one, giving an incremental se-
quence of groups of computers. The computers need to
communicate to exchange data and partial results, so
the performance also depends on the communication
latencies among the computers in the current group.
The maximum latency in a group is the diameter of the
group, so an optimal incremental sequence will give the

best performance.

In the next section, we derive matching upper and
lower bounds on the cost of an optimal incremental
sequence. In Section 3, we prove that the problem of
constructing an optimal incremental sequence cannot
be solved approximately with an approximation ratio
less than 2 unlessP = NP . In Section 4, we develop
an optimal polynomial-time algorithm for the related
problem of finding an incremental sequence of groups
with smalleccentricities. We then use this algorithm to
develop a polynomial-time 4-approximation algorithm
for the problem of constructing an optimal incremental
sequence for a graph, and we show that our analysis of
the algorithm is tight.

2. General bounds on the cost of an optimal incre-
mental sequence

In this section, we derive matching upper and lower
bounds on the cost of an optimal incremental sequence.

Theorem 1 cost(Nopt
1 , . . . , Nopt

n ) ≤
√

D(V ) for ev-
ery weighted graphG = (V, E, w) with w(e) ≥ 1 for
all e ∈ E.

PROOF. Let G = (V, E, w) be a weighted graph with
w(e) ≥ 1 for all e ∈ E. For everyi, 1 ≤ i ≤ n, let N∗

i

be a group of sizei of minimum diameter. Leti0 be
the largest integer such thatD(N∗

i0
) ≤

√

D(V ). Since
G = (V, E, w) is a weighted graph withw(e) ≥ 1 for
all e ∈ E, we have

1 ≤ D(N∗
2 ) ≤ · · · ≤ D(N∗

i0
) ≤

√

D(V )

< D(N∗
i0+1) ≤ · · · ≤ D(N∗

n). (1)

LetM1, M2, . . . , Mn be any incremental sequence such
thatMi0 = N∗

i0
. Thus,

1 ≤ D(M2) ≤ · · · ≤ D(Mi0) = D(N∗
i0

)

≤
√

D(V ). (2)

As the diameter ofG = (V, E, w) is D(V ), we have

D(Mi0+1) ≤ · · · ≤ D(Mn) ≤ D(V ). (3)

By (1) and (2) we obtain

max
2≤i≤i0

{

D(Mi)

D(N∗
i )

}

≤
√

D(V ),
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Fig. 1. The graphG0

and by (1) and (3) we obtainmaxi0+1≤i≤n

{

D(Mi)
D(N∗

i
)

}

≤
D(V )√
D(V )

=
√

D(V ). It follows that

cost(Nopt
1 , . . . , Nopt

n ) ≤ cost(M1, . . . , Mn)

≤
√

D(V ). @

The next theorem provides a lower bound that matches
the upper bound of Theorem 2. Together, Theorems 1
and 2 give a tight bound on the worst case cost of an
optimal incremental sequence for the class of graphs
with all edge weights at least 1.

Theorem 2 cost(Nopt
1 , . . . , Nopt

n ) ≥
√

D(V0) for in-
finitely many weighted graphs with all edge weights at
least 1.

PROOF. LetG0 = (V0, E0, w0) be the weighted graph
in Figure 1, whereK > 1 is an arbitrary constant. The
diameter ofG0 is D(V0) = K2. For everyi, 1 ≤ i ≤ 5,
let N∗

i be a group of sizei of minimum diameter. Let
M1, M2, . . . , M5 be any incremental sequence forG0.
If M2 6= {a, b}, then D(M2)

D(N∗

2
) ≥ K

1 = K. Otherwise,

M2 = {a, b}, and for all M3 such thatM2 ⊂ M3,
D(M3)
D(N∗

3
) = K2

K
= K. Thus,cost(M1, . . . , M5) ≥ K =

√

D(V0). The proof is easily generalized to any com-
plete graph with all edge weightsK2 except a trian-
gle with edge weightsK and a pair of vertices that is
disjoint from the triangle and connected by an edge with
weight 1. @

3. Non-approximability of constructing optimal in-
cremental sequences

In this section, we investigate the complexity of con-
structing optimal incremental sequences. We first state
the problems more formally.

UNWEIGHTED INCREMENTAL SEQUENCE

INSTANCE: A graphG = (V, E).
SOLUTION: An incremental sequence of groups
M1, M2, . . . , Mn in G, i.e., M1 ⊂ · · · ⊂ Mn = V

with |Mi| = i for all i, 1 ≤ i ≤ n.
MEASURE: cost(M1, . . . , Mn) .

WEIGHTED INCREMENTAL SEQUENCE

INSTANCE: A weighted graphG = (V, E, w) with
w(e) > 0 for all e ∈ E.
SOLUTION: An incremental sequence of groups
M1, M2, . . . , Mn in G, i.e., M1 ⊂ · · · ⊂ Mn = V

with |Mi| = i for all i, 1 ≤ i ≤ n.
MEASURE: cost(M1, . . . , Mn) .

We now show that there is no polynomial-time ap-
proximation algorithm with an approximation ratio less
than2 for the problem of findingNopt

1 , . . . , Nopt
n unless

P = NP .

Theorem 3 There is no polynomial time approxima-
tion algorithm with an approximation ratio less than
2 for UNWEIGHTED INCREMENTAL SEQUENCE
unlessP = NP .

PROOF. Let G = (V, E). Let r′ 6∈ V , and letG′ =
(V ′, E′) be the graph such thatV ′ = V ∪ {r′} and
E′ = E ∪ {(u, r′) : u ∈ V }. ConstructingG′ from G

can be done in polynomial time. For allS ⊆ V ′, let
D′(S) denote the diameter ofS in G′. LetM1, . . . , Mn′

be an incremental sequence forG′. For alli, 1 ≤ i ≤ n′,
let N∗

i be a group of sizei of minimum diameter inG′.
Suppose, by contradiction, that there is a poly-

nomial time approximation algorithm forUN-
WEIGHTED INCREMENTAL SEQUENCE that
guarantees an approximation ratio strictly less than2.
Let V ′ = {v′1, v′2, . . . , v′n′} such that{v′1, . . . , v′i0} is
a maximum clique inG′. Consider the incremental
sequenceNopt

1 , . . . , N
opt
n′ in G′ obtained by adding the

vertices ofG′ in the orderv′1, v
′
2, . . . , v

′
n′ . As G′ is

an unweighted graph of diameter at most2, any sub-
set S ⊆ V ′ with |S| ≥ 2 is such thatD′(S) = 1 or
D′(S) = 2. It follows that
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(1) D′(Nopt
i ) = D′(N∗

i ) = 1 for all 2 ≤ i ≤ i0,
(2) D′(Nopt

i ) = D′(N∗
i ) = 2 for all i0+1 ≤ i ≤ n′.

In particular, the incremental sequenceN
opt
1 , . . . , N

opt
n′

satisfiesD′(Nopt
i ) = D′(N∗

i ) for all 2 ≤ i ≤ n′.
Hence,

max2≤i≤n′

{

D′(Mi)
D′(N∗

i
)

}

max2≤i≤n′

{

D′(Nopt

i
)

D′(N∗

i
)

} = max
2≤i≤n′

{

D′(Mi)

D′(N∗
i )

}

.

In G′, any subsetS ⊆ V ′ with |S| ≥ 2 is such that
D′(S) = 1 or D′(S) = 2, so the only two pos-

sible values ofmax2≤i≤n′

{

D′(Mi)
D′(N∗

i
)

}

are 1 and 2.

This means that ifM1, . . . , Mn′ is an incremental
sequence constructed in polynomial time by an algo-
rithm with approximation ratio strictly less than2, then

max2≤i≤n′

{

D′(Mi)
D′(N∗

i
)

}

= 1, and D′(Mi) = D′(N∗
i )

for all i, 2 ≤ i ≤ n′. Thus, by choosing the largest
integer i0 such thatD′(Mi0) = D′(N∗

i0
) = 1, one

can construct in polynomial time a maximum clique in
G′ (namelyMi0), and therefore a maximum clique in
G (namelyMi0 \ {r′}). This contradicts the fact that
finding a clique of maximum size inG is NP -hard
(see [4]). @

Corollary 4 There is no polynomial time approxima-
tion algorithm with an approximation ratio less than 2
for WEIGHTED INCREMENTAL SEQUENCE un-
lessP = NP .

4. A 4-approximation algorithm for constructing an
optimal incremental sequence

In this section, we develop an optimal polynomial-
time algorithm to find an incremental sequence of
groups with smalleccentricities. We then prove that
our algorithm is a4-approximation algorithm for the
problem of finding an optimal incremental sequence
for the diameter.

Definition 3. Theeccentricityof a groupM ⊆ V with
root r ∈ M is E(M, r) = max{dG(u, r) : u ∈ M}.
A group M∗

i ⊆ V with |M∗
i | = i, 1 ≤ i ≤ n, is a

group of sizei of minimum eccentricityif there exists
a vertexr∗i ∈ M∗

i (called itsassociated root) such that
E(M∗

i , r∗i ) = min{E(M, r) : M ⊆ V, |M | = i, r ∈
M}. An optimal incremental sequence for the eccen-
tricity is an incremental sequence of groupsM

opt
1 =

{ropt}, Mopt
2 , . . . , Mopt

n = V with |Mopt
i | = i for all

i, 1 ≤ i ≤ n, such that

max
2≤i≤n

{

E(Mopt
i , ropt)

E(M∗
i , r∗i )

}

= min

{

max
2≤i≤n

{

E(M ′
i , r

′)

E(M∗
i , r∗i )

}

:
M ′

1 ⊂ · · · ⊂ M ′
n = V,

|M ′
i | = i, M ′

1 = {r′}

}

.

Definition 4. Let r ∈ V and let S be the sequence
containing the values{dG(r, u) : u ∈ V } sorted in
increasing order (note that|S| ≤ n = |V |). Consider
the partitionF1(r), . . . , Fn(r) of V such thatFj(r) =
{u : dG(r, u) is thejthvalue inS}, 1 ≤ j ≤ n. A
groupM ⊆ V is abreadth-first subset from rootr ∈ M

if it satisfies:
If |M | = 1, thenM = {r}.
If |M | ≥ 2, then there exists ak ≥ 2 such that
• ∀j, 1 ≤ j ≤ k − 1, Fj(r) ∩ M = Fj(r),
• Fk(r) ∩ M 6= ∅,
• ∀l > k, Fl(r) ∩ M = ∅.

The following algorithmBEi (for Best Eccentricity)
finds a group of sizei of minimum eccentricity for any
i, 1 ≤ i ≤ n.

Algorithm 1 ( BEi)
(1) For eachr ∈ V , construct a breadth-first subset

Mi(r) ⊆ V from rootr with |Mi(r)| = i.
(2) Chooseri and its associated groupMi(ri) such

thatE(Mi(ri), ri) = min{E(Mi(r), r) : r ∈ V }.

Note that for allr ∈ V , the partitionF1(r), . . . , Fn(r)
and the associated groupMi(r) can be constructed
in polynomial time using Dijkstra’s algorithm. Thus,
Mi(ri) can be constructed in polynomial time.

The following lemma shows that AlgorithmBEi con-
structs a group of sizei of minimum eccentricity. The
idea of the proof is to show that for a given rootr ∈ V ,
the group of sizei of minimum eccentricity associated
with r is a breadth-first subset from rootr. As algo-
rithm BEi checks each rootr ∈ V , it necessarily finds
the right subset.

Lemma 5 Algorithm BEi constructs a group of sizei
of minimum eccentricity for anyi, 1 ≤ i ≤ n.

PROOF. Let 1 ≤ i ≤ n. For all r ∈ V , let
M ′

i(r) ⊆ V be any group of sizei with r ∈ M ′
i(r)

and let M ′′
i (r) ⊆ V be a breadth-first subset from

root r of size i. Thus, for anyr ∈ V , we have
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E(M ′′
i (r), r) = max {dG(u, r) : u ∈ M ′′

i (r)} ≤
max {dG(v, r) : v ∈ M ′

i(r)} = E(M ′
i(r), r). Hence,

min {E(M ′′
i (r), r) : r ∈ V }

≤ min {E(M ′
i(r), r) : r ∈ V } . (4)

Let Mi(ri) be a group of sizei constructed by Al-
gorithm BEi, 1 ≤ i ≤ n, and let M∗

i be a group
of size i with minimum eccentricity and associ-
ated rootr∗i ∈ M∗

i . By the definition of Algorithm
BEi, we haveE(Mi(ri), ri) = min{E(M ′′

i (r), r) :
r ∈ V } and by the definition ofM∗

i , we have
E(M∗

i , r∗i ) = min{E(M ′
i(r), r) : r ∈ V }. Thus,

by (4), E(Mi(ri), ri) ≤ E(M∗
i , r∗i ). As M∗

i is
a group of size i with the smallest eccentricity,
E(M∗

i , r∗i ) = E(Mi(ri), ri). @

The next algorithmIBE (for Incremental Best Eccen-
tricity) constructs an optimal incremental sequence of
groups for the eccentricity.

Algorithm 2 ( IBE)
(1) For eachr ∈ V :

Start withM1(r) = {r}.
For eachi, 1 ≤ i ≤ n:
(a) Construct a breadth-first subsetMi(r) from

root r with |Mi(r)| = i.
(b) Compute the ratioE(Mi(r),r)

E(M∗

i
,r∗

i
) .

(2) Chooser0 ∈ V and its associated sequence
M1(r0), . . . , Mn(r0) such that

max
2≤i≤n

{

E(Mi(r0), r0)

E(M∗
i , r∗i )

}

=

min

{

max
2≤i≤n

{

E(Mi(r), r)

E(M∗
i , r∗i )

}

: r ∈ V

}

.

Note that for all r ∈ V , the associated sequence
M1(r), . . . , Mn(r) can be constructed in polynomial
time using Dijkstra’s algorithm and that for allr ∈ V ,
and alli, 2 ≤ i ≤ n, the ratio E(Mi(r),r)

E(M∗

i
,r∗

i
) can be com-

puted in polynomial time by using AlgorithmBEi to
computeE(M∗

i , r∗i ). Thus, M1(r0), . . . , Mn(r0) can
be constructed in polynomial time.

Lemma 6 AlgorithmIBE finds an optimal incremental
sequence for the eccentricity.

PROOF. Let M1(r0) = {r0}, M2(r0), . . . , Mn(r0)
be the incremental sequence constructed byIBE,

let M
opt
1 = {ropt}, Mopt

2 , . . . , Mopt
n be an opti-

mal incremental sequence for the eccentricity, and
let M∗

i be a group of sizei of minimum eccen-
tricity and associated rootr∗i ∈ M∗

i , 1 ≤ i ≤ n.
Algorithm IBE constructs an incremental sequence
starting with each possible root, including the
sequence M1(r

opt), . . . , Mn(ropt) starting with
M1(r

opt) = {ropt}. Moreover, by the definition of
Algorithm IBE, the groupsM1(r

opt), . . . , Mn(ropt)
are breadth-first subsets from rootropt. Thus, we have
E(Mi(r

opt), ropt) ≤ E(Mopt
i , ropt), 1 ≤ i ≤ n, and

we obtain

max
2≤i≤n

{

E(Mi(r
opt), ropt)

E(M∗
i , r∗i )

}

≤

max
2≤i≤n

{

E(Mopt
i , ropt)

E(M∗
i , r∗i )

}

.

By the definition of AlgorithmIBE (see the second part
of the algorithm), and the fact thatM

opt
1 , . . . , Mopt

n is
an optimal incremental sequence for the eccentricity,
we obtain

max
2≤i≤n

{

E(Mi(r0), r0)

E(M∗
i , r∗i )

}

= max
2≤i≤n

{

E(Mopt
i , ropt)

E(M∗
i , r∗i )

}

.

@

We show that AlgorithmIBE is a 4-approximation algo-
rithm for the problem of finding an optimal incremental
sequence for the diameter.

Theorem 7 Let M1, . . . , Mn be the incremental
sequence constructed by AlgorithmIBE and let
N

opt
1 , . . . , Nopt

n be an optimal incremental sequence.
Then

cost(M1, . . . , Mn)

cost(Nopt
1 , . . . , N

opt
n )

≤ 4.

PROOF. For every1 ≤ i ≤ n, let N∗
i be a group of

size i of minimum diameter, and letM∗
i be a group

of size i of minimum eccentricity and associated root
r∗i ∈ M∗

i . Let M
opt
1 , M

opt
2 , . . . , Mopt

n be an optimal
incremental sequence for the eccentricity.

max
2≤i≤n



D(Mi)

D(N∗
i )

ff

≤ 2 max
2≤i≤n



E(Mi, r)

D(N∗
i )

ff

(with M1 = {r} and because
D(Mi) ≤ 2E(Mi, r))
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≤ 2 max
2≤i≤n



E(Mi, r)

E(M∗
i , r∗i )

ff

(by Definition 3,E(M∗
i , r∗i ) ≤

E(N∗
i , c∗i ) ≤ D(N∗

i ), with c∗i ∈ N∗
i )

= 2 max
2≤i≤n



E(Mopt

i , ropt)

E(M∗
i , r∗i )

ff

(by Lemma 6, with
M

opt
1 = {ropt})

≤ 2 max
2≤i≤n



E(Nopt

i , copt)

E(M∗
i , r∗i )

ff

(becauseMopt
1 , . . . , Mopt

n is an
optimal incremental sequence
for the eccentricity, with
N

opt
1 = {copt})

≤ 2 max
2≤i≤n



D(Nopt

i )

E(M∗
i , r∗i )

ff

(sincecopt ∈ N
opt

i , we have
E(Nopt

i , copt) ≤ D(Nopt

i ))

≤ 4 max
2≤i≤n



D(Nopt

i )

D(N∗
i )

ff

(becauseD(N∗
i ) ≤ D(M∗

i )
≤ 2E(M∗

i , r∗i )) @

Note that we cannot obtain an approximation ratio less
than2 for this problem by Theorem 3. The next theorem
shows that the approximation ratio of4 for Algorithm
IBE cannot be improved.

Theorem 8 For every 0 < ǫ < 1, there exists a
weighted graph such that the incremental sequence
M1, . . . , Mn constructed by AlgorithmIBE gives

cost(M1, . . . , Mn)

cost(Nopt
1 , . . . , N

opt
n )

=
4

1 + ǫ
.

PROOF. Let G0(ǫ) be the weighted graph in Figure 2.
For eachi, 1 ≤ i ≤ 7, let M∗

i be a group of
size i of minimum eccentricity, letr∗i ∈ M∗

i be its
associated root, and letN∗

i be a group of sizei of
minimum diameter. GivenG0(ǫ), Algorithm IBE will
construct an incremental sequence starting with each
of the vertices and will then choose the best incre-
mental sequence for the eccentricity among these. The
incremental sequence returned by AlgorithmIBE is the
sequenceM1(a), . . . , M7(a) obtained by adding the
vertices ofG0(ǫ) in the ordera, b, c, d, e, f, g. Indeed,

ab

c

d

e

f g
1 + ǫ

1 + ǫ

1 + ǫ

2

22

4 4 4

Fig. 2. The graphG0(ǫ)

this sequence leads tomax2≤i≤7

{

E(Mi(a),a)
E(M∗

i
,r∗

i
)

}

= 2
1+ǫ

,

which is the minimum possible value for any incre-
mental sequence inG0(ǫ). The optimal incremental
sequence for the diameter,N

opt
1 , . . . , N

opt
7 , is obtained

by adding vertices in the ordere, f, g, a, b, c, d. Using
the sequenceM1(a), . . . , M7(a) for the diameter prob-

lem leads tomax2≤i≤7

{

D(Mi(a))
D(N∗

i
)

}

= 4
1+ǫ

, whereas

max2≤i≤7

{

D(Nopt

i
)

D(N∗

i
)

}

= 1. Thus, we have

max
2≤i≤7

{D(Mi(a))

D(N∗
i )

}/

max
2≤i≤7

{D(Nopt
i )

D(N∗
i )

}

=
4

1 + ǫ
.@

5. Conclusions

In this paper, we have introduced a new measure to
capture the impact of the incremental constraint on the
quality of the solutions. We have used the approach to
study a diameter problem, but the approach is general
and can be used to study other optimization problems.

Our main complexity result is that the problem of
constructing an optimal incremental sequence cannot
be solved approximately in polynomial time with an
approximation ratio less than 2 unlessP = NP . In the
process of developing a 4-approximation algorithm for
this problem, we proved the somewhat surprising re-
sult that the related eccentricity problem can be solved
optimally in polynomial time. The analysis of our 4-
approximation algorithm is tight, so reducing the gap
between the upper bound of 4 and the lower bound of 2
will require either a new algorithm or a stronger lower
bound.
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