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Abstrak 

Andaian kenormalan dan kehomogenan varians adalah merupakan perkara penting 

bagi prosedur parametrik seperti dalam pengujian kesamaan kecendurangan 

memusat. Sebarang ketidakpatuhan andaian tersebut boleh meningkatkan kadar Ralat 

Jenis I yang serius, yang akan mengakibatkan penolakan hipotesis nol yang tidak 

betul. Prosedur parametric seperti ANOVA dan ujian-t sangat bergantung pada 

andaian yang sukar ditemui dalam data sebenar. Sebaliknya, prosedur tak 

berparameter tidak bergantung pada taburan data tetapi prosedur tersebut kurang 

kuasanya. Untuk mengatasi isu yang dinyatakan, prosedur teguh adalah dicadangkan. 

Statistik S1 adalah salah satu prosedur teguh yang menggunakan median sebagai 

parameter lokasi untuk menguji kesamaan kecenderungan memusat di antara 

kumpulan, dan ia membabitkan data asal tanpa perlu memangkas atau 

mentransformasi data untuk mencapai kenormalan. Kajian terdahulu terhadap S1 

menunjukkan kekurangan keteguhan dalam beberapa keadaan di bawah reka bentuk 

seimbang. Oleh itu, objektif kajian ini adalah menambahbaik statistik S1 asal dengan 

menggantikan median kepada penganggar Hodges-Lehmann. Penggantian juga 

dilakukan terhadap penganggar skala menggunakan varians bagi penganggar 

Hodges-Lehmann serta beberapa penganggar skala teguh yang lain. Bagi memeriksa 

kekuatan dan kelemahan prosedur yang dicadangkan dalam mengawal Ralat Jenis I, 

beberapa pemboleh seperti jenis taburan, bilangan kumpulan, saiz kumpulan yang 

seimbang dan tidak seimbang, varians yang sama dan tidak sama, dan sifat pasangan 

telah dimanipulasikan. Hasil kajian menunjukkan kesemua prosedur yang 

dicadangkan adalah teguh merentasi semua keadaan bagi setiap kes kumpulan. Selain 

itu, tiga prosedur yang dicadangkan iaitu S1(MADn), S1(Tn) dan S1(Sn) menunjuk 

prestasi yang lebih baik berbanding prosedur S1 asal di bawah taburan pencong yang 

ekstrem. Secara keseluruhan, prosedur yang dicadangkan menunjukkan 

keupayaannya mengawal peningkatan Ralat Jenis I. Oleh yang demikian, objektif 

kajian ini telah tercapai apabila tiga daripada prosedur yang dicadangkan 

menunjukkan peningkatan keteguhan di bawah taburan terpencong.  

 

Katakunci: Statistik S1, Hodges-Lehmann, penganggar skala teguh, ralat Jenis I, 

taburan terpesong 
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Abstract 

Normality and variance homogeneity assumptions are usually the main concern of 

parametric procedures such as in testing the equality of central tendency measures. 

Violation of these assumptions can seriously inflate the Type I error rates, which will 

cause spurious rejection of null hypotheses. Parametric procedures such as ANOVA 

and t-test rely heavily on the assumptions which are hardly encountered in real data. 

Alternatively, nonparametric procedures do not rely on the distribution of the data, 

but the procedures are less powerful. In order to overcome the aforementioned 

issues, robust procedures are recommended. S1 statistic is one of the robust 

procedures which uses median as the location parameter to test the equality of central 

tendency measures among groups, and it deals with the original data without having 

to trim or transform the data to attain normality. Previous works on S1 showed lack 

of robustness in some of the conditions under balanced design. Hence, the objective 

of this study is to improve the original S1 statistic by substituting median with 

Hodges-Lehmann estimator. The substitution was also done on the scale estimator 

using the variance of Hodges-Lehmann as well as several robust scale estimators. To 

examine the strengths and weaknesses of the proposed procedures, some variables 

like types of distributions, number of groups, balanced and unbalanced group sizes, 

equal and unequal variances, and the nature of pairings were manipulated. The 

findings show that all proposed procedures are robust across all conditions for every 

group case. Besides, three proposed procedures namely S1(MADn), S1(Tn) and S1(Sn) 

show better performance than the original S1 procedure under extremely skewed 

distribution. Overall, the proposed procedures illustrate the ability in controlling the 

inflation of Type I error. Hence, the objective of this study has been achieved as the 

three proposed procedures show improvement in robustness under skewed 

distributions. 

  

Keywords: S1 statistic, Hodges-Lehmann, robust scale estimators, Type I error, 

skewed distributions. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

In most research, hypothesis testing has been used as a method of decision making 

with the help of primary and secondary data that can be obtained from sources such 

as observations, experiments, journals, articles, reference books and many other 

sources. The researchers are required to identify the statement of null hypothesis 

which is usually corresponds to a situation of equality or “no difference” and it is 

assumed as true hypothesis until receiving an evidence that shows otherwise. 

Alternative hypothesis is known as the negation of null hypothesis (Sullivan, 2004). 

Due to the statistical nature of a test, two types of error are determined, Type I error 

and Type II error. Type I error occurred in the situation where by the null hypothesis 

is rejected when it is true. In contrast, Type II error existed when the null hypothesis 

is failed to reject when it is false. There is an inverse relationship between the two 

errors such that an increase in Type I error will decrease Type II error and vice versa. 

Furthermore, when Type II error increases, the statistical power of a test will 

decrease, causing less detection of a test effect. Thus, these two errors need to be in 

control. A good statistical procedure should be able to control the errors. However, 

working with Type I error is easier than Type II error as the earlier is usually set in 

advance by the researcher while the latter is harder to know as it requires estimating 

the distribution of the alternative hypothesis (Ramsey, 2001).  

 

In order to achieve a good test, we need an appropriate procedure which is able to 

control Type I error rate and increase the power at the same time. We do not want to 
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lose power, and we do not want to inflate the Type I error rate too. There are several 

statistical procedures for testing the equality of location measures or locating 

treatment effects across groups by simultaneously controlling Type I error and 

improving power of the procedures in detecting the treatment effects have been 

studied in recent years. 

 

Parametric procedures are widely used by researchers in many fields to test the 

equality of the location parameters due to precision and easy to compute. However, 

these procedures rely heavily on assumption of normality. For further understanding, 

the example of Analysis of Variance (ANOVA) and its disadvantages will be 

referred to with regards to violation of assumptions. ANOVA is one of the popular 

parametric statistical procedures which used to analyse the difference between the 

means for more groups in one-way independent group design. Independence of 

observations, normality and equality of variance (homoscedasticity) are the basic 

assumptions when applying this procedure. Nevertheless, violation of normality and 

homoscedasticity assumptions always occur in practice. These problems have 

degenerated the properties of Type I error and reduce the power of a test in detecting 

the treatment effect. When the underlying distribution has heavy tails such as 

symmetric heavy-tailed and skewed heavy-tail distributions, the standard error of the 

mean  n2  can become seriously inflated and also reduce the power of test 

(Wilcox and Keselman, 2002).   

 

Thus, nonparametric statistics occurred as a field of research and several procedures 

turn to be very famous in applications. Nonparametric procedures do not rely on any 
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data belonging to any particular distribution. They are sometimes known as 

distribution free procedures and can be used on data such as residents’ favourite TV 

programmes by rating them with the scale of 1 to 10 which 1 refers to the least 

favour and 10 is for the most favour. Making few assumptions about the data is the 

basic principle of nonparametric procedures and its applicability is much wider and 

more robust compared to parametric procedures in most cases. Nonparametric 

procedures are easier to apply in most cases even though the uses of parametric 

procedures are justified. Nevertheless, nonparametric procedures are less powerful 

and a larger sample size with the same degree of confidence is required in order to 

reject a false hypothesis (Gibbons and Chakraborti, 2003). Under this circumstance, 

the use of parametric and nonparametric procedures are not advisable. To overcome 

the problem, robust statistical procedures are used as the alternatives. 

 

Huber (1964) and Hampel (1974) established a complete theory of robust statistics, 

which basically centered on parametric models. Robust statistical procedures 

generally are not unduly affected by departures from the model assumptions. 

Besides, construction of the statistical procedures are still reliable and practically 

efficient in a neighbourhood of the model concerned (Ronchetti, 2006). Normality, 

independence and homoscedasticity are among the classical assumptions that hardly 

fulfilled in practice.  Any violation of these assumptions will lead to biased results 

when tests are conducted. A definition given by Hampel, Ronchetti, Rousseeuw and 

Stahel (1986) states that, “In a broad informal sense, robust statistics is a body of 

knowledge, partly formalised into “theories of robustness”, relating to deviations 

from idealised assumptions in statistics.” 
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The violation of normality assumption is among the most frequently discussed issue 

in robust statistics. This violation can reduce the power to a lower stage when the 

means of two or more groups are compared (Wilcox and Keselman, 2003). Refer to 

Md Yusof, Othman and Syed Yahaya (2010), in the study of robust statistics, Huber 

(1981), Staudte and Sheather (1990) and Wilcox (1997) considered robust measures 

of location like trimmed means or medians as the alternative solutions for the usual 

least squares estimator. According to Syed Yahaya, Othman and Keselman (2006), 

other studies had also proved that Type I error from the test of treatment effects can 

be well controlled through these measures of location (Othman, Keselman, 

Padmanabhan, Wilcox, and Fradette, 2004). A certain percentage of the smallest and 

largest observations are removed and averaging the remaining values is known as 

trimmed mean. The percentage of trimmed mean is fixed in advance to ease in 

analysing data. For example, 10% trimming is referred to 10% of the smallest 

observations and 10% of the greatest observations are trimmed. If there are 10 

observations with the least value of 6 and greatest value of 35, 10% trimming is 

referred as removing the values of 6 and 35 follows by computing the average of the 

remaining observations. Yuen (1974) had found that there were some advantages on 

trimmed means for two groups case. Similar results on trimmed means for more than 

two groups case were established by Lix and Keselman (1998) and researchers were 

reminded that non-normality of one’s data should not automatically signal the 

adoption of trimmed means and robust test statistics. Researchers should take serious 

consideration under such circumstances about the reasons of non-normality and also 

to examine the method of collecting data, measurements instruments and the process 
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of generating data. Before applying trimmed mean in any research, researchers have 

to decide the percentage of trimming because this may cause the losing of some 

important information especially when the number of trimming has been decided 

prior to data analysis.  

 

Besides trimmed mean, sample median, that is the midpoint in a set of observations 

is also known as one of the common robust estimators especially for sufficiently 

heavy-tailed distributions (Wilcox, 2012). It can endure large proportion of worst 

observations without breaking down completely since it has been characterised by 

the highest breakdown point (0.5). Refer to Donoho and Huber (1983), breakdown 

point is roughly the smallest amount of contamination that may cause an estimator to 

take on arbitrarily large aberrant values. This characteristic is very helpful in 

understanding the robustness properties of estimators. If there are n observations and 

let a minority of them   nn 21  reach infinity leaving the rest fixed, then the 

median stays with the majority. Therefore, the breakdown point of median in finite 

sample is   nn 21  and the asymptotic breakdown point is 21  (0.5). According to 

Huber (1981), for an ideal parametric model, the estimator and statistical testing of 

central tendency measures are always misleading by a small number of extreme 

values on the data sets due to their lower breakdown points. Let take sample mean as 

the example. Given that the observations of nXX ,...,1  and the formula for mean is as 

below: 

  
n

xxx n ...21                         (1.1) 
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If the nth observation approaches infinity, the sample mean will fall to infinity too. 

This explains that the sample mean will be ruined even with one gross outlier. The 

breakdown point of sample mean in finite sample is n1  and the asymptotic 

breakdown point is zero. This means that there is only n1  sample breakdown point 

of sample mean when n approaches infinity.  

 

The following scenario is one of the examples to demonstrate the effectiveness of a 

robust statistics. Given that there are five measurements of a concentration, 5.59, 

5.66, 5.63, 5.57 and 5.60. Normally we will calculate the sample mean for estimating 

its true value. The usual average of these five numbers is 5.61. Another estimator that 

can be used is sample median and it yields 5.60. In this example, the values of mean 

and median are close to each other. Let us now suppose that one of the measurements 

is recorded wrongly such that the data is recorded as 5.59, 5.66, 5.63, 55.7 and 5.60. 

This situation often happens in research due to data entry error. There is also a 

possibility that the outlying observation is incorrect or it belongs to other population. 

Under this circumstance, the mean becomes 15.64. In contrast, the value of the 

median is 5.63, which is still reasonable despite the error. The median is changed but 

it does not become arbitrarily bad as mean. However, median is also known as 

trimmed mean with 50% since 50% of the largest observations and 50% of the 

smallest observations are removed. This may also cause a losing of some important 

information.  

 

Yi and He (2009) had done a research for longitudinal data with dropouts using 

median regression model. As discussed in Morgenthaler (1992), modeling the study 
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was partly inspired by longitudinal data arising from a controlled trial of HIV 

disease. One of the main objectives was to examine the treatment effect of 

Zidovudine on growing CD4+ cell counts. 892 adults were randomised to a treatment 

group and they were tracked longitudinally. At weeks 8, 16, 32 and 48, the 

measurements were collected. They tested the data using median regression model as 

well as mean regression model for comparison purpose. Based on the results 

obtained, the proposed median regression procedure performed well for a range of 

data with different distributions. However, mean regression approach relied on the 

distributional shapes. No doubt, it provided accurate results for normal distribution 

but it may unable to give reliable results for a data with other distributions. 

 

1.2 Problem Statement 

The letdown of parametric procedures in dealing with non-normal data and a few 

challenging assumptions obliged the users of statistics to opt for alternative 

procedures in nonparametric as well as robust procedures. However, nonparametric 

procedures also have their drawbacks especially in terms of losing information due to 

ranking process turned the users to a more reliable procedure in robust statistics. 

 

A good robust estimator combined with good statistical procedures might be able to 

solve some of the typical problems encountered by the users of statistics. One of such 

procedures is S1 statistic which was proposed by Babu, Padmanabhan and Puri 

(1999) when the distributions are skewed. This procedure comes with the purpose of 

measuring treatment effects across two and more than two groups by using median as 

the location parameter. As explained in previous section, median is the midpoint in a 
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set of observations which can endure large proportion of worst observations without 

breaking down completely by its highest breakdown point (0.5). Therefore, S1 

statistic can deal with the original data without having to trim or transform it to attain 

symmetry. 

Indeed, real data rarely fulfill the assumption of normality. As Reed (1998) quoted: 

“Nearly all real data are discrete in nature therefore the theory suggests that they 

cannot be normal”. According to Maxwell and Delaney (2004), the main 

disadvantage of data transformation is the interpretation of results may be less than 

clear because researchers are working in a metric other than the original variable. 

Besides, finding a transformation which will deal with asymmetry and variance 

heterogeneity simultaneously is difficult (Keselman, Wilcox, Lix, Algina and 

Fradette, 2007). On the other hand, trimming also may cause the losing of some 

important information of the data as explained in Section 1.1. 

 

Othman et al. (2004) modified S1 statistic by replacing the standard errors of the 

sample medians with asymptotic variances by referring to Hall and Sheather’s (1988) 

work on sample medians. For comparison purposes, the proposed procedure and the 

original S1 statistic were tested under the condition of non-normality and variance 

heterogeneity for two groups and four groups cases. The finding showed that the 

proposed procedure generated slightly closer Type I error rates to nominal level of 

0.05 than the original S1 statistic for four groups case. However, these error rates 

were lower (deviated further away from the nominal value) than the Type I error 

rates produced under two groups case and were considered non robust. In addition, 
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the proposed procedures failed to show better control of Type I error compared to the 

original S1 statistic for two groups case.  

 

Syed Yahaya (2005) proposed a study on testing the equality of location parameter in 

one-way independent group design when the distributions were skewed. S1 statistic 

was selected as the procedure of the study and being modified by replacing the 

default scale estimator, ̂  with four robust scale estimators, MADn, Qn, Sn and Tn. 

MADn is known as the famous robust scale estimator with its highest breakdown 

point and having the capability of maintaining the robustness of procedures. The 

findings proved that three out of four proposed S1 procedures using MADn, Sn and Tn 

as the scale estimators had good control of Type I error rates compared to the 

original S1 statistic under extremely skewed distributions for two and four groups 

cases. However, the previous work on S1 observed that most of the conditions under 

four groups case were non robust especially under the influence of extremely skewed 

distribution. Other than the issue of robustness, the proposed procedures generated 

conservative Type I error rates (below 0.025 level) in most conditions for both group 

designs. Thus, by using different types of location estimators, while maintaining the 

four robust scale estimators used in the previous study, we expect to have some 

significance improvement of S1 statistic in terms of controlling Type I error for 

skewed distributions. 

 

1.3 Objective(s) of the Study 

The purpose of this study is to improve the original S1 statistic for testing the equality 

of central tendency measures in one-way independent group design under skewed 
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distributions. In order to achieve this goal, the objectives below are required to be 

accomplished.  

i. To modify the S1 statistic by replacing the median with the Hodges-

Lehmann. 

ii. To evaluate the modified procedures with simulated data. 

iii. To compare the modified procedures against some parametric and 

nonparametric procedures in terms of the empirical Type I error rates. 

iv. To compare the modified procedures against some parametric and 

nonparametric procedures on real data. 

v. To identify the best procedures. 

 

1.4 Significance of Study 

This study will significantly contribute to the body of knowledge in statistical 

procedure especially experimental design which usually attached with strict 

assumptions such as normality and variance homogeneity to achieve reliable results. 

The proposed procedure gives some flexibility to the users for testing treatment 

effects between groups, unlike parametric procedures such as t-test and ANOVA 

when the violation of assumptions exists. This flexibility should be a welcome 

feature for industries as they are always depend on easy to compute, fast and 

trustworthy statistical procedure to be employed because of the challenge of 

obtaining real data which is often required to fulfill the assumption of normality. 

Even to those users of statistical procedures who are not constantly aware of or do 

not pay attention on the assumptions, this type of procedure will suit them well due 
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to no additional work is needed to perform before applying it. Furthermore, it doesn’t 

jeopardise the results. 

 

1.5 Organisation of the Thesis 

The background of parametric, nonparametric and robust statistics are mentioned 

briefly in this chapter. Besides, one of the robust procedures, S1 statistic is 

introduced. Further information about this procedure and recommended scale 

estimators will be explained in Chapter 2. In addition, some commonly used 

parametric and nonparametric procedures will be reviewed too. Chapter 3 will show 

the employment of proposed procedure and manipulation of variables. In addition, 

this chapter will also describe the design specification of this study. Type I error rates 

of each procedure will be presented and analysed in Chapter 4. Lastly, Chapter 5 will 

be the final chapter of the thesis that includes conclusion and suggestions for further 

studies.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Parametric and nonparametric statistical procedures are available in statistical 

inference or hypothesis testing. Parametric procedures rely on assumptions heavily 

such as normality and variance homogeneity with regards of the distributional shape 

in the underlying population and the location parameter of the distribution. Violation 

of these two assumptions are often the major practical problems that is encountered 

by researchers when using parametric procedures especially on testing the equality of 

location measures for two and more than two independent groups. Conversely, 

nonparametric procedures do not rely on the assumptions about the distributional 

shape from which the sample was drawn. However, nonparametric procedures are 

less powerful compared to parametric procedures. Besides, in order to reject a false 

hypothesis, a larger sample size with the same degree of confidence is required, but 

practically, smaller sample size is more preferable (Gibbons and Chakraborti, 2003). 

Under such circumstances, the use of parametric and nonparametric procedures are 

not the better choice. Hence, to overcome the problem, robust statistical procedures 

are used as the alternatives. 

 

Eighteenth century was the beginning of robust statistics when the first rules of 

outliers’ rejection were developed. In nineteenth century, these rules were formalized 

and implemented for estimating mean. This was followed by the development of 

estimators that down weight outliers. First half of the twentieth century was the 

period where robustness of statistical testing being considered. The need for robust 
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procedures was demonstrated by Box (1953) and Tukey (1960) (Stigler, 2010). Their 

research could be seen as the discovery of robust statistics. A few years later, Huber 

(1964) and Hampel (1974) established a complete theory of robust statistics, which 

basically centered on parametric models. As mentioned in Chapter One, robust 

procedures generally are not unduly affected by departures from the model 

assumptions. The following sections will discuss about the parametric, 

nonparametric and robust procedures for two and more than two groups cases that 

are frequently used and available in most statistical software. 

 

2.2 Two-group Case 

Suppose that nii xx ,...,1  and njj xx ,...,1 are the independent random samples from two 

populations which have continuous distribution function of  ixF  and  jxF  

respectively. Assuming the two populations’ variances are equal, there are few 

procedures available for testing the equality of the location parameter. Each of the 

commonly employed procedures from the parametric, nonparametric and robust 

approaches for testing the equality of central tendency measure will be discussed in 

the following sections in regards to their applications when violation of assumptions 

occur in the data. The procedures for the two group case are t-test, Mann-Whitney 

and S1 Statistic. 

 

2.2.1 t-test 

The t-test is frequently used in comparing means between two groups. The validity 

on drawing the accurate inferences maybe weakened if the following assumptions of 

t-test are not met.  
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i. Two samples are independent. 

ii. The populations follow normal probability distribution. 

iii. The variances of both populations are equal. 

 

The violation of any assumption above will increase Type I error rates and also 

reduce the power of the procedures at the same time (Maxwell and Delaney, 2004). 

 

When sample sizes between two groups are equal, t-test can be calculated as: 
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where 

1x = sample mean of group 1 

2x = sample mean of group 2 

2

1
~s  = estimated population variance of group 1 

2

2
~s  = estimated population variance of group 2 

1n = sample size of group 1  

2n = sample size of group 2 

 

For unequal sample sizes, t-test can be computed as: 
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The degree of freedom which is used for significance testing is 2n – 2 for equation 

(2.1) and 221  nn  for equation (2.2). 

 

Kang and Harring (2012) did a study about the impact of non-normality, effect size 

and sample size on two groups case for independent samples t-test. Monte Carlo 

simulation with 1000 replications was used to investigate on the robustness and Type 

I error on two equal group sizes under non-normal distributions. The five proposed 

group sample sizes were 
21 nn   = 8, 

21 nn  = 15, 
21 nn  = 30, 

21 nn  = 60 and 

21 nn  = 120. In regards to their findings, when the distributions for both groups 

were non-normal and had the same distributional shape, t-test managed to maintain 

its nominal Type I error rates (α = 0.05) across different sample sizes. When two 

distributions were non-normal and had different shapes of distribution, Type I error 

was slightly inflated for the sample sizes of 
21 nn  = 8, 

21 nn  = 15 and 
21 nn  = 30. 

Yet, Type I error rates were able to be upheld at its nominal level as sample size 

increased. 

 

Kellermann, Bellara, Gil, Nguyen, Kim, Chen and Kromrey (2013) did a research on 

variance heterogeneity and non-normality using SAS Proc Test which is an easy way 

of testing the equality of central tendency measure for two groups. The purpose was 

to discover t-test’s performance under departure of normality and variance 

heterogeneity. The variables that were manipulated into several conditions consisted 

of the total sample size, ratio of sample size, effect size for mean difference, 

significance level for testing the treatment effect and the alpha level for testing 

homogeneity. As predicted, t-test was found to perform very well in controlling Type 
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I error when the variances were equal under equal or unequal sample sizes regardless 

of the tenability for the assumption of normality. No doubt, t-test emerged as the best 

procedure to test the difference of two independent means under this condition. 

However, their t-test could not adequately control Type I error when the group 

variances were not equal especially for unequal sample sizes. Besides, t-test showed 

a reduced in percentage on its statistical power under skewed distribution. 

 

2.2.2 Mann-Whitney 

Mann-Whitney test (Wilcoxon, 1945) is also known as Mann-Whitney U test or 

Wilcoxon-Mann-Whitney test. It is an alternative approach of t-test for comparing 

the difference in means between two groups when the assumption of normality and 

variance homogeneity are not met. Its effectiveness is quite similar as t-test on 

normal distribution (Sheskin, 2011). Refer to Gibbons and Chakraborti (2003), 

ranked data is used by Mann-Whitney for testing the central tendency measure by 

changing the actual numerical data to ranks in combined groups. The ranks obtained 

are then compared with the sums of ranks in two groups. The sampling distribution 

of Mann-Whitney test is approximately normal when both sample sizes are more 

than 10 and z test is used for statistical inferences. It is defined as: 

T

TT
z




                              (2.3) 

where 

T = total of the ranks for the observations from the sample 

T = mean of the sampling distribution of T 

T = standard deviation of the sampling distribution of T 
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Two independent samples are required and the population distributions of both 

samples should be equal with the exception of the central measure for the purpose of 

drawing valid inferences from Mann-Whitney procedure (Ott & Longnecker, 2010). 

Winter and Dodou (2010) studied about the comparison between Mann-Whitney and 

t-test in terms of Type I and Type II error rates for five-point Likert items. In the 

study, pairs of samples were drawn from fourteen diverse Likert population 

distributions which were considered as the representative of the possible distributions 

that might appear in the real Likert item data. There were ten thousand random 

samples selected for each of the 98 combinations of distributions. For equal sample 

sizes, the simulations were conducted with m = n = 10, m = n = 30 and m = n = 200. 

For unequal sample sizes, m = 20, n = 5, and m = 10, n = 100, were used. The finding 

showed that both procedures have same power in general except for peaked, skewed, 

or multimodal distributions which Mann-Whitney produced better power than t-test. 

On the other hand, when m = 20, n = 5, Mann-Whitney was unable to show 

robustness and good control of Type I error on one Likert item with its error rate of 

0.077 at nominal significance level of 0.05. For the same Likert item and unequal 

sample sizes (m = 20, n = 5), t-test also couldn't control Type I error well due to its 

error rate of 0.074. 

 

Nachar (2008) used Mann-Whitney as the procedure for assessing whether two 

independent samples came from the same distribution. The investigation was carried 
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out on two different groups of individuals with social phobia. One group was 

referred to those who received behavioral therapy and another group was for the 

people who accepted the combined therapy of behavioral and the antibiotic with n 

observations each. Since both groups showed a reduction in the number of symptoms 

of social phobia after each therapy, the number of these symptoms was then 

measured and tested under the sample sizes of 3, 4, 5, 6, 7 and 8. The finding showed 

that Mann-Whitney was more powerful and had better control of Type I error than t-

test when the sample size was small. However, Type I error was amplified when 

there was a violation of variance homogeneity. 

 

When both populations are not normally distributed and skewed into the same 

direction, Mann-Whitney yielded higher power rates compared to t-test. However, if 

the two groups shows different shapes of distributions, it might not be valid due to 

the increased in Type I error rates especially when the sample size is large (Kang and 

Harrings, 2012). To alleviate the problems that typically occur in t-test and Mann-

Whitney procedures, the alternative is via robust procedures.  

 

2.2.3 S1 Statistic 

One of the robust procedures that can be employed to test the equality of location 

parameter for two and more than two groups is S1 statistic that was proposed by 

Babu, et al (1999). As explained in the previous chapter, S1 statistic uses median as 

location parameter to measure the treatment effects across groups. Median is referred 

to as the middle value of a data set. When using this procedure, the original data can 

be used without going through the process of transformation or trimming. For 



19 

 

example, if a data set contains values of 3, 4, 4, 5, and 8, the mean value is 4.8. If the 

value of 8 is entered as 89, the sample mean will change to 21. However, under the 

same situation, the value of median still remains as 4 which shows that as a location 

measure, median is robust or not sensitive to extreme values. Hence, S1 statistic 

which uses median as the location measure is recommended as an alternative robust 

procedure especially in dealing with skewed distributions.  

 

To understand S1 statistic, consider the problem of comparing central tendency 

measures under skewed distributions. Let  jnjjij j
YYYY ,...,, 21  be a sample from an 

unknown distribution Fj and let Mj be the population median Fj: j = 1, 2,… J. For 

testing H0: M1 = M2 = … = Mj versus H1: Mi ≠ Mj for at least one pair of (i, j), the S1 

statistic is defined as:  


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                          (2.6) 
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in = number of observations for group i;  

jn = number of observations for group j; 
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S1 in formula (2.6) is referred to the total of all possible differences between sample 

medians from the J distributions divided by square root of the sum of sample 

standard errors of sample medians,̂ . Hence, the number of possible differences is 

similar to J(J – 1)/2 if there are J distributions. 

 

Syed Yahaya (2005) applied S1 statistic in the study of “Robust statistical procedures 

for testing the equality of central tendency parameters under skewed distributions” 

for two groups and more than two groups. Four robust scale estimators, MADn, Tn, Sn 

and Qn were used to replace the default scale estimator of S1 statistic. Based on 

Bradley’s liberal robust criterion, S1 statistic with MADn and Tn were considered 

robust across all distributions for both group designs in two groups case. For four 

groups case, these two procedures were considered robust for normal and mildly 

skewed distributions under unbalanced group design. Besides, they did not show 

worse performance compared to the original S1 statistic for symmetric and mildly 

skewed distributions. On the other hand, S1 statistic with Sn also did better than 

original S1 statistic under extreme conditions. However, the procedure of S1 statistic 

with Qn provided a very conservative and non-robust value for two groups and more 

than two groups. In addition, all four procedures were not considered robust across 

all three distributional shapes for balanced group design under four groups case. The 

generated Type I error rates were conservative in all conditions for the same group 
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design and group case. Same issues of not robust and generating conservative Type I 

error rates happened on extremely skewed distribution for unbalanced group design 

under four groups case as well. Therefore, a suggestion for further modification on 

the location and scale estimators was given by the author in order to improve the 

performance of the S1 statistic in terms of controlling Type I error. 

 

2.3 More than Two Groups 

There are few popular parametric and nonparametric procedures readily available for 

testing more than two groups. One of the commonly used parametric procedure is 

Analysis of Variance (ANOVA) when the populations are normally distributed. If 

the assumption of normality is violated, nonparametric procedure such as Kruskal-

Wallis is used as the alternative procedure. A robust procedure like S1 statistic also 

can be applied on more than two groups case. The following sections will further 

explain on the aforementioned procedures. 

 

2.3.1 Analysis of Variance (ANOVA) 

Analysis of Variance (ANOVA) is known as a parametric procedure for testing the 

equality of two or more than two population means. There are some assumptions that 

have to be met. The populations are normally distributed, independent and have 

equal variances. However, these assumptions are hardly fulfilled in practice. Similar 

to t-test, the violation of assumptions give the impacts on controlling Type I error 

and reducing the power of the test at the same time. 
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The test statistic for ANOVA is based on F distribution which is a continuous 

theoretical probability distribution which the F value will often fall within the range 

 F0 (Sheskin, 2011). It can be computed as: 
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1n  = sample size of population 1 

2n  = sample size of population 2, and so on 

k = number of populations 

1x  = sample mean of population 1 

2x  = sample mean of population 2, and so on 

x  = sample mean of the combined data set 
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2

1s  = sample variance of population 1 

2

2s  = sample variance of population 2, and so on 

n = total number of observations of the combined data set   

 

James (1951) and Welch (1951) recommended the estimation of the inverses of the 

variances of the respective sample means could be explained by weighting the terms 

in the sum of squares for larger sample sizes. Referred to Syed Yahaya, Md Yusof 

and Abdullah (2011), although ANOVA is generally known to be robust to small 
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departure from normality, the extent of this departure is unknown unless the sample 

size is large enough to ensure the normality. Brownie and Boss (1994) studied on the 

robustness of ANOVA when the number of treatments is large using agricultural 

screening trials which often in a blocked design with limited replication (number of 

blocks). The objective of the research was to identify the existence of real differences 

between treatments. Besides, they also wanted to determine whether the procedure 

could provide good performance on Type I error and have good power at the same 

time. Therefore, the null hypothesis, H0, of the study was “no differences between 

treatments”. Based on their findings, ANOVA was considered robust only for large 

number of blocks under H0 although earlier statisticians had proved that both One 

and Two Ways ANOVA procedures were robust to non-normality if either the 

number of blocks or treatments was large (Scheffe, 1959). Furthermore, the 

procedure couldn’t provide good power for the data with frequent extreme values. 

 

Lix, Keselman and Keselman (1996) suggested two approaches that might be 

considered by the researchers when the violations of assumptions were taking place. 

The first approach was applying a transformation on the data and proceed with 

ANOVA. However, there are some limitations of transformations. The researchers 

may face the difficulty in interpreting the outcomes since the conclusions have to be 

made based on the transformed scores instead of the original observations. Besides, 

according to Oshima and Algina (1992), there are several transformations which can 

be employed on a data set that depends on the specific type and degree of assumption 

violation that occur. This may not always be the simple solution for researchers. 

Selecting an alternative statistical procedure to ANOVA which is not sensitive to the 
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assumptions such as nonparametric or robust procedure is the second approach. A 

nonparametric or robust procedure should be able to produce Type I error rate that is 

close to the nominal significance level, , without having to concern much on the 

violation of assumptions. In addition, the alternative will also maintain the actual 

statistical power near to theoretical power (Lix, Keselman & Keselman, 1996). 

Further explanation of nonparametric and robust procedures will be shown in the 

following sections. 

 

2.3.2 Kruskal-Wallis  

Kruskal-Wallis is the well-known alternative procedure to one-way ANOVA for 

comparing the difference of central tendency using ranked data for at least three 

groups when the samples fail to meet the assumption of normality. It is a 

nonparametric procedure and also known as the extension of Mann-Whitney-

Wilcoxon test to a design that involves more than two groups. If the result of 

Kruskal-Wallis is significant, it indicates that there is a significant difference across 

groups in the set of k groups. 

 

All the observations in each sample that is from the different distributions are ranked 

from the smallest to the largest values. If there are two or more than two observations 

with the same value, mean of the ranks for tied values is computed. A computational 

formula for Kruskal-Wallis is shown below: 
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where 
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2

1R = sum of the ranks squared of group 1 

2

2R = sum of the ranks squared of group 2 and so on 

1n = number of observations in group 1 

2n = number of observations in group 2 

N = total number of observations 

k = number of populations being compared 

 

Khan and Rayner (2003) studied the robustness to non-normality of common tests, 

namely ANOVA and Kruskal-Wallis for more than two groups’ location problem. 

The power functions for both procedures under several conditions were generated 

using simulation with g (for skewness) and k (for kurtosis) distribution which was 

suggested by MacGillivray and Cannon (2002). Based on the results obtained, 

Kruskal-Wallis performed better than ANOVA when sample sizes were large and 

kurtosis was high. The increase in sample size would radically improve Kruskal-

Wallis’s performance. However, Kruskal-Wallis did not seem to be an appropriate 

procedure for small sample sizes such as n < 5 especially when normality was 

violated. 

 

Kruskal-Wallis procedure must be used with caution. It is similar to F-test which is 

sensitive to the occurrence of heterogeneous variances in equal and unequal sample 

sizes (Kruskal and Wallis, 1952). Lix. et al. (1996) did a research on a quantitative 

review of alternatives to One-Way ANOVA, Kruskal-Wallis test was chosen as the 

alternative procedure. Similar to ANOVA, Kruskal-Wallis should be sensitive to the 

violation of variance homogeneity under both balanced and unbalanced designs. 
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However, the outcome of the research did not support the statement (sensitivity due 

to heterogeneous variances) due to the generated data. In their study, almost 90% of 

the balanced design data (equal group size and equal group variance) were generated 

whereas there were only a small percentage of unbalanced design data (unequal 

group size and unequal group variance) were formed. Therefore, it was difficult to 

create clear guidelines about the use of Kruskal-Wallis test under variance 

heteroscedasticity. Other than this, the procedure showed good control for non-

normality data. Nevertheless, it did not perform well when the non-normality was 

found under the populations with different distributions. 

 

The choice of estimators is crucial in controlling Type I error rate and maintaining 

the power of statistical procedure. Due to the violations of normality and variance 

homogeneity, robust estimators have received a lot of attention in the literature by 

wide spread list in review articles (Huber, 1972; Hogg, 1974; Dixon and Yuen, 

1974). Most of the robust estimators have been established and assessed for 

symmetric distributions with varying degrees of heavy tailed. According to Wilcox 

and Keselman (2003), using robust estimators can have significantly more power 

when the distributions of populations are differ in skewness or have unequal 

variances. In addition, they show better control of Type I error. Classical parametric 

procedures can be considered as robust by replacing the central tendency measures 

with robust estimators. Hence, in order to achieve the goal of this study, Hodges-

Lehmann was chosen as the robust estimate of location. 
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2.4 Hodges-Lehmann Estimator 

There was a serious rejection to classical statistical procedures based on linear 

models or non-normality is their susceptibility to gross errors for example heavier 

tails than the normal distribution. This issue had overcome successfully by 

nonparametric procedures such as Mann-Whitney or Kruskal-Wallis. The statistical 

power of these procedures are more robust against gross errors that parametric 

procedures like t-test and ANOVA. Modifying the classical location estimators 

through removal or winsorisation of outlying observations was a challenge to 

researchers. Hence, Hodges and Lehmann (1963) had introduced a different 

approach, Hodges-Lehmann estimator to these problems.  

 

Hodges-Lehmann is a robust location estimator that derived from rank test statistics 

like Wilcoxon or normal scores statistics which were providing robust power 

successfully for the corresponding testing problems (Hodges and Lehmann, 1963). 

According to Boos (1982), it is a consistent and median-unbiased estimator of 

population mean under symmetric distribution. For skewed distribution, it estimates 

the “pseudo-median” which is related to population median closely. Furthermore, it 

is well known for having excellent robustness and efficiency properties under the 

usual assumption of symmetry. 

 

Hodges-Lehmann estimator can be computed in a quick way. Let ,1X ..., nX  be the 

sample from a continuous distribution     .0  xFxF  It is given as:  
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The above formula is used to calculate for each group which is similar to a group 

mean.   

 

Bickel (1965) studied on several robust estimates of location such as trimmed mean, 

winsorised mean, Hodges-Lehmann estimator and maximum likelihood estimator. 

By comparing to the trimmed mean, the finding suggested that Hodges-Lehmann 

estimator was to be preferred in any condition where the degree of contamination and 

shape of distribution is not known with great precision provided the computations 

involved are excessive. Besides, the conclusion of the study showed that all selected 

robust estimators, except winsorised mean behaved satisfactorily when compared to 

mean and Hodges-Lehmann estimator seemed to be the safest among the estimators. 

 

Boos and Monahan (1986) proposed a procedure of incorporating prior information 

by replacing the likelihood in Bayes’s formula with a bootstrap estimate of the 

sampling density of a robust estimate of location such as trimmed mean, sample 

mean, sample median and Hodges-Lehmann estimator. Laplace, Uniform and 

Student’s t (3 df) were the three alternative error distributions that was considered in 

the study with the scale of unit variance each. Based on the results obtained, all four 

robust estimators showed a substantial improvement for Laplace and t distributions. 

Furthermore, Hodges-Lehmann estimator and trimmed mean provided the best 

results for t distribution by reducing the mean squared error of the posterior mean by 

approximately 60%. 
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2.5 Scale Estimators 

In statistics, scale estimators are used to quantify the statistical dispersion in data 

sets. The sample standard deviation which is the common measures of scale is easily 

influenced by extreme value.  The choice of scale measure in a test statistic is vital as 

this measure greatly influenced the result of the test. Othman et al. (2004) had tried 

to modify S1 statistic by replacing standard error of sample median with asymptotic 

variances. However, this modification was not successful as Type I error was unable 

to be controlled at nominal level. Syed Yahaya, Othman and Keselman (2004) then 

continued working on this procedure by substituting four robust scale estimators such 

as MADn, Tn, Sn and Qn in place of asymptotic variances. The substitution effectively 

controlled the Type I error under normal to moderately skewed distribution but failed 

to do so under extremely skewed distribution. Tn, Sn and Qn were the robust scale 

estimators that introduced by Rousseeuw and Croux (1993). All the four estimators 

were selected according to their high breakdown point and bounded influence 

function, which were the two important characteristics of a scale estimator. 

 

In the next section, random sample from any distribution will be represented as 

 nxxxX ,...,, 21 and ii xmed  refers to sample median for group i. 

 

2.5.1 MADn 

Median absolute deviation about the median, MADn is a frequently used robust scale 

estimator by researchers due to its best possible breakdown point of 50% which is 

doubled a number of interquartile range. Besides, its bounded influence function is 

the sharpest possible bound (Hampel, 1974). The formula is given by:  
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nMAD b jjii xmedxmed                        (2.16) 

Hampel (1974) was the first person who promoted MADn and he attributed it to 

Gauss. In the formula, the constant b is needed in order to make the estimator to 

remain consistent for the parameter of interest. MADn has a simple explicit formula 

and only need a little time for computation. Due to the benefits of MADn, Huber 

(1981) had concluded that MADn has developed as the single most useful robust scale 

estimator. However, there are some disadvantages of MADn. According to 

Rousseeuw and Croux (1993), it took a symmetric view on the dispersion because of 

the one first estimated the median and then attached the equal importance to positive 

and negative deviations from it. This situation did not seem to be a natural approach 

at asymmetric distributions which MADn was supposed to find the symmetric near 

the median that consisted 50% of the data. 

 

2.5.2 Sn 

Refer to Rousseeuw and Croux (1993), Sn is one of the alternative estimators for 

MADn that is used as initial or ancillary scale estimates in the similar way as MADn. 

It is also able to provide high efficiency and do not slanted towards symmetric 

distributions. It can be defined as:  

nS c  jiji xxmedmed                             (2.17) 

The value of c is a constant factor and its default value is 1.1926. The notation, imed

is referred to the low median with the order statistic of rank   21n  while jmed is 

meant for the high median with the order statistic of rank   .12  nh  This formula 
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is quite similar to MADn but there is a slight difference between them. The operation 

of jmed  was moved outside the absolute value.  

 

Sn is always uniquely defined due to its explicit formula. One of the advantages of Sn 

that can overcome MADn’s drawbacks is it does not require any location estimate of 

the data. Sn focuses on the typical distance between observations which is still under 

asymmetric distributions instead of measuring the distance between observation and 

the central value. Furthermore, Sn has the greatest possible breakdown point in finite 

sample by obtaining 58.23% efficiency which was better than MADn’s 36.74% 

efficiency at Gaussian distributions (Rousseeuw and Croux, 1993). 

 

2.5.3 Qn 

Qn is the other alternative estimator that was suggested by Rousseeuw and Croux 

(1993).  This estimator is defined as:   

 
 kjin jixxdQ  ;                       (2.18) 

where d is a constant factor and  

4
22 


















nh
k  and   12  nh                      (2.19) 

Other than its simple explicit formula that is suitable for asymmetric distributions 

and its high breakdown point of 50%, Qn has a smooth bounded influence function 

that yields about 82% efficiency at Gaussian distributions, which is higher than Sn. 

Unfortunately, Qn lost its efficiency in small samples.  

 

2.5.4 Tn 
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Rousseeuw and Croux (1993) had proposed another simple explicit scale estimator 

with high breakdown point and suitable for asymmetric distribution, denoted as: 

 
 k

ji
ij

h

k

n xxmed
h

T 





1

1
3800.1           (2.20) 

They proved that Tn has high breakdown point of 50%, a continuous influence 

function with 52% efficiency which was more efficient than MADn.  

 

According to all the estimators’ properties like breakdown point, bounded influence 

function and efficiency, these estimators were decided to be used as the scale 

estimator for S1. Syed Yahaya (2005) proposed a study to seek for alternative 

procedures in testing the equality of location parameter in one-way independent 

group design when the distributions were skewed. In order to achieve the goal of the 

study, S1 statistic was modified by replacing the default scale estimator, ,̂  with 

some robust scale estimators such as MADn, Qn, Sn and Tn. According to the findings, 

the modified S1 procedures were robust with the exception of Qn which generated 

conservative Type I error rates (below 0.025 value). Besides, S1 statistic with Tn 

performed the best among the procedures under skewed distributions. 

 

Cui, He and Ng (2003) proposed an alternative procedure for the analysis of 

principal components by replacing the classical variability measure such as variance 

with a robust dispersion measure. For comparison purpose with classical principal 

components, the three chosen robust estimates of scale were trimmed standard 

deviation with α = 0.1, Qn and median absolute deviation, MADn. The trivariate 

samples ix  with the size of 100 and 200 were simulated from the Normal model, 
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N{0, diag (1, 2, 4)} and the Contaminated-Normal model, 0.9N{0, diag (1, 2, 4)} + 

0.1N{0, diag (25, 2, 4)}. Normal model was used for the purpose of evaluating the 

efficiency of the robust procedures under strict Gaussian models. Meanwhile, the 

Contaminated-Normal model was considered for checking the value of the robust 

principal component analysis procedures relative to the classical principal component 

analysis when a modest number of outliers existed in the sample. Based on the 

findings, the authors noticed that the robust procedures had greater bias compared to 

classical principal component analysis yet they performed well in terms of 

efficiency. However, MADn had a very low level of efficiency than Qn. In addition, 

robust procedure with Qn is the most robust among the three robust scale estimators 

due to its mean squared errors for estimating the principal component. 

 

2.6 Bootstrap Method 

Bootstrapping is a statistical procedure which is also known as computer-based 

procedure that used to estimate the standard error of ̂  by resampling the data when 

the parametric assumptions are in doubt or, parametric inference is either impossible 

or need a very complicated formula. There were some similar resampling procedures 

available such as jackknife by Quenouille (1949) and permutation methods by Fisher 

and Pitman in the 1930s before bootstrap procedure was introduced (Chernick, 

1999). Conversely, in year 1979, Efron combined the ideas and linked the simple 

nonparametric bootstrap which was known as resampling the data with replacement, 

with the earlier accepted statistical tools like jackknife and delta method. The 

average weight of people in this world is one of the examples. It is very hard to 

obtain the weight of people in global population. We can only sample a small part of 
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the population by assuming the size of sample is N. Only one average value can be 

obtained from that single sample. Bootstrap procedure able us to compute the mean 

of weight by forming a number of sample sets with replacement from the original 

data set. This process is repeated with a large numbers of times, normally 1,000, 

5,000 or 10,000 times. 

 

According to Chernick (1999), bootstrap can be used as an alternative in certain 

cases although it may not be providing a very good solution. It is difficult to estimate 

a parameter, conduct a hypothesis testing about the parameter, determine the 

standard error or a confidence interval for the parameter with a sample size of n if 

any parametric assumption is not fulfilled. By considering the empirical distribution 

which refers to the probability distribution that has probability of 1/n assigned to 

every sample value, the idea of bootstrap is to use it as the replacement for unknown 

distribution of population. Due to the generality of bootstrap, it has been widely used 

in many areas than just for estimating the standard errors and confidence intervals. 

 

2.7 Type I Error 

Since sample statistics are used to calculate from random data in order to make 

conclusions about the parameters of populations during the process of hypothesis 

testing, therefore it is possible that a wrong conclusion would be made with respects 

to the null hypothesis. Type I error is one of the errors which can occur in testing 

hypothesis. Type I error is made when the true null hypothesis is rejected. The 

probability of Type I error is known as alpha    or actual level of significance 

which refers to the area under the curve of the rejection region that beyond the 
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critical value(s). The common values of nominal significance level are 0.05, 0.01 and 

0.10 which often decides before the study begins. 

 

Kazempour (1995) studied on the impact of stratification imbalance on the 

probability of Type I error. The evaluation was carried out in a clinical setting which 

different response rates of the treatments might be obtained among the strata. The 

results showed that the dispersion of response rates in a heterogeneous population 

would affect the Type I error rate when stratification was ignored. The effect on 

Type I error could be large. Hence, it should be evaluated and addressed. If the 

response rates in different strata were far apart from each other, the statistical 

procedures would become more conservative. This applied to no stratification 

imbalance too. 

 

Brunner and Austin (2007) investigated on the inflation of Type I error in multiple 

regression when two correlated independent variables were measured with error. 

Besides, an attempt was made to test one of the independent variables while 

controlling for the other one by usual regression procedures and measurement error 

was ignored. The finding proved that Type I error was drastically inflated by 

ignoring the measurement error in the independent variables of a regression. This 

outcome could be applied to several types of regression and measurement error due 

to the failure in making a distinction between the true independent variables. 

However, the authors claimed that Type I error was not always inflated when 

measurement error was ignored. It depended on the relationships of independent 

variables and measurement errors. 
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Lix et al. (1996) mentioned a robust procedure would maintain the actual Type I 

error rate to be closer to the nominal significance level, α and also maintain the 

actual statistical power at the same time. Bradley (1978) proposed that if the Type I 

error rate of a procedure falls in the interval of ,5.1ˆ5.0    the procedure 

fulfills the criterion of robustness and can be considered robust. For example, when 

the nominal significance level is set as ,05.0  the procedure is robust if its 

empirical Type I error rate falls in the range of 0.025 and 0.075. However, according 

to Guo and Luh (2000), a procedure is robust when the Type I error rate is not more 

than 0.075 level at .05.0  

 

As explained in the previous sections under two-group and more than two-group 

cases, Type I error rate is affected when the assumptions of normality and variance 

homogeneity are violated for balanced and unbalanced designs. In our effort to 

search for a better procedure to overcome the aforementioned problems, in this study 

we adopt the S1 statistic that was proposed by Babu et al. (1999) for skewed 

distributions. Instead of using median as the location parameter, we use Hodges-

Lehmann estimator in place of the median. We also consider using several robust 

scale estimators to replace the default scale estimator of S1 statistic. The detail on S1 

with Hodges-Lehmann will be discussed in the next chapter. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

As mentioned in the previous chapters, S1 statistic is a statistical procedure that deals 

with the violation of normality without having to trim or transform the original data. 

However, the robustness and control of Type I error of this procedure could be 

further improved especially for skewed distributions. Therefore, the goal of this 

study is to propose an improved S1 statistic. The modification on this statistic was 

done by replacing the default location estimator (median) with Hodges-Lehmann 

whereas the default scale estimator was substituted by several robust scale 

estimators. 

 

Most of the real data are non-normal in general (Reed, 1998). Besides, it is a 

challenge to perform data transformation or data trimming as it might cause the 

losing of important information of the data. Hence, these wonders can be eliminated 

by using Hodges-Lehmann as the location parameter because it estimates the 

“pseudo-median” which is related to population median closely (Boos, 1982). 

Furthermore, it also can deal with the original data when there is a violation of 

normality. According to Geyer (2006), the breakdown point of Hodges-Lehmann is 

0.3. Although the breakdown point of Hodges-Lehmann is lower than the breakdown 

point of median, this does not mean median dominates in terms of efficiency for all 

skewed distributions for example the distributions with relatively light tails (Wilcox, 

2012). Unlike median which removes 50% of the largest and 50% of the smallest 

observations from the data, Hodges-Lehmann takes all the observations from the data 
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S1 

Hodges-Lehmann 

variance of Hodges-Lehmann MADn  Tn  Sn  Qn  

into consideration by calculating the midpoints of every two observations before 

obtaining the median among the computed midpoints.  

 

Conditions such as non-normality and variance heterogeneity are the main concern in 

this study. Therefore, skewness and kurtosis of the distribution are controlled by 

using g and h distribution.  Besides, the research design contained two and four 

groups of data with equal and unequal sample sizes and variances. In addition, the 

pairing of sample sizes and variances (positive and negative pairing) were tested as 

well. 

 

3.2 Procedure Employed 

For achieving the goal of this study, the location estimator of S1 statistic, median was 

replaced by Hodges-Lehmann while for the scale estimators, variance of Hodges-

Lehmann, MADn, Tn, Sn and Qn were chosen as the substitution for the default scale 

estimator, .̂  The modification of S1 statistic generates five procedures as shown in 

Figure 3.1 below.  

 

 

 

 

 

 

 

 

Figure 3.1: Statistical test with the corresponding scale estimators 
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3.2.1 S1 using Hodges-Lehmann with its variance  

Let )...,,,( 21 njjjij YYYY   be a sample from an unknown distribution Fj, j = 1, 2, .., J, 

where J is the number of groups. 
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iHL = the Hodges-Lehmann of group i; 

jHL = the Hodges-Lehmann of group j; 
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in = number of observations for group i;  

jn = number of observations for group j; 
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3.2.2 S1 using Hodges-Lehmann with MADn  
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where 
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3.2.3 S1 using Hodges-Lehmann with Tn  
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3.2.4 S1 using Hodges-Lehmann with Sn  
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3.2.5 S1 using Hodges-Lehmann with Qn  
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with d as a constant factor,  

  m = 4
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 and h = [n/2] + 1                     (3.18) 

 

3.3 Variables Manipulated 

Manipulating variables by creating various conditions are necessary to check on the 

strengths and weaknesses of the proposed procedures. Further explanations for each 

condition will be discussed in the following subsections.  

 

3.3.1 Number of Groups 

For the two groups case, J which denotes the number of groups is represented by J = 

2. Meanwhile, J = 4 represents the more than two groups case since the traditional 

ANOVA F test was found to perform well under this case (Wilcox, 1994). 

 

3.3.2 Balanced and Unbalanced Sample Sizes 

When there are violation on the assumptions of normality and equal variances, 

inflation of Type I error rates usually occur for parametric procedures. This applies 

to equal and unequal sample sizes as well (Snedecor and Cochran, 1980). Under 

equal sample sizes, the effect of non-normality on the Type I error rates of ANOVA 

F test showed no difference between groups with equal group variances compared to 

equal sample sizes with unequal group variances.  Regardless of the degree of non-
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normality, the error rates remained close to nominal significance level under equal 

group variances and inflated across the non-normal distributions under unequal 

group variances. The same pattern was also found under unequal sample sizes. (Lix 

et al., 1996). Therefore, to prove that the proposed procedures can be used to solve 

the issue, balanced and unbalanced sample sizes were assigned in this study for two 

and four groups case. 

 

The total sample sizes for two groups (J = 2) was set as 40. For balanced sample 

sizes, each group was assigned 20 observations ( 201 n and ).202 n  For 

unbalanced sample sizes, the first group was set as 151 n and the second group was 

252 n (refer to Table 3.2).  

 

Total sample sizes for four groups (J = 4) was twice the total of two groups (J = 2) 

that was 80 for balanced and unbalanced sample sizes. For balanced sample sizes, 

each group was pegged with 20 observations per group ( 1n 2n 3n ).204 n  For 

unbalanced sample sizes, each group was assigned with different number of 

observations such that ,101 n ,152 n 253 n and 304 n (refer to Table 3.2). 

 

3.3.3 Types of Distributions 

Kang and Harring (2012) investigated the impact of non-normality, effect size and 

sample size on two groups case with equal sample sizes (n = 8, 15, 30, 60 and 120) 

for parametric, nonparametric and robust procedures. The results obtained shows that 

different distributional shapes could affect the control of Type I error of each 

procedure. Similar effect occurs on more than two groups case as well. Khan and 



43 

 

Rayner (2003) studied on the robustness to non-normality of ANOVA and Kruskal-

Wallis for three groups location problem using several types of distributions. Rather 

than its skewness, both procedures were much affected by the kurtosis of the error 

distribution. Therefore, to examine the effect of distributional shapes on Type I error, 

three distributions with different levels of skewness and kurtosis were chosen for this 

study. A normal distribution represents a distribution with zero skewness. For 

moderate skewness or mild departure from normality, chi-square distribution with 3 

degree of freedom was used. For extreme departure from normality, a skewed heavy 

tail distribution represented by g = 0.5 and h = 0.5 distribution was used.  For this 

distribution, the skewness is controlled by parameter g while the kurtosis is 

controlled by parameter h. 

 

3.3.4 Variance Heterogeneity 

Variance homogeneity is a crucial assumption when testing for equality of location 

measures using parametric procedures (Kulinskaya, Staudte and Gao, 2003). The 

existence of variance heterogeneity across groups could make the statistical 

procedures for treatment effects unreliable. In this study, variances with different 

ratios was assigned to two and four groups for equal and unequal sample sizes to 

investigate the effect of variance heterogeneity on Type I error. For equal sample 

sizes, variance with 1:1 ratio was allocated to two groups while variance with 1:1:1:1 

ratio was allocated to four groups. For unequal sample sizes, variance with 1:36 ratio 

was assigned to two groups whereas variance with 1:1:1:36 ratio was assigned to 

four groups (refer to Table 3.3). According to Keselman, Wilcox, Othman & Fradette 

(2002) and Syed Yahaya (2005), it is reasonable to use the ratio of 1:36 in 
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investigating the procedures’ performance under extreme conditions although the 

ratio may seem large because if a procedure can perform well under such an extreme 

condition, it can work under most conditions of heterogeneity too. 

 

3.3.5 Nature of Pairings 

Nature of pairings are categorised into positive and negative pairings which can only 

be formed when there are unequal sample sizes that pairs with unequal group 

variances. Positive pairing is referred to the pairing of the smallest group size with 

the least group variance and the largest group size is paired with the greatest group 

variance. For negative pairing, the concept is completely the opposite of positive 

pairing. The smallest number of group observation is matched with the greatest 

group variance whereas the largest number of group observation is matched with the 

lowest group variance (refer to Table 3.4). Generally, positive pairing procedures 

conservative results and negative pairing produces liberal results (Teh, Md Yusof, 

Yaacob and Othman, 2010). 

 

3.4 Design Specification 

Number of groups, levels of skewness, equal and unequal sample sizes, variance 

heterogeneity and nature of pairings are the variables that have been manipulated in 

this study to create various conditions for testing on the strengths and weaknesses of 

the proposed statistical procedures in controlling Type I error. Basically, the 

conditions that were created by the manipulation of the variables were further 

classified into perfect, mild departure and extreme departure from the assumptions.  

Perfect condition is referred to the condition with equal group sizes, equal group 
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variances and normal distribution. Mild departure focused on equal and unequal 

group sizes and group variances. The distributional shapes for mild departure are 

divided into skewed distribution with equal sample sizes and equal group variances 

and normal distribution with unequal sample sizes and unequal group variances. 

Extreme departure condition will only concentrate on unequal group sizes and group 

variances with skewed distributional shape (refer to Table 3.1). 

 

Table 3.1 

Conditions of Departure 

Conditions Group Sizes Group Variances Distributional 

Shape 

Perfect Equal Equal Normal 

Mild Departure Equal Equal Skewed 

Unequal Unequal Normal 

Extreme Departure Unequal Unequal Skewed 

 

 

Table 3.2 

Sample Sizes 

 J = 2 J = 4 

 
1n  

2n  
1n  

2n  
3n  

4n  

Equal 20 20 20 20 20 20 

Unequal 15 25 10 15 25 30 
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Table 3.3 

Group Variances  

 J = 2 J = 4 

 
1n  

2n  
1n  

2n  
3n  

4n  

Equal 1 1 1 1 1 1 

Unequal 1 36 1 1 1 36 

 

 

Table 3.4 

Nature of Pairings  

 J = 2 J = 4 

 151 n  252 n  101 n  152 n  253 n  304 n  

Positive 1 36 1 1 1 36 

Negative 36 1 36 1 1 1 

 

 

3.5 Data Generation 

In this study, SAS/IML is the statistical software that used to generate data for 

different distributional shapes and conditions. The data generation steps for 

distributional shapes are elaborated as below:  

(a) Normal distribution - The mean was set as 0 and standard deviation 

was set as 1 for the purpose of standardising the normal distribution 

using SAS generator RANNOR (SAS Institute, 1999).   
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(b) Chi-square (3 df) distribution  

i. Produce three standard normal variates ijZ using (a). 

ii. Square each .ijZ  

iii. Sum up all three squares of .ijZ  

  
23

1;1





ji

ijZ                         (3.19) 

 

(c) g = 0.5 and h = 0.5 distribution 

i. Generate a standard normal variate, ijZ using (a). 

ii. Use the equation below to convert the standard normal variates 

to random variables. 
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Parameter of g is used to control the skewness of the distribution whereas parameter 

of h is used to control the distribution’s kurtosis. With reference to the g-and-h 

distributions, the skewness increased when g increased and the distribution became 

heavier when h increased. Therefore, g-and-h = 0.5 represents skewed heavy tail 

distribution, which can be considered as the extreme departure from normality. 

 

Basically, the values of location parameters are not equal to zero under skewed 

distributions. Hence, the observations, ijY  from each simulated skewed distributions 
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were centered by subtracting the population location parameter, θ from the 

observations in order to ensure the null hypothesis, H0 remains true. 

 ijij YX                     (3.21) 

According to Othman, et al. (2004) and Wilcox and Keselman (2003), the values of 

  are determined by calculating ̂  with one million observations that were 

simulated from that particular distribution. Precisely, the Hodges-Lehmann of each 

population distribution has to be subtracted from ijY in this study. Table 3.5 below 

represents the central tendency measure (Hodges-Lehman values) with respect to 

distributions based on one million observations. 

 

Table 3.5 

Central Tendency Measure with respect to Distributions 

 Normal Chi-square g = 0.5 and h = 0.5 

Hodges-Lehmann 0 2.674 0.101 

 

During the generation of data using SAS/IML, the groups central tendency measures 

was set at    0,0, 21   for two groups ( 2J ) and    0,0,0,0,,, 4321   for 

four groups (J = 4) for the analysis of Type I error. 

 

3.6 Bootstrap Method 

Bootstrap method was used in this study for conducting the hypothesis testing since 

the sampling distribution for the proposed statistics is unknown. During the process 

of bootstrap resampling, artificial samples were drawn from the sample itself with 

replacement. Furthermore, the sampling distribution of the test statistic under the null 
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hypothesis could be estimated by the bootstrap. Other than that, the bootstrap was 

able to locate the rejection region of the test empirically. Monte Carlo procedure was 

used for the purpose of obtaining Type I error. All data sets of each design (refer to 

Table 3.2 to Table 3.4) were simulated for 5000 times at 5% level of significance 

�� = 0.05�. Below are the steps for testing hypothesis using bootstrap method. 

i. Use the original data that are produced by SAS/IML to calculate S1. 

ii. Bootstrap the original data in order to get the sample bootstrap data. 

iii. Centralise the data. 

iv. Use bootstrap data to calculate S1 and denote it as S1
*
. 

v. Repeat the steps from (ii) to (iv) for B = 599.  

vi. Calculate p-value using (number of S1
* 

> S1) / B. 

 

The formula to calculate Type I error rate is the number of p-values that is less than 

0.05 divided by the number of simulation. For example, if the data sets are simulated 

for 5000 times, Type I error rate is computed as (number of p-values < 0.05) / 5000. 
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CHAPTER FOUR 

RESULTS OF THE ANALYSIS 

4.1 Introduction 

The structure of this chapter focuses on the study of the proposed test statistic, S1 

statistic by replacing the default location parameter, median with Hodges-Lehmann. 

Other than the variance of Hodges-Lehmann, four highly robust scale estimators, 

MADn, Tn, Sn and Qn were also chosen to replace the default scale estimator, ̂  in S1 

statistic. As mentioned in Section 3.2, five procedures were developed in this study. 

In order to accomplish the objectives that are mentioned in Section 1.3, their 

robustness in terms of Type I error rates will be compared. For the purpose of 

showing their strengths and weaknesses, several conditions were created for each of 

these procedures such as the levels of skewness, equal and unequal group variances, 

equal and unequal sample sizes, and nature of pairings. The nature of pairings is 

occurred for unbalanced design only which is referred to unequal group sizes and 

unequal group variances. All conditions were arranged under balanced and 

unbalanced group designs under two groups (J = 2) and four groups (J = 4) for each 

procedure. The empirical rate of Type I error obtained are presented in this chapter. 

 

Normal, chi-square with three degrees of freedom and g-and-h distribution were used 

to represent the different levels of skewness which are referred to zero, mild and 

extreme skewness. For the ease of comparison, the results of Type I error rates are 

arranged in table form according to each procedure and distributional shape. Type of 

distribution is placed as the first column followed by each procedure in the next five 

columns for balanced group design of J = 2 and J = 4.  Meanwhile, for unbalanced 
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design of J = 2 and J = 4, nature of pairing which is positive or negative pairing is 

presented in the second column followed by the five proposed procedures. Pairings 

only exist for unbalanced group design.  

 

In order to test the robustness of each proposed procedure under every condition for 

the 5% of significance level  05.0  that used in this study, Guo and Luh’s 

criterion of robustness was employed as the benchmark for measuring the robustness 

in terms of Type I error. According to Guo and Luh (2000), a procedure is 

considered robust if its empirical Type I error rate does not greater than 0.075 at 

.05.0  Besides, a procedure that produces Type I error rate which is closest to 

nominal significance level can be called as the best procedure in controlling Type I 

error.  

 

4.2 S1 Procedures 

The central tendency measure of S1 statistic, median was substituted by Hodges-

Lehmann in this study. Five scale estimators mentioned in previous section were 

each integrated in the S1 statistic forming five proposed procedures namely S1 with 

the variance of Hodges-Lehmann, S1(HL); S1 with MADn, S1(MADn); S1 with Tn, 

S1(Tn);  S1 with Sn, S1(Sn) and S1 with Qn, S1(Qn),  The goal of the proposed S1 statistic 

is to test the equality of Hodges-Lehmann such that: 

JHLHLHLH  ...: 210  

where jHL is the population Hodges-Lehmann for group j such as j = 1, 2, …, J. 

Percentile bootstrap method was used to generate Type I error rates for all the five 

proposed S1 procedures. The analysis of Type I error is explained in section 4.2.1 and 
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4.2.2 based on two groups (J = 2) and four groups (J = 4) cases under balanced and 

unbalanced group designs. 

 

4.2.1 Type I Error for J = 2 

The null hypothesis for two groups (J = 2) is given as: 

  210 : HLHLH   

The Type I error rates obtained for each modified S1 statistic are arranged in Table 

4.1 (section 4.2.1.1) and 4.2 (section 4.2.1.2) for balanced and unbalanced group 

designs. 

 

4.2.1.1 Balanced Design (J = 2) 

Balanced design referred to the groups having equal number of observations and 

homogeneous group variances. The results obtained are presented in Table 4.1 

below. 

 

Table 4.1 

Type I Error Rates for J = 2 (Balanced Design) 

Distribution S1 (HL) S1 (MADn) S1 (Tn) S1 (Sn) S1 (Qn) 

Normal 0.0304 0.0360 0.0350 0.0356 0.0266 

Chi-square  0.0262 0.0250 0.0272 0.0282 0.0220 

g = 0.5, h = 0.5 0.0074 0.0212 0.0186 0.0190 0.0124 

 

The Type I error rates of each proposed procedure across all three distributions fulfill 

the Guo and Luh’s robust criterion as all the Type I error rates fall below 0.075 level.  
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Based on the results obtained, S1(MADn) has better control of Type I error for normal 

(0.0360) and g-and-h = 0.5 distribution (0.0212) because its empirical Type I error 

rates are the closest to the nominal level of 0.05. In contrast, S1(Sn) performs the best 

for chi-square (0.0282). Meanwhile, S1(Qn) shows the lowest (furthermost from the 

nominal level of 0.05) Type I error for normal (0.0266) and chi-square (0.0220). As 

for the g-and-h = 0.5, S1(HL) produce the lowest Type I error (0.0074), and this value 

seems to be the lowest among all conditions. The range of values across the table 

spans from 0.0074 to 0.0360. In general, S1(MADn) shows better performance 

(nearest) to the nominal level) than the other procedures while S1(Qn) produces very 

low Type I error rates (further from the nominal level).  Anyhow, the results for all 

conditions are robust. 

 

4.2.1.2 Unbalanced Design (J = 2) 

Table 4.2 below presents the Type I error rates obtained for S1(HL), S1(MADn), 

S1(Tn), S1(Sn) and S1(Qn) under three distributions according to the positive and 

negative pairings. 

 

Table 4.2 

Type I Error Rates for J = 2 (Unbalanced Design) 

Distribution 

Nature 

Of Pairing 

S1 (HL) S1 (MADn) S1 (Tn) S1 (Sn) S1 (Qn) 

Normal Positive 0.0288 0.0382 0.0390 0.0404 0.0302 

Negative 0.0164 0.0254 0.0276 0.0202 0.0140 

Chi-square  Positive 0.0234 0.0442 0.0460 0.0450 0.0360 
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 Negative 0.0174 0.0348 0.0402 0.0292 0.0258 

 

Table 4.2 continued 

g = 0.5, h = 

0.5 

Positive 0.0104 0.0296 0.0304 0.0282 0.0192 

Negative 0.0058 0.0200 0.0194 0.0132 0.0088 

 

Refer to Table 4.2 above, it can be clearly seen that all procedures are robust as none 

of the Type I error rates fall above 0.075 level according to Guo and Luh’s criterion 

of robustness. For positive pairing, S1(Sn) shows better control of Type I error for 

under normal distribution (0.0404) whereas S1(Tn) performs the best for chi-square 

(0.0460) and g-and-h = 0.5 (0.0304) because their Type I error rates are the closest to 

nominal level of 0.05. In the meantime, for negative pairing, S1(Tn) shows the best 

performance for normal (0.0276) and chi-square distributions (0.0402) while for g-

and-h = 0.5, S1(MADn) has the greatest and closest error rate to nominal level 

(0.0200). On the other hand, S1(Qn) produces the lowest empirical Type I error rate 

for negative pairing under normal distribution (0.0140) which is the furthest from 

nominal level. Regardless of the nature of pairing and distributional shape, S1(HL) is 

ranked last for all conditions except for negative pairing under normal distribution. 

The empirical Type I error rates in Table 4.2 are ranging from 0.0058 to 0.0460. We 

observe that this range of value is wider than the range of value under balanced 

design. In general, S1(Tn) shows the best performance in controlling Type I error 

(near to nominal level). Meanwhile, S1(HL) generates very low Type I error rates 

(further from nominal level). However, all procedures are robust across all 

conditions. 
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4.2.2 Type I Error for J = 4 

For four groups case, the null hypothesis is given as: 

  43210 : HLHLHLHLH   

The Type I error rates are presented in Table 4.3 (section 4.2.2.1) and 4.4 (section 

4.2.2.2) below using the same arrangement as in section 4.2.1.1 and 4.2.1.2 for 

.2J   

 

4.2.2.1 Balanced Design (J = 4) 

Similar to the balanced design for J = 2, the tests were conducted based on the 

groups that have equal sample sizes and group variances. The results of each 

distributional shape are shown in Table 4.3 below. 

 

Table 4.3 

Type I Error Rates for J = 4 (Balanced Design) 

Distribution S1 (HL) S1 (MADn) S1 (Tn) S1 (Sn) S1 (Qn) 

Normal 0.0220 0.0220 0.0206 0.0234 0.0138 

Chi-square  0.0128 0.0118 0.0120 0.0102 0.0070 

g = 0.5, h = 0.5 0.0022 0.0096 0.0068 0.0064 0.0034 

 

The Type I error rates present in Table 4.3 shows that all the proposed procedures, 

S1(HL), S1(MADn), S1(Tn), S1(Sn) and S1(Qn) fulfill Guo and Luh’s criterion of 
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robustness by obtaining Type I error rates that fall below 0.075 level. For normal 

distribution, the procedure shows better performance is S1(Sn) (0.0234) by having the 

closest Type I error rate to nominal level. Meanwhile, S1(HL) has the best control of 

Type I error among the procedures for chi-square with (0.0128). For g-and-h = 0.5, 

S1(MADn) (0.0096) performs the best (closest to nominal level) even though the 

value is pretty small as all the Type I error rates of the procedures under this 

distribution deflate to below 0.01. In contrast, S1(Qn) produced the lowest error rates 

for normal (0.0138) and chi-square distributions (0.0070) (furthermost from nominal 

level). This outcome is the same as in balanced design under two groups case. The 

result also clearly shown that the empirical Type I error rate of S1(HL) is again the 

lowest for g-and-h = 0.5 (0.0022) and also among all conditions. The range of Type I 

error rates in Table 4.3 spans from 0.0022 to 0.0234. In general, for J = 4 balanced 

design, the best procedure in controlling Type I error is S1(MADn) (close to nominal 

level) while S1(Qn) produces very low Type I error rates (further from nominal level). 

Nevertheless, all procedures are robust. 

 

4.2.2.2 Unbalanced Design (J = 4) 

For the case of four groups under unbalanced design, the Type I error rates for 

S1(HL), S1(MADn), S1(Tn), S1(Sn) and S1(Qn) are displayed in Table 4.4. 

 

Table 4.4 

Type I Error Rates for J = 4 (Unbalanced Design) 

Distribution 

Nature 

of Pairing 

S1 (HL) 

S1 

(MADn) 

S1 (Tn) S1 (Sn) S1 (Qn) 
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Normal Positive 0.0230 0.0252 0.0234 0.0194 0.0162 

Negative 0.0178 0.0196 0.0180 0.0160 0.0112 

Chi-square  Positive 0.0148 0.0226 0.0260 0.0230 0.0192 

Negative 0.0158 0.0272 0.0256 0.0260 0.0180 

Table 4.4 continued 

g = 0.5, h = 0.5 Positive 0.0028 0.0150 0.0134 0.0120 0.0066 

Negative 0.0032 0.0130 0.0108 0.0098 0.0042 

 

According to the results above, S1(HL), S1(MADn), S1(Tn), S1(Sn) and S1(Qn) are 

considered robust due to the criterion of robustness by Guo and Luh (2000). With the 

exception of positive pairing under chi-square (3 df) distribution, S1(MADn) shows 

the best performance regardless of the nature of pairing across all three distributions 

due to its Type I error rates closest to  the 0.05 nominal level. Meanwhile, S1(Tn) 

produces the highest empirical Type I error rate for positive pairing under chi-square 

(3 df) distribution (0.0260). In contrast, S1(Qn) is ranked last for positive (0.0162) and 

negative (0.0112) pairings under normal distribution. For the conditions of mild (chi-

square) and extreme skewness (g-and-h = 0.5), S1(HL) again performs the worst with 

regards of the nature of pairing. Furthermore, the values for g-and-h = 0.5 are also 

the smallest among all conditions. The range of the empirical Type I error rates 

obtained for four groups case (unbalanced design) spans from 0.0028 to 0.0272. In 

general, it seems that S1(MADn) is the best procedure in controlling Type I error than 

other procedures while S1(HL) has the lowest Type I error rates. Yet, all procedures 

are considered robust. 
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Due to the consistency of generating the closest empirical Type I error rates to the 

nominal level of 0.05 for balanced and unbalanced designs under two and four 

groups cases, S1(MADn) is the best procedure in controlling Type I error when the 

levels of skewness are zero, mild and extreme. In the meantime, S1(Qn) shows the 

worst performance with its lowest Type I error rates that are furthermost from the 

nominal level for balanced design under two and four groups cases. For unbalanced 

design, the worst procedure in controlling Type I error is S1(HL) under two and four 

groups cases. Nonetheless, all the proposed procedures, S1(HL), S1(MADn), S1(Tn), 

S1(Sn) and S1(Qn) are robust among all conditions for both group designs and cases. 

 

4.3 S1 Statistic versus Parametric and Nonparametric Procedures 

In order to determine the suitability of S1(HL), S1(MADn), S1(Tn), S1(Sn) and S1(Qn) to 

be the alternative procedures in testing the equality of location measures for zero, 

mild and extreme skewness,  the comparison based on Type I error rates between all 

the five proposed procedures with parametric and nonparametric procedures is 

necessary. This comparison is conducted according to the group case (J = 2 or J = 4) 

and group design (balanced and unbalanced) for each distributional shape. For J = 2, 

the parametric procedure is t-test, while Mann-Whitney is the choice of 

nonparametric procedure for this study. For J = 4, the chosen parametric and 

nonparametric procedures are ANOVA and Kruskal-Wallis respectively. At the same 

time, each proposed procedure is also compared with the original S1 statistic, S1(̂). 

For the ease of comparison among procedures in terms of empirical Type I error 

rates, there is a slight change on the structure of the results table. For balanced group 

design, the procedures are displayed in the first column followed by the columns of 
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distributions. As for the unbalanced design, nature of pairing is displayed in the 

second column followed by the distribution columns. 

 

 

4.3.1 Type I Error J = 2 (Balanced Design) 

The empirical Type I error rates for S1(HL), S1(MADn), S1(Tn), S1(Sn), S1(Qn), S1(̂), 

t-test and Mann-Whitney are displayed in Table 4.5. 

 

Table 4.5 

Type I Error Rates for J = 2 (Balanced Design) 

Procedure 

Distribution 

Normal Chi-Square  

g = 0.5, h = 

0.5 

S1 (HL) 0.0304 0.0262 0.0074 

S1 (MADn) 0.0360 0.0250 0.0212 

S1 (Tn) 0.0350 0.0272 0.0186 

S1 (Sn) 0.0356 0.0282 0.0190 

S1 (Qn) 0.0266 0.0220 0.0124 

S1 (̂) 0.0364 0.0342 0.0148 

t-test 0.0528 0.0500 0.0288 

Mann-Whitney 0.0526 0.0566 0.0526 

 

Based on the values presented in Table 4.5, the five proposed procedures, S1(̂), t-

test and Mann-Whitney are considered robust because all values fall below 0.075 
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level for normal, chi-square (3 df) and g-and-h = 0.5 distributions. Mann-Whitney 

performs the best in controlling Type I error under normal (0.0526) and g-and-h = 

0.5 distributions (0.0526) whereas t-test provides the best result under chi-square 

(0.0500) as their Type I error rates are the closest to nominal level of 0.05. 

Meanwhile, the procedures that generate the lowest empirical Type I error rates are 

S1(Qn) for normal and chi-square distribution, and S1(HL) for g-and-h = 0.5 

(furthermost from the nominal level). The range of values in Table 4.5 spans from 

0.0074 to 0.0566. 

 

In comparing the parametric (t-test), nonparametric (Mann-Whitney) and the original 

S1 procedure, S1(̂) against the five proposed procedures, S1(MADn) (0.0212), S1(Sn) 

(0.0190) and S1(Tn) (0.0186) produce better Type I error rates than S1(̂) (0.0148) 

under g-and-h = 0.5 distribution. However, these three proposed procedures are still 

ranked behind Mann-Whitney and t-test. For normal and chi-square distributions, 

none of the proposed procedures show better control of Type I error than t-test, 

Mann-Whitney and S1(̂).  

 

In general, Mann-Whitney shows the best performance than the other procedures in 

terms of controlling Type I error for two groups case under balanced design (closest 

to nominal level) while S1(Qn) has the lowest Type I error rates. However, all 

procedures are considered robust. In addition, the goal of this study has been 

achieved as the three proposed procedures, S1(MADn), S1(Sn) and S1(Tn) improve the 

original S1 statistic for extremely skewed distribution.  
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4.3.2 Type I Error J = 2 (Unbalanced Design) 

The Type I error rates for two groups under unbalanced group design have been 

recorded in Table 4.6 below. Unbalanced design is meant for unequal sample sizes, 

unequal group variances and nature of pairings. 

 

 

Table 4.6 

Type I Error Rates for J = 2 (Unbalanced Design) 

Procedure 

Nature of 

pairing 

Distribution 

Normal Chi-Square g = 0.5, h = 0.5 

S1 (HL)   Positive 0.0288   0.0234  0.0104 

 Negative 0.0164 0.0174 0.0058 

S1 (MADn) Positive 0.0382 0.0442 0.0296 

 Negative 0.0254 0.0348 0.0200 

S1 (Tn) Positive 0.0390 0.0460 0.0304 

 Negative 0.0276 0.0402 0.0194 

S1 (Sn) Positive 0.0404 0.0450 0.0282 

 Negative 0.0202 0.0292 0.0132 

S1 (Qn) Positive 0.0302 0.0360 0.0192 

 Negative 0.0140 0.0258 0.0088 

S1 (̂) Positive 0.0448 0.0426 0.0192 

 Negative 0.0422 0.0390 0.0156 

t-test Positive 0.0198 0.0238 0.0118 

 Negative 0.1268 0.1678 0.1048 
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Mann-Whitney Positive 0.0448 0.0666 0.0426 

 Negative 0.1086 0.1312 0.0976 

 

According to the Type I error rates that is presented above, all procedures are 

considered robust as their Type I error rates fall below 0.075 level with regards to the 

nature of pairing and distributional shape, except for t-test and Mann-Whitney under 

negative pairing across all three distributions. For positive pairing, Mann-Whitney 

emerged as the best performer for normal (0.0448) and g-and-h = 0.5 distributions 

(0.0426) as these values are the closest to nominal level of 0.05. Besides, S1(̂) also 

performed exceptionally well for normal distribution with the same Type I error rate 

as Mann-Whitney. On the other hand, S1(Tn) has better control of Type I error for 

chi-square (0.0460). For negative pairing, S1(̂) produces the closest Type I error 

rate to nominal level for normal distribution (0.0422) whereas S1(Tn) shows the best 

performance for chi-square (0.0402). For g-and-h = 0.5, S1(MADn) has the best 

empirical Type I error rate (0.0200) which is the closest to nominal level. 

Meanwhile, S1(HL) generates the lowest (furthermost from nominal level) Type I 

error rates across all conditions except for negative pairing under normal distribution. 

The procedure that is ranked last for this particular condition is S1(Qn). The Type I 

error rates obtained fall in the range of 0.0058 to 0.1678. 

 

From Table 4.6, we observe that for positive pairings under chi-square and g-and-h = 

0.5 distributions, S1(Tn) (0.0460; 0.0304), S1(Sn) (0.0450; 0.0282) and S1(MADn) 

(0.0442; 0.0296) have better control in terms of Type I error than S1(̂) (0.0426; 

0.0192). For negative pairings under chi-square and g-and-h = 0.5 distributions, 
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S1(Tn) (0.0402; 0.0194) generates Type I error rate which is closer to nominal 

significance level of 0.05 than S1(̂) (0.0390; 0.0156). Besides S1(Tn), S1(MADn) 

(0.0200) also performs better than S1(̂) for g-and-h = 0.5 distribution (negative 

pairing).  

 

Generally, t-test does not perform well in controlling Type I error for positive pairing 

across the three distributions. When the level of skewness is zero, it produces the 

lowest rate (0.0198), while ranked the second lowest under chi-square (0.0238) and 

extremely skewed distribution with g-and-h = 0.5 (0.0118). In contrast, although 

Mann-Whitney produces the Type I error rate of 0.0666 for positive pairing under 

chi-square distribution, it does not emerge as the best procedure in controlling Type I 

error compares to S1(Tn), S1(MADn) and S1(Sn) as well as S1(̂).  

 

Overall, with respects to distributional shape, Mann-Whitney emerges as the best 

procedure for unbalanced design under two groups case for positive pairings and 

S1(MADn) has the best Type I error rates for negative pairings (nearest to nominal 

level) while S1(HL) is the worst procedure in controlling Type I error (further from 

nominal level). Nevertheless, all procedures can be considered robust regardless of 

nature of pairing and distributional shape except for parametric and nonparametric 

procedures for negative pairings across all the three levels of skewness. Besides, the 

proposed procedures, S1(MADn), S1(Sn) and S1(Tn) have achieved the goal of this 

study by improving the performance of the original S1 statistic in terms of controlling 

Type I error for skewed distributions. 
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4.3.3 Type I Error J = 4 (Balanced Design) 

Table 4.7 displays the Type I error rates of S1(HL), S1(MADn), S1(Tn), S1(Sn), S1(Qn), 

S1(̂), ANOVA and Kruskal-Wallis for four groups under balanced (equal group 

sizes and equal group variances) design. 

 

 

 

Table 4.7 

Type I Error Rates for J = 4 (Balanced Design) 

Procedure 

Distribution 

Normal Chi-Square  g = 0.5, h = 0.5 

S1 (HL) 0.0220 0.0128 0.0022 

S1 (MADn) 0.0220 0.0118 0.0096 

S1 (Tn) 0.0206 0.0120 0.0068 

S1 (Sn) 0.0234 0.0102 0.0064 

S1 (Qn) 0.0138 0.0070 0.0034 

S1 (̂) 0.0230 0.0130 0.0058 

ANOVA 0.0510 0.0450 0.0290 

Kruskal-Wallis 0.0498 0.0440 0.0498 

 

Based on the results in Table 4.7, all procedures are considered robust according to 

Guo and Luh’s criterion of robustness as each error rate falls below 0.075 level. 

Kruskal-Wallis shows the best performance for normal (0.0498) and g-and-h = 0.5 

distributions (0.0498) because the values are the closest to nominal level of 0.05.  
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Meanwhile, ANOVA has the best control of Type I error for chi-square (nearest to 

nominal level). Those two procedures are ranked either first or second across all 

conditions. S1(Qn) is the worst procedure for normal (0.0138) and chi-square 

distributions (0.0070) whereas S1(HL) has the lowest Type I error rate for g-and-h = 

0.5 (0.0022) (furthermost from nominal level). The Type I error rates in Table 4.7 

fall in the range of 0.0022 to 0.0498. 

 

When the original S1 procedure, S1(̂) is compared against the five proposed 

procedures, it can be seen that S1(Sn) (0.0234) generates nearer Type I error rate to 

nominal level of 0.05 than S1(̂) (0.0230) for normal distribution. Furthermore, 

S1(MADn) (0.0096), S1(Tn) (0.0068) and S1(Sn) (0.0064) show better performance 

than S1(̂) (0.0058) when the distribution is extremely skewed. However, S1(̂) 

produces the closest empirical Type I error rate (0.0130) to the nominal level than the 

five proposed procedures for chi-square distribution.  

 

In general, Kruskal-Wallis is the best procedure in controlling Type I error (closest to 

the nominal level) for balanced design under four groups case while S1(Qn) 

procedure produces the lowest Type I error rates (further from nominal level). Like 

the other designs, all the procedures are robust across all conditions. In addition, 

S1(MADn), S1(Tn) and S1(Sn) again achieve the goal of this study by showing 

improvement in the S1 statistic for extremely skewed distribution. 

 

4.3.4 Type I Error J = 4 (Unbalanced Design) 
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The Type I error rates of S1(HL), S1(MADn), S1(Tn), S1(Sn), S1(Qn), S1(̂), ANOVA 

and Kruskal- Wallis for four groups under unbalanced design (unequal group sizes 

and unequal group variances) are shown in Table 4.8 below. The pairing of unequal 

group sizes with unequal group variances yield the positive and negative pairings 

under the column of nature of pairings. 

 

 

 

Table 4.8 

Type I Error Rates for J = 4 (Unbalanced Design) 

Procedure 

Nature of 

pairing 

Distribution 

Normal Chi-Square  g = 0.5, h = 0.5 

S1 (HL)     Positive 0.0230        0.0148    0.0028 

 Negative 0.0178 0.0158 0.0032 

S1 (MADn) Positive 0.0252 0.0226 0.0150 

 Negative 0.0196 0.0272 0.0130 

S1 (Tn) Positive 0.0234 0.0260 0.0134 

 Negative 0.0180 0.0256 0.0108 

S1 (Sn) Positive 0.0194 0.0230 0.0120 

 Negative 0.0160 0.0260 0.0098 

S1 (Qn) Positive 0.0162 0.0192 0.0066 

 Negative 0.0112 0.0180 0.0042 

S1 (̂) Positive 0.0278 0.0246 0.0078 

 Negative 0.0302 0.0278 0.0102 
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ANOVA Positive 0.0336 0.0526 0.1492 

 Negative 0.2850 0.2976 0.3554 

Kruskal-Wallis Positive 0.0448 0.0492 0.0498 

 Negative 0.1158 0.1180 0.1022 

 

According to the results in Table 4.8 above, the five proposed procedures and the 

original S1 procedure, S1(̂) are robust based on Guo and Luh’s criterion of 

robustness for both positive and negative pairings across all three distributional 

shapes because their Type I error rates fall below 0.075 level. ANOVA is robust only 

for positive pairing under normal and chi-square distributions whereas Kruskal-

Wallis is robust for positive pairing regardless of the level of skewness. 

 

When the procedures were tested under positive pairing, Kruskal-Wallis shows the 

best performance in controlling Type I error under normal (0.0448), chi-square 

(0.0492) and g-and-h = 0.5 (0.0498) distributions as its Type I error rates are the 

closest to nominal level of 0.05. In contrast, for negative pairing, S1(̂) emerges as 

the best performer for normal (0.0302) and chi-square distributions (0.0278) while 

S1(MADn) has the closest Type I error rate to nominal level for g-and-h = 0.5 

(0.0130). Meanwhile, S1(Qn) produces the most conservative Type I error rates for 

both nature of pairings under normal distribution. For chi-square and g-and-h = 0.5, 

S1(HL) has the lowest empirical Type I error rates for positive and negative pairings 

(furthermost from nominal level). The range of values across Table 4.8 spans from 

0.0028 to 0.3554. 
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Based on the Type I error rates obtained, S1(Tn) shows better control of Type I error 

than the original S1 procedure, S1(̂) for positive pairing under chi-square when the 

proposed procedures are compared against S1(̂). Meanwhile, for g-and-h = 0.5, 

S1(MADn), S1(Tn) and S1(Sn) generate greater and closer Type I error rates to the 

nominal level of 0.05 for positive pairing while S1(MADn) and S1(Tn) are the best 

performers for negative pairing compare to S1(̂). On the other hand, ANOVA is 

ranked second after Kruskal-Wallis for positive pairing under normal (0.0336) and 

chi-square distributions (0.0526). None of the proposed procedures performs better 

than ANOVA and Kruskal-Wallis for those two distributional shapes.  

 

Overall, Kruskal-Wallis is the best procedure in controlling Type I error than other 

procedures for positive pairing whereas S1(MADn) has the best Type I error rates for 

negative pairings (nearest to nominal level). At the same time, S1(HL) emerges as the 

worst procedure due to its very low Type I error rates (further from nominal level). 

However, all procedures are robust across all conditions with the exception of 

parametric and nonparametric procedures for negative pairing in all levels of 

skewness. In addition, S1(Tn), S1(Sn) and S1(MADn) show better control of Type I 

error than the original S1 procedure, S1(̂) when the level of skewness is extreme. 

 

Refer to the results presented in Table 4.5 to Table 4.8, we observe that the original 

S1 and the five proposed procedures are robust according to Guo and Luh (2000) in 

terms of robustness for balanced and unbalanced designs under two groups and four 

groups across all three levels of skewness. Parametric procedures, t-test (J = 2) and 

ANOVA (J = 4) and nonparametric procedures, Mann-Whitney (J = 2) and Kruskal-
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Wallis (J = 4) in this study are found to be able to control Type I error under positive 

pairing only for balanced and unbalanced designs.  

 

Meanwhile, among the S1 procedures, three of the proposed procedures, S1(MADn), 

S1(Tn) and S1(Sn) show an improvement on S1 statistic in terms of controlling Type I 

error under skewed distributions for balanced and unbalanced designs under both 

cases. Furthermore, S1(MADn) provides the best results among these three proposed 

procedures (closest to nominal level of 0.05). Hence, the goal of this study has been 

achieved.  

 

4.4 Application on Real Data 

Seeking for alternative procedures is always the main concern of most researchers 

due to the limitations of existing statistical procedures when the assumptions of 

normality and equal variances are not met. Therefore, in order to ensure the proposed 

procedures are suitable to be used on data with some violation of assumptions, 

testing the procedures using real data is necessary. 

 

Stigler (1977) had an enquiry about the efficiency of robust estimators using real data 

since the advantage of using simulation was clearly known for over 40 years. 

However, there was no guarantee that the generated pseudo-samples were the actual 

representative of real data although sampling distributions could be decided through 

the computer software. Therefore, the author chose eleven robust estimators for 

comparison purposes and twenty sets of data from 1798 measurements of the earth’s 

mean density, from 1761 determinations of the sun’s parallax, and from circa 1880 
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measurements of the light’s speed. According to his finding, the real data showed 

different behavior from the simulation data which were used in most studies of 

robustness and this affected the consequent recommendations for the choice of an 

estimator and also the assessments of the relative performance of estimators. 

 

In this study, the real data, which is listed in Table 4.9 was collected from four 

lecturers who taught Decision Analysis course at Universiti Utara Malaysia (UUM) 

seven years ago. The first column of the table represents the group numbers with the 

quantity of students, whereas, the second column shows the scores of those students 

obtained in each group. 

 

Table 4.9 

Real Data 

Group Score 

Group 1 (n = 33) 66, 60, 80, 74, 94, 71, 90, 90, 78, 65, 7, 69, 74, 82, 71, 66, 

79, 56, 69, 68, 81, 73, 74, 76, 78, 74, 71, 55, 48, 78, 81, 88, 

89 

Group 2 (n = 19) 69, 69, 57, 65, 86, 57, 71, 71, 70, 74, 65, 67, 67, 90, 73, 85, 

56, 74, 66 

Group 3 (n = 24) 96, 62, 81, 75, 80, 66, 60, 75, 65, 85, 76, 71, 61, 83, 82, 65, 

73, 62, 92, 60, 90, 66, 70, 65 

Group 4 (n = 20) 93, 89, 85, 81, 81, 73, 85, 68, 73, 79, 73, 77, 75, 84, 73, 83, 

78, 79, 80, 77 
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Table 4.10 

Test of Normality 

 Group 1 Group 2 Group 3 Group 4 

p-value 0.000 0.130 0.101 0.867 

 

 

 

 

 

Table 4.11 

Test of Homogeneity of Variances 

 
Levene 

Statistic 
df1 df2 Significance 

Score 2.022 3 92 0.116 

 

Table 4.10 presents the result of normality check for each group. At 5% level of 

significance, the distributions of Group 2, 3 and 4 seem significantly normal. Group 

1 is the only group that is not normally distributed with its p-value of 0.000 because 

of the existence of outlier in the data set. In the meantime, the p-values in Table 4.11 

shows that the assumption of variance homogeneity has been met due to the p-value 

obtained from Levene test is 0.116 which is greater than 0.05. 

 

The real data was tested with the proposed procedures (S1(HL), S1(MADn), S1(Tn), 

S1(Sn) and S1(Qn)) as well as the parametric ANOVA, the nonparametric Kruskal-

Wallis and the original S1(̂). All the p-values are displayed in Table 4.12 below. 

 

Table 4.12 
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p-value of Real Data (J = 4)  

S1(HL) S1(MADn) S1(Tn) S1(Sn) S1(Qn) S1(̂) ANOVA 

Kruskal-

Wallis 

0.0167 0.0200 0.0167 0.0267 0.0401 0.0267 0.0790 0.015 

 

In reference to the results displayed in Table 4.11, we observe that Kruskal-Wallis, 

the original S1 and the five proposed procedures show the significance in testing the 

central tendency measures for unequal group sizes and equal group variances at 0.05 

significance level for four groups case. ANOVA (p = 0.0790) is the only procedure 

that fails to show the significance of the test at the 0.05 level. In this case, Kruskal-

Wallis provides the most significant result with its lowest p-value (0.015) among all 

the tested procedures. Tailing closely is S1(HL) (0.0167) and S1(Tn) (0.0167). When 

compared among the S1 procedures, except for S1(Qn), all the other proposed 

procedures show better or equal significance with the original S1(̂). The p-values in 

Table 4.11 spans in the range of 0.016 to 0.079.  

 

Regardless of the testing using simulated or real data, S1(HL), S1(MADn), S1(Tn), 

S1(Sn) and S1(Qn) show the potential on preventing the inflation of Type I error. As in 

Table 4.8 using simulated data, all five proposed procedures are robust according to 

Guo and Luh’s criterion of robustness and they generate the empirical Type I error 

rates below 0.05 level in general. Meanwhile, when using real data, the results on the 

proposed procedures (refer to Table 4.12) significantly show the difference in groups 

with their p-values below 0.05 level, together with the Kruskal-Wallis procedure. 

However, for simulated data, Kruskal-Wallis fails to meet Guo and Luh’s criterion of 
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robustness for negative pairing under four groups case. Furthermore, it is observed 

that when there is violation of normality, S1(MADn) and S1(Tn) are able to improve 

the performance of the original S1 statistic in controlling Type I error rates for testing 

the equality of location parameters under unbalanced design for four groups case 

using both simulated and real data. Hence, from the results obtained, we can assume 

that the goal of the study has been achieved. 
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CHAPTER FIVE 

CONCLUSION 

5.1 Introduction 

Statistical procedures are vital part in most industries nowadays such as in the field 

of education, medicine, business, economics, sciences and many more. There are 

many statistical procedures available in the form of software in the market today and 

they can be applied easily for analysis. However, the users must be aware of the 

assumptions attached to each procedure especially those under parametric statistics. 

Parametric statistics such as t-test and Analysis of Variance (ANOVA) commonly 

used as the statistical procedures for testing the equality of location measures for two 

groups and more than two groups cases respectively. Nonetheless, ANOVA and t-

test are sensitive to certain assumptions for example normality and homoscedasticity. 

If these procedures violate the assumptions, Type I error will be affected which 

consequently will affect the result of the analysis. Hence, some researchers chose 

nonparametric statistics to overcome the issue. Indeed, nonparametric procedures are 

suitable to be applied without having to consider the distributional shapes but the 

procedures are not as powerful as parametric procedures. Therefore, another 

alternative that researchers can rely on is the robust procedures. This study focused 

on a robust procedure, S1 statistic that was proposed by Babu et al. (1999) as 

alternative procedure when non-normality and/or variance heterogeneity occur. S1 

statistic uses median as the location parameter to measure the treatment effects 

across groups and it does not need to carry out any procedure of transforming or 

trimming the original data to attain symmetry. However, previous work on S1 

statistic failed to show robustness for most of the conditions under four groups case 
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especially for extremely skewed distribution. Besides the issue of robustness, 

conservation Type I error rates (below 0.025 level) were generated by the proposed 

procedures in most conditions for balanced and unbalanced designs. 

 

The main goal of this study is to improve the original S1 statistic in testing the 

equality of location measures under skewed distributions. In order to accomplish the 

goal, S1 statistic was modified by substituting the location parameter, median with 

Hodges-Lehmann estimator. A few robust scale estimators such as MADn, Tn, Sn and 

Qn were selected to replace the default scale estimator of S1 statistic. In addition, this 

study also looked into the possibility of improving the S1 statistic by modifying the 

original scale estimator, ;̂  using the deviation of Hodges-Lehmann instead of 

median. Hence, the five proposed procedures are S1(HL), S1(MADn), S1(Tn), S1(Sn) 

and S1(Qn). 

 

In order to examine the effect of controlling Type I error when the assumptions of 

normality and variance homogeneity are violated, three conditions namely perfect, 

mild and extreme departures were created from the manipulation of several variables. 

These variables are number of groups (two and four groups), sample sizes (equal and 

unequal), groups variances (equal and unequal), distributional shapes (normal, chi-

square, g-and-h = 0.5) and nature of pairings (positive and negative pairings). 

Normal distribution represented the zero skewness, while chi-square distribution 

with 3 degrees of freedom stood for moderate skewness and g = 0.5 and h = 0.5 

distribution for extreme skewness. The proposed procedures were stimulated for 

5000 times and then bootstrapped for 599 times for each condition. Type I error rates 
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obtained from the proposed procedures were then compared with parametric, 

nonparametric and the original S1 statistic. Before the best procedure can be 

determined, the robustness of each procedure was examined. According to Guo and 

Luh’s criterion of robustness, a procedure is robust if its empirical Type I error rate 

falls below 0.075 level at α = 0.05. 

 

5.2 The S1 Statistic 

The five proposed procedures, S1(HL), S1(MADn), S1(Tn), S1(Sn) and S1(Qn) were 

tested according to balanced (equal group sizes and equal group variances) and 

unbalanced designs (unequal group sizes and unequal group variances) under two 

and four groups cases. The purpose is to examine the effect of each procedure in 

controlling Type I error under different group designs and group cases for the 

condition of zero, mild and heavy skewness. Table 5.1 below presents the best and 

the worst procedures across all three levels of skewness for balanced designs under J 

= 2 and J = 4. 

 

Table 5.1 

The Best and the Worst Procedures for Balanced Design 

Group Case Distribution Best Procedure Worst Procedure 

J = 2 

Normal S1(MADn) (0.0360) S1(Qn) (0.0266) 

Chi-Square S1(Sn) (0.0272) S1(Qn) (0.0220) 

g = 0.5, h = 0.5 S1(MADn) (0.0212) S1(HL) (0.0074) 

J = 4 

Normal S1(Sn) (0.0234) S1(Qn) (0.0138) 

Chi-Square S1(HL) (0.0128) S1(Qn) (0.0070) 
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g = 0.5, h = 0.5 S1(MADn) (0.0096) S1(HL) (0.0022) 

 

In Table 5.1, we observe that S1(MADn) has the highest frequency which is three out 

of six conditions of being the best procedure among the five proposed procedures 

across groups cases especially for g-and-h = 0.5 distribution. Meanwhile, S1(Sn) 

emerges as the second best performer for balanced design. In contrast, S1(Qn) is the 

worst procedure for normal and chi-square distributions whereas S1(HL) has the 

lowest Type I error rates for g-and-h = 0.5 distribution for balanced design regardless 

of the group case.  

 

The best and the worst procedures for the condition of zero, mild and heavy 

skewness under unbalanced design for two and four group cases are summarized in 

Table 5.2 below.  

 

Table 5.2 

The Best and the Worst Procedures for Unbalanced Design 

Group 

Case 

Distribution 

Nature of 

Pairing 

Best Procedure 

Worst 

Procedure 

J = 2 

Normal 

Positive S1(Tn) (0.0390) S1(HL) (0.0288) 

Negative S1(Tn) (0.0276) S1(Qn) (0.0140) 

Chi-Square 

Positive S1(Tn) (0.0460) S1(HL) (0.0234) 

Negative S1(Tn) (0.0402) S1(HL) (0.0174) 

g = 0.5, h = 0.5 

Positive S1(Tn) (0.0304) S1(HL) (0.0104) 

Negative S1(MADn) (0.0200) S1(HL) (0.0058) 
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J = 4 Normal 

Positive S1(MADn) (0.0252)  S1(Qn) (0.0162) 

Negative S1(MADn) (0.0196) S1(Qn) (0.0112) 

Table 5.2 continued 

 Chi-Square 

Positive S1(Tn) (0.0260) S1(HL) (0.0148) 

Negative S1(MADn) (0.0272) S1(HL) (0.0158) 

 g = 0.5, h = 0.5 

Positive S1(MADn) (0.0150) S1(HL) (0.0028) 

Negative S1(MADn) (0.0130) S1(HL) (0.0032) 

 

With regards to the shape of distribution and nature of pairings for unbalanced 

design, S1(Tn) is the best procedure for two groups case whereby S1(MADn) shows 

the best performance for four groups case. In the meantime, S1(HL) appears to be the 

worst procedure for both cases especially for chi-square and g-and-h = 0.5 

distributions. In contrast, for balanced design, S1(HL) does not generate the lowest 

Type I error rate under chi-square distribution for J = 2 and J = 4.  However, S1(Qn) 

stays to be the worst for both group cases under normal distribution. 

 

Overall, S1(MADn) emerges as the best procedure for balanced (J = 2 and J = 4) and 

unbalanced design (J = 4). For two groups case under unbalanced design, S1(Tn) has 

the best performance among five proposed procedures. In terms of Type I error rates, 

it can be clearly seen that the proposed procedures produce closest values to nominal 

level of 0.05 for unbalanced design compared to balanced design for two and four 

groups cases. Besides, the error rates of J = 2 are closer to the nominal level than the 

error rates of J = 4 for each group design. The five proposed procedures can be 
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considered robust for every condition because all error rates fulfill Guo and Luh’s 

criterion of robustness. 

5.3 S1 Statistic versus Parametric and Nonparametric Procedures 

A comparison between the proposed procedures with parametric, nonparametric and 

the original S1 procedures, S1(̂) were also conducted in order to achieve the goal of 

this study. For parametric statistics, the chosen procedures were t-test and Analysis 

of Variance (ANOVA) representing the two and four group cases respectively. 

Meanwhile, for nonparametric procedures, Mann-Whitney was used for two groups 

case while Kruskal-Wallis was selected for the four groups case. Table 5.3 below 

summarizes the best procedure, the worst procedure and the range of Type I error 

rates for two groups, J = 2. 

 

Table 5.3 

Balanced and Unbalanced Designs for J=2 

Group 

Design 
Distribution 

Nature of 

Pairing 

Best 

Procedure 

Worst 

Procedure 
Range 

Balanced 

Normal  

Mann-

Whitney 

(0.0526) 

S1(Qn) 

(0.0266) 

0.0266 

to 

0.0528 

Chi-Square  
t-test 

(0.0500) 

S1(Qn) 

(0.0220) 

0.0220 

to 

0.0566 

g = 0.5, h = 

0.5 
 

Mann-

Whitney 

(0.0526) 

S1(HL) 

(0.0074) 

0.0074 

to 

0.0526 

Unbalanced Normal Positive 

Mann-

Whitney and 

S1(̂) 

S1(HL) 

(0.0288) 

0.0288 

to 

0.0448 
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(0.0448) 

 

 

Table 5.3 continued 

 

 Negative 
S1(̂) 

(0.0422) 

S1(Qn) 

(0.0140) 

0.0140 

to  

0.1268 

Chi-Square 

Positive 
S1(Tn) 

(0.0460) 

S1(HL) 

(0.0234) 

0.0234 

to  

0.0666 

Negative 
S1(Tn) 

(0.0402) 

S1(HL) 

(0.0174) 

0.0174 

to 

0.1678 

g = 0.5, h = 

0.5 

Positive 

Mann-

Whitney 

(0.0426) 

S1(HL) 

(0.0104) 

0.0104 

to 

0.0426 

Negative 
S1(MADn) 

(0.0200) 

S1(HL) 

(0.0058) 

0.0058 

to 

0.1048 

 

As in Table 5.3, Mann-Whitney is the best procedure for J = 2 based on its highest 

frequency of producing the best Type I error rates among the nine conditions: three 

for balanced design and six for unbalanced design. Mann-Whitney shows the best 

performance particularly for normal and g-and-h = 0.5 distributions. However, its 

Type I error rates for negative pairings as shown in Chapter Four inflated to above 

0.075 level for all levels of skewness. Similar situation happens to the parametric 

procedure, t-test for the same nature of pairing and distributional shapes. Inflation of 

Type I error rate will lead to spurious rejection of null hypothesis. In contrast, several 

S1 procedures such as S1(̂), S1(Tn) and S1(MADn) emerge as the better procedures 
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for negative pairing under unbalanced design. Meanwhile, S1(HL) can be considered 

as the worst procedure for both group designs because the Type I error rates are at 

the furthest low from the nominal level of 0.05. The S1(Qn) procedure has the second 

highest frequency of generating the lowest error rates among the nine conditions. 

 

In terms of the range of Type I error rates, balanced design and positive pairings of 

unbalanced design have ranges that never exceed the value of 0.666. Thus, the 

intervals of values for negative pairings under unbalanced design go above 0.075 

level across normal, chi-square and g-and-h = 0.5 distributions due to the inflated 

Type I error rates that are generated by t-test. Furthermore, the widest range for two 

groups case under negative pairings is 0.0174 to 0.1678 for chi-square distribution.  

 

Table 5.4 below displays the similar pattern as Table 5.3 for four groups, J = 4.  

 

Table 5.4 

Balanced and Unbalanced Designs for J=4 

Group 

Design 
Distribution 

Nature of 

Pairing 

Best 

Procedure 

Worst 

Procedure 
Range 

Balanced 

Normal  

Kruskal-

Wallis 

(0.0498) 

S1(Qn) 

(0.0138) 

0.0138 

to 

0.0510 

Chi-Square  
ANOVA 

(0.0450) 

S1(Qn) 

(0.0070) 

0.0070 

to 

0.0450 

g = 0.5, h = 

0.5 
 

Kruskal-

Wallis 

(0.0498) 

S1(HL) 

(0.0022) 

0.0022 

to 

0.0498 
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Unbalanced Normal Positive 

Kruskal-

Wallis 

(0.0448) 

S1(Qn) 

(0.0162) 

0.0162 

to 

0.0448 

Table 5.4 continued 

 

 Negative 
S1(̂) 

(0.0302) 

S1(Qn) 

(0.0112) 

0.0112 

to 

0.2850 

Chi-Square 

Positive 

Kruskal-

Wallis 

(0.0492) 

S1(HL) 

(0.0148) 

0.0148 

to 

0.0526 

Negative 
S1(̂) 

(0.0278) 

S1(HL) 

(0.0158) 

0.0158 

to 

0.2976 

g = 0.5, h = 

0.5 

Positive 

Kruskal-

Wallis 

(0.0498) 

S1(HL) 

(0.0028) 

0.0028 

to 

0.1492 

Negative 
S1(MADn) 

(0.0130) 

S1(HL) 

(0.0032) 

0.0032 

to 

0.3554 

 

According to Table 5.4, the nonparametric procedure, Kruskal-Wallis emerges as the 

best procedure as Mann-Whitney (J = 2) for the same conditions. It produces the 

nearest empirical Type I error rates to the nominal level of 0.05 for both group 

designs under J = 4. Again, parametric (ANOVA) and nonparametric procedures 

(Kruskal-Wallis) generate inflated Type I error rates that are above 0.075 level for 

negative pairings under unbalanced design for the condition of zero, mild and 

extreme skewness. In the meantime, for negative pairing under unbalanced design, 

two S1 procedures, S1(̂) and S1(MADn) show the best performance among all tested 

procedures. In contrast, S1(HL) performs the worst for both group designs under chi-



83 

 

square and g-and-h = 0.5 distributions. The S1(Qn) procedure is the worst procedure 

under normal distribution regardless of group design. 

Refer to the last column in Table 5.4, the inflated Type I error rates expand the 

ranges of J = 4 as compared to J = 2 across all three levels of skewness. The widest 

range is negative pairing of g-and-h = 0.5 distribution which spans from 0.0032 to 

0.3554. Besides, inflated Type I error rate is found under positive pairing of g-and-h 

= 0.5 distribution, generated by ANOVA. This outcome is different from the 

parametric procedure for J = 2, as t-test does not cause the inflation of Type I error 

for the same condition. 

 

Overall, we observe that nonparametric procedures show better control of Type I 

error rates compared to the five proposed procedures regardless of the group design 

and group case for normal, chi-square and g-and-h = 0.5 distributions. However, they 

have the tendency to produce inflated Type I error rates for negative pairings under 

unbalanced design for two groups and four groups cases. Parametric procedures also 

have the possibility of causing the inflation of Type I error as well due to the error 

rates that are larger than 0.075 level. In contrast, the five proposed procedures do not 

generate any inflated Type I error rates for all conditions. Furthermore, three 

proposed procedures, S1(MADn), S1(Tn) and S1(Sn) show an improvement on the 

original S1 statistic in terms of controlling Type I error rates under skewed 

distributions for balanced and unbalanced designs under both cases. Among these 

three proposed procedures, S1(MADn) provides the best result (Type I error rates 

nearest to the nominal level of 0.05). 
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The main goal of this study is to improve the original S1 statistic in testing the 

equality of location parameter for two groups and more than two groups cases when 

the distributions are skewed. In order to achieve the goal, five procedures based on S1 

statistic were proposed by integrating the statistic with some robust estimators. For 

the central tendency measure of S1 statistic, the default median was substituted by 

Hodges-Lehmann. Besides, the original scale estimator of S1 statistic was replaced by 

the variance of Hodges Lehmann and also four other robust scale estimators, namely 

MADn, Tn, Sn and Qn. 

 

Based on the analysis of results using stimulated data in Chapter Four, S1(MADn) 

emerges as the best performer among the five proposed procedures due to its closet 

Type I error rates to the nominal level of 0.05 with respect to the level of skewness. 

In order to examine the effectiveness of the procedure in controlling the Type I error, 

parametric, nonparametric and the original S1 procedures were compared against the 

proposed procedures.  For J = 2, t-test and Mann-Whitney were chosen while 

ANOVA and Kruskal-Wallis were selected for J = 4. Although the proposed 

procedures including S1(MADn) did not show better control of Type I error than 

parametric and nonparametric procedures for balanced and unbalanced designs under 

both group cases in general, these proposed procedures are robust for all conditions. 

In contrast, the parametric and nonparametric procedures are not robust for 

unbalanced design (negative pairing) under J = 2 and J = 4 across all three 

distributional shapes. Besides, the three proposed procedures, S1(MADn), S1(Tn) and 

S1(Sn) have shown some improvement over the original S1 statistic by producing 
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empirical Type I error rates that are closer to the nominal level under skewed 

distributions. 

 

Other than using simulated data, the proposed procedures were also tested using real 

data and then compared against parametric (ANOVA), nonparametric (Kruskal-

Wallis) and the original S1 procedures. As explained in Chapter Four, students’ exam 

scores were collected from four different lecturers of different classes teaching the 

same subject. These groups of data have equal group variances but different group 

sizes and distributional shapes. Three groups are normally distributed and one is not 

normal. Based on the significance results (p-value) obtained, Kruskal-Wallis 

performs the best followed closely by S1(HL) and S1(Tn). ANOVA is the only 

procedure that fails to show the significance of the test because its p-value is greater 

than the significance level of 0.05. Other than S1(HL) and S1(Tn), S1(MADn) also 

shows better performance than the original S1 procedure, S1(̂) when the comparison 

between the five proposed procedures and S1(̂) is made. 

 

The proposed procedures show robustness across all conditions as compared to the 

nonparametric Kruskal-Wallis and parmateric ANOVA. Even though Kruskal-Wallis 

shows the highest frequency in controlling Type I error among the investigated 

conditions, this procedure fails under certain conditions. Furthermore, three of the 

proposed procedures, S1(MADn), S1(Tn) and S1(Sn) show better performance than the 

original S1 statistic in terms of simulated and real data study. Hence, the goal of the 

study has been achieved. 
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5.4 Suggestion for Future Research 

It is hardly possible for researchers to collect real data which is always normally 

distributed as required by the parametric procedures for testing the equality of 

location parameter across groups. Therefore, the main concern of this study is to 

improve the original S1 statistic, which is an alternative procedure for testing the 

equality of location parameters, when the assumptions of normality as well as 

variance homoscedasticity are not met. According to Guo and Luh’s criterion of 

robustness, we have proved that the proposed procedures in this study are robust 

across all levels of skewness for balanced (equal group sizes and equal group 

variances) and unbalanced (unequal group sizes and unequal group variances) 

designs under two groups and more than two groups cases. Furthermore, the 

proposed procedures with robust scale estimators has improved the original S1 

statistic under extremely skewed distribution. However, the proposed procedures 

generate low Type I error rates especially for four groups case especially on S1(HL). 

Hence, there are two suggestions for future research to look into this problem. The 

first suggestion is with regards to the low Type I error on S1(HL), but the procedure 

produces good p-value on the real data result. Based on the overall results obtained 

using real data, we notice that S1(HL) produces better p-value than some proposed 

procedures such as S1(MADn) and S1(Sn). This outcome is in contrast to when the 

procedure was tested using simulated data, which S1(HL) generally performs the 

worst among all proposed procedures for every condition. Hence, we might be able 

to find the answer to this phenomena if further study on power is done. Secondly, 

using other robust estimators to replace the existing location and scale estimators S1 

statistic, the results on Type I error could be improved further. The study can also 
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consider other number of group cases as well as different distributions for each group 

case. 
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