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Abstract

Given a weighted grapliy = (V, E, w), we investigate the problem of constructing a sequencge-ef|V| subsets of
verticesMy, ..., M, (called group3 with small diameters, where the diameter of a group is daked using distances
in G. The constraint on these groups is that they must baecremental M, C M, C --- C M, = V. The cost
of a sequence is the maximum ratio between the diameter of graap M; and the diameter of a groupV;” with ¢

vertices and minimum diametemaxa<;<n {ggﬁf; } This quantity captures the impact of the incremental qairst
on the diameters of the groups in a sequence.lWe give genaualdb on the value of this ratio and we prove that the
problem of constructing an optimal incremental sequenaenot be solved approximately in polynomial time with an
approximation ratio less than 2 unled3 = N P. Finally, we give a 4-approximation algorithm and we showttthe

analysis of our algorithm is tight.
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1. Introduction an incremental sequence of groups , Mo, ..., M, is
D(M;

We are given a weighted undirected gragh = cost(My, ..., Mn) = QQﬂXn{DEN;;}'
(V,E,w) where w is a function that assigns posi-
tive weights to the edges. We usk;(u,v) to de- Since we compare the diameter of successive incremen-
note the distance betweem and v in G, that is, tal groups to groups of minimum diameter that are not
the weight of a minimum weight path between constrained to be incremental, this cost measures the im-
and v in G. The diameter of a groupM C V is pact on the diameter of the constraint that the sequence
D(M) = max{dg(u,v) : u,v € M}. Letn = |V|. of groups must be incremental.
A group of sizei, 1 < ¢ < n, of minimum di- o ) ) ) )
ameteris a groupN; C V with |N7| = i, and Definition 2. An optimal incremental sequencean in-

D(N?) = min{D(M) : M C V,|M| = i}. Our  cremental sequendg ™, N3P* ... NPt of minimum
goal in this paper is to construct a sequence of groups ¢0St: .

My, Ms, ..., M, such thatMl c My C ---C M, COSt(N{)p [ Nspt) = min{COSt(Mlv s 7Mn) :
and eachV/; has a diameter that is close to the optimal My C--- CMy=V,|M|=i,1<i<n}.
diameter (the diameter a¥;). We measure the quality
of an incremental sequend¥;, Ms, ..., M, by the
maximum ratio between the diameter of edeh and
the diameter of the correspondif\g’.

Our main contribution in this paper is a new cost mea-
sure, thecost of an incremental sequeneeghich allows

the study of the impact of an incremental constraint on
the quality of approximate solutions f§ P-hard opti-
mization problems. In this paper, we use the measure

Definition 1. An incremental sequence of groups se- to study a diameter problem and a related eccentricity

quenceMy, Ms, ..., M, such thathM; ¢ My C --- C problem, but the approach is general and can be used
M, =V and|M;| =i foralli,1 <i < n. Thecost of to study other problems.
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common approach assumes that an entire problem in-best performance.
stance is given in advance and the performance of the
algorithm is measured in terms of the quality of the final
solution. There are no constraints on the intermediate
solutions produced by the algorithm and the cost mea-
sure does not take them into account. Hpproxima-

tion ratio is used to measure the intrinsic difficulty of
constructing a solution in polynomial time compared to
the best (non-polynomial time) solution. See [1,5,6,8]
for comprehensive treatments of approximation algo-
rithms. The major differences of our approach are that
it requires that the final solution be built incrementally
and the quality of the intermediate solutions is taken
into account by our cost measure.

In the next section, we derive matching upper and
lower bounds on the cost of an optimal incremental
sequence. In Section 3, we prove that the problem of
constructing an optimal incremental sequence cannot
be solved approximately with an approximation ratio
less than 2 unles® = N P. In Section 4, we develop
an optimal polynomial-time algorithm for the related
problem of finding an incremental sequence of groups
with smalleccentricities We then use this algorithm to
develop a polynomial-time 4-approximation algorithm
for the problem of constructing an optimal incremental
sequence for a graph, and we show that our analysis of
the algorithm is tight.

Another popular approach is to assume that a problem
instance is revealed one element at a time. The quality ,  General bounds on the cost of an optimal incre-
of algorithms for thesen-line versions of problems is mental sequence
measured using theompetitive ratiowhich compares
the final solution to the best that can be achieved by | this section, we derive matching upper and lower

an off-line algorithm that knows an entire instance in - poynds on the cost of an optimal incremental sequence.
advance. In one variant, changes to the existing partial
VD(V) for ev-

solution are allowed when a new element is revealed; thaorem 1 COS(prt L Nowt) <
in another variant, changes are disallowed. See [2,3] for ery weighted grapht ’: ("/ E" w)_With w(e) > 1 for
further references on on-line problems. The most im- T -
portant differences of our approach are that an entire in-

stance is known in advance, and the order that elements _ , ,
are added is chosen by the algorithm. PROOF. Let G = (V, £, w) be a weighted graph with

w(e) > 1foralle € E. For everyi, 1 <i<n,letNy
The approach taken in [7] is to construct a sequence be a group of sizeé of minimum diameter. Leto be

of incrementaltreesto cover successive groups. The the largestinteger such tha(Ny) < /D(V). Since

main difference from our approach is that the successive & = (V, E,w) is a weighted graph with(e) > 1 for

groups are not chosen by the algorithm in [7]; they are &ll ¢ € E, we have

given in advance.

alle e E.

1< D(Nj) <--- < D(N;,) < /D(V)
Beyond theoretical interest in the incremental cost < D(N;)H) <---< D(N?). (1)
measure, a sequence of incremental groups could be
used in applied situations such as the following. Sup- Let M;, Ms, ..., M, be any incremental sequence such
pose that the graph models a point to point network thatM;, = N;. Thus,
interconnecting a cluster of computers that is shared
among several applications. Each application is allo- 1 < D(M;) < -+ < D(M,,) = D(N},)
cated a subset of the computers that are available when e
it starts. An application starts with one active computer. =vDV). ()
As the need for computational power in_creases, COM- Aq the diameter ofy — (V, E,w) is D(V), we have
puters are added, one by one, giving an incremental se-
guence of groups of computers. The computers need to D(M;y41) < -+ < D(M,) < D(V). A3)
communicate to exchange data and partial results, so
the performance also depends on the communicationBy (1) and (2) we obtain
latencies among the computers in the current group.
The maximum latency in a group is the diameter of the D(M;)
group, so an optimal incremental sequence will give the 222('0 {D(NZ.*)} < VD),
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3. Non-approximability of constructing optimal in-
cremental sequences

In this section, we investigate the complexity of con-
structing optimal incremental sequences. We first state
the problems more formally.

UNWEIGHTED INCREMENTAL SEQUENCE
INSTANCE: A graphG = (V, E).

SoLUTION: An incremental sequence of groups
My, Ms, ..., M, inG,ie, My Cc ---C M, =V
with |M;| =i foralli, 1 <i<n.

MEASURE cost(My, ..., M,).

Fig. 1. The graptGo WEIGHTED INCREMENTAL SEQUENCE
i " INSTANCE A weighted graphG = (V, E,w) with
and by (1) and (3) we obtainax;, +1<i<n {38{3} < w(e) >0foralle c E.

_bv) _ /D(V). It follows that SOLUTION: An _increr_nental sequence of groups
VPV) My, Ms,...,M, in G, ie, My C -+ C M, =V
with |M;| =i foralli, 1 <i<n.

cost(prt7 ooy NOPYY < cost(My, ..., M,) MEASURE cost(My, ..., M,).
<vD(V). O We now show that there is no polynomial-time ap-
proximation algorithm with an approximation ratio less

than2 for the problem of findingVy?*, . .., NPt unless

The next theorem provides a lower bound that matchesP _ NP

the upper bound of Theorem 2. Together, Theorems 1
and 2 give a tight bound on the worst case cost of an

optimal incremental sequence for the class of graphs Theorem 3 There is no polynomial time approxima-
with all edge weights at least 1. tion algorithm with an approximation ratio less than

2 for UNWEIGHTED INCREMENTAL SEQUENCE

Theorem 2 cost(N{P',..., NPy > /D(Vj) for in- unlessP = N P.

finitely many weighted graphs with all edge weights at
least 1. PROOF. Let G = (V,E). Letr’ ¢ V, and letG’ =
(V',E’) be the graph such that’ = V U {+'} and
) E' = EU{(u,r") : u € V}. Constructing?’ from G
PROOF. LetGy = (Vo, Ep, wo) be the weighted graph  ¢an be done in polynomial time. For &l C V7, let
in Figure 1, wherel' > 1 is an arbitrary constant. The D'(S) denote the diameter &fin G”. Let Mj, ..., M,/

diameter ofGy is D(Vp) = K. For everyi, 1 <i <5, be an incremental sequence €&t Foralli, 1 <i < n/,
let N be a group of siz_e' of minimum diameter. Let |t N be a group of sizé of minimum diameter irG’.
My, My, ..., Ms be agy]\;ncremental sequence fGy. Suppose, by contradiction, that there is a poly-
If M> # {a,b}, then%zv;; > & = K.Otherwise, nomial time approximation algorithm forUN-
My = {a,b}, and for all M5 such thatM, C Ms, WEIGHTED INCREMENTAL SEQUENCE that
g%fg = K% = K. Thus,cost(My,...,Ms) > K = guarantees an approximation ratio strictly less tBan

3

Let V! = {v},v),...,v,} such that{v],...,v] } is

’ Y40

a maximum clique inG’. Consider the incremental
sequenceV ! N°"in G’ obtained by adding the

LN
vertices of G’ in the orderv],v),...,v),,. As G’ is
an unweighted graph of diameter at ma@stany sub-
setS C V/ with |S] > 2 is such thatD’(S) = 1 or

D'(S) = 2. It follows that

v/D(Vy). The proof is easily generalized to any com-
plete graph with all edge weight&? except a trian-
gle with edge weightd< and a pair of vertices that is
disjoint from the triangle and connected by an edge with
weight 1. a0
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(1) D'(N") = D'(N7) =1 forall 2 < i < i,

(2) D'(N"") = D'(N;7) = 2 forallig+1 < i < n'.
In particular, the incremental sequen¥g”’, . .., N°*
satisfiesD’(NP") = D'(Ny) for all 2 < i < n/.
Hence,

D' (M;)
axz<i<n! {D’(NI)} D' (M;)
T = max e a— .
D'(N;*? )} 2<i<n’ | D'(N})

maxa<;<n’ {W

In G/, any subsetS C V' with |S| > 2 is such that
D'(S) 1 or D'(S) 2, so the only two pos-
sible values ofmaxyci<, {D/(MT‘)} are 1 and 2.

D'(N7)
This means that ifM;,..., M, is an incremental

sequence constructed in polynomial time by an algo-

rithm with approximation ratio strictly less thanthen
maxo<;<n’ {%} =1, and DI(MZ) = D/(NZ*)
for all 7, 2 < 7 < n'/. Thus, by choosing the largest
integerio such thatD’(M;,) = D'(N;) 1, one
can construct in polynomial time a maximum clique in
G’ (namelyM;,), and therefore a maximum clique in
G (namely M;, \ {r'}). This contradicts the fact that
finding a clique of maximum size 67 is N P-hard
(see [4)). a0

Corollary 4 There is no polynomial time approxima-
tion algorithm with an approximation ratio less than 2
for WEIGHTED INCREMENTAL SEQUENCE un-
lessP = NP.

4. A 4-approximation algorithm for constructing an
optimal incremental sequence

In this section, we develop an optimal polynomial-
time algorithm to find an incremental sequence of
groups with smalleccentricities We then prove that
our algorithm is a4-approximation algorithm for the
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{ropty, MSP*, ... Mo
1, 1 <4 < n, such that

V with |M**| = i for all

= min { max
2<i<n

M|C---CM,=V,
VM=, My ={r'} [

E(M;,rF)

R

(Ear o)

R

B, ror)
2<i<n

Definition 4. Let » € V and letS be the sequence
containing the valuegdg(r,u) : w € V} sorted in
increasing order (note thas| < n = |V|). Consider
the partitionFy(r), ..., F,(r) of V such thatF(r) =
{u : dg(r,u) is thejt'value inS}, 1 < j < n. A
groupM C V is abreadth-first subset from roete M
if it satisfies:

If IM| =1, thenM = {r}.

If |M| > 2, then there exists & > 2 such that

o Vi 1<j<k—1, Fj(’f‘)ﬂ]\/[:Fj(T),

° Fk(T) N M # g,

e Vi>k FiirynM = 2.
The following algorithmBE; (for Best Eccentricity)
finds a group of sizé of minimum eccentricity for any
i, 1 <1< n.

Algorithm 1 (BE;)
(1) For eachr € V, construct a breadth-first subset
M;(r) C V from rootr with |M;(r)| = i.
(2) Chooser; and its associated group/;(r;) such
that E(M;(r;),r;) = min{ E(M;(r),r) : 7 € V}.

Note that for allr € V, the partitionFy(r), ..., F,(r)
and the associated groufd;(r) can be constructed
in polynomial time using Dijkstra’s algorithm. Thus,
M;(r;) can be constructed in polynomial time.

The following lemma shows that AlgorithBE; con-
structs a group of sizé of minimum eccentricity. The
idea of the proof is to show that for a given root V,
the group of size of minimum eccentricity associated

problem of finding an optimal incremental sequence with 1 is a breadth-first subset from roet As algo-

for the diameter.

Definition 3. The eccentricityof a groupM C V with
rootr € M is E(M,r) = max{dg(u,r) : v € M}.

A group M C V with [M}| =i, 1 <i<mn,isa
group of sizei of minimum eccentricityf there exists

a vertexr; € M} (called itsassociated rogtsuch that
E(M,rf) = min{E(M,r) : M C V,|M| =i,r €
M?}. An optimal incremental sequence for the eccen-
tricity is an incremental sequence of groupg”’ =

rithm BE; checks each roat € V, it necessarily finds
the right subset.

Lemma 5 Algorithm BE; constructs a group of size
of minimum eccentricity for any 1 < i < n.

PROOF. Let 1 < ¢ < n. For all r € V, let
M/(r) C V be any group of sizeé with » € M/(r)
and let M/ (r) C V be a breadth-first subset from
root r of size i. Thus, for anyr € V, we have
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E(M!(r),r) max {dg(u,r) :u € M/'(r)} <
max {dg(v,r) : v € M/(r)} = E(M/(r),r). Hence,

min {E(M/ (r),r) :r € V}

< min {E(M](r),r):r€V}. (4)
Let M,;(r;) be a group of size constructed by Al-
gorithm BE;, 1 < i < n, and letM; be a group
of size ¢+ with minimum eccentricity and associ-
ated rootr; € M. By the definition of Algorithm
BE;, we haveE(M;(r;),r;) = min{E(M/!(r),r) :
r € V} and by the definition of)M, we have
EM#,r¥) = min{E(M/(r),r) : r € V}. Thus,
by (4), E(M;(r;),r;) < EM;,r). As M} is
a group of sizei with the smallest eccentricity,
E(M* 7’*) :E(MZ(TZ),’I}) O

A

The next algorithmBE (for Incremental Best Eccen-
tricity) constructs an optimal incremental sequence of
groups for the eccentricity.

Algorithm 2 (1BE)
(1) Foreachr € V:
Start with M1 (r) = {r}.
For eachi, 1 <i <mn:
(a) Construct a breadth-first subsat/;(r) from
root r with | M;(r)| = i.
(b) Compute the ratigeMer).r)

E(M;r7)
(2) Choosery, € V and its associated sequence
M (ro), ..., My(ro) such that
E(M:?,r¥)

max { } _
2<i<n o
min{ max {M} :TEV}.
2<i<n

E(M;,r7)
Note that for all» € V, the associated sequence
M;(r),...,M,(r) can be constructed in polynomial
time using Dijkstra’s algorithm and that for alle V,
and allz, 2 < ¢ < n, the ratio% can be com-
puted in polynomial time by usinlg AIgorithrBEl- to
compute E(M;,rf). Thus, Mi(rg),. .., M,(ro) can

be constructed in polynomial time.

E(Mi(ro),m0)

Lemma 6 AlgorithmIBE finds an optimal incremental
sequence for the eccentricity.

PROOF. Let Ml(ro) = {To},Mg(To), .. .,Mn(To)
be the incremental sequence constructed IBf,
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let MPP* {rovty, MgP* ... M2P* be an opti-
mal incremental sequence for the eccentricity, and
let M} be a group of sizei of minimum eccen-
tricity and associated roat € M*, 1 < i < n.
Algorithm IBE constructs an incremental sequence
starting with each possible root, including the
sequence M (r°Ft), ..., M, (r°Pt) starting with

M (roPt) = {r°Pt}. Moreover, by the definition of
Algorithm IBE, the groupsM;(r°rt), ..., M, (r°rt)
are breadth-first subsets from ra@ft. Thus, we have
E(M;(rort),rorty < E(MP' roPt), 1 < i < n, and

we obtain

{E(Mmm),ropt)
max {
2<i<n

E(M,r})
By the definition of AlgorithmBE (see the second part
of the algorithm), and the fact that**, ..., M2 is

an optimal incremental sequence for the eccentricity,

<

max
2<i<n

B ror)
E(MF,ry)

AR

we obtain

a E(Mi(To),To) a E(Mioptvropt)
max ¢ — > —~ (- MaxX § ——————~ (-
2<i<n E(M},ry) 2<i<n E(M;,r7)

O

We show that AlgorithmBE is a 4-approximation algo-
rithm for the problem of finding an optimal incremental
sequence for the diameter.

Theorem 7 Let My,...,M, be the incremental
sequence constructed by AlgorithtBE and let

N{P'.... NSP* be an optimal incremental sequence.
Then \ \
cost, ey
( o ];E Z)t S 4.
cost(NTP", ..., NoPP)

PROOF. For everyl < i < n, let N} be a group of
size i of minimum diameter, and led/; be a group
of size of minimum eccentricity and associated root
rf e Mp. Let MYP', MJ¥, ... M2* be an optimal

incremental sequence for the eccentricity.

(B <2 {22)

M)
<
D(Nn} =228\ D)

(with M, = {r} and because
D(MZ) S QE(MZ‘J“))

S

max
2<i<n



70 R. Klasing, C. Laforest, J. Peters and N.

E(Mi7 7‘)

< i Nl R/

<2 { s
(by Definition 3, E(M;,r;) <
E(N;,c}) < D(N),with ¢; € N;)
B, )

- 22??5Xn { E(Mr,r})
(by Lemma 6, with
MY = {1
E(N-Opt c°Pt)

< o S S A

- 22??5}2 { E(Mr,r})
(becauseM (™", ..., M2P! is an
optimal incremental sequence
for the eccentricity, with
S )
D(N?PY)

< I S

=2 max { E(M;,r7)
(sincec” € NP, we have
E(N{™*, ") < D(N™))
D(N?PY

< )

<10 { B

(becauseD(N;) < D(M;)

<2B(M;,r7)) o

Note that we cannot obtain an approximation ratio less
than2 for this problem by Theorem 3. The next theorem
shows that the approximation ratio #ffor Algorithm

IBE cannot be improved.

Theorem 8 For every0 < e < 1, there exists a

Thibault— Consitrtgdncremental Sequences in Graphs

Fig. 2. The graphGo(¢)

this sequence leads toax,<;<7 {%} = ﬁe,

which is the minimum possible value for any incre-
mental sequence id7o(e). The optimal incremental
sequence for the diametey;™, ... N2¥, is obtained
by adding vertices in the ordet f, g, a, b, ¢, d. Using
the sequencé/, (a), ..., M;(a) for the diameter prob-

lem leads tomaxy<i<7 {W} = %, whereas
D(N?P")
maxa<i<7 {W} = 1. Thus, we have
D(M;(a)) D(N{™) 4
1) 2N L 2 g
w2 oe ) = T

5. Conclusions

In this paper, we have introduced a new measure to
capture the impact of the incremental constraint on the
quality of the solutions. We have used the approach to

weighted graph such that the incremental sequence study a diameter problem, but the approach is general

Mjy, ..., M, constructed by AlgorithnBE gives

cost(My,...,M,) 4
cost(NYPP . NPT 14€

PROOF. Let Gy(¢) be the weighted graph in Figure 2.
For eachi, 1 < i < 7, let M} be a group of
size ¢+ of minimum eccentricity, letr} € M be its
associated root, and eV be a group of size of
minimum diameter. Givertzy(e), Algorithm IBE will

and can be used to study other optimization problems.
Our main complexity result is that the problem of
constructing an optimal incremental sequence cannot
be solved approximately in polynomial time with an
approximation ratio less than 2 unleBs= N P. In the
process of developing a 4-approximation algorithm for
this problem, we proved the somewhat surprising re-
sult that the related eccentricity problem can be solved
optimally in polynomial time. The analysis of our 4-
approximation algorithm is tight, so reducing the gap

construct an incremental sequence starting with eachbetween the upper bound of 4 and the lower bound of 2

of the vertices and will then choose the best incre-

will require either a new algorithm or a stronger lower

mental sequence for the eccentricity among these. Thebound.

incremental sequence returned by AlgoritiBE is the
sequenceM; (a), ..., M(a) obtained by adding the
vertices ofGy(¢) in the ordera, b, c,d, e, f, g. Indeed,
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