The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

THE BEHAVIOURAL INTENTION TO USE FACEBOOK AMONG MALAYSIAN PUBLIC UNIVERSITIES STUDENTS AS TECHNOLOGY ALTERNATIVE TOOL FOR E-LEARNING: THE MEDIATING ROLE OF END USER SATISFACTION

NUR FATHIAH BINTI MOHD BASHRI

Universiti Utara Malaysia

MASTER OF SCIENCE (TECHNOLOGY MANAGEMENT) UNIVERSITI UTARA MALAYSIA June 2016

THE BEHAVIOURAL INTENTION TO USE FACEBOOK AMONG MALAYSIAN PUBLIC UNIVERSITIES AS TECHNOLOGY ALTERNATIVE TOOL FOR E-LEARNING: THE MEDIATING ROLE OF END USER SATISFACTION

By

NUR FATHIAH BINTI MOHD BASHRI

Universiti Utara Malaysia

Thesis Submitted to the School of Technology Management and Logistics Universiti Utara Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

Kolej Perniagaan (College of Business) Universiti Utara Malavsia

PERAKUAN KERJA TESIS / DISERTASI (Certification of thesis / dissertation)

Kami, yang bertandatangan, memperakukan bahawa (We, the undersigned, certify that)

NUR FATHIAH MOHD BASHRI

calon untuk Ijazah (candidate for the degree of) MASTER OF SCIENCE (TECHNOLOGY MANAGEMENT)

telah mengemukakan tesis / disertasi yang bertajuk: (has presented his/her thesis / dissertation of the following title):

THE BEHAVIOURAL INTENTION TO USE FACEBOOK AMONG MALAYSIAN PUBLIC UNIVERSITIES STUDENT AS TECHNOLOGY ALTERNATIVE FOR E-LEARNING :THE MEDIATING ROLE OF END USER SATISFACTION

> seperti yang tercatat di muka surat tajuk dan kulit tesis / disertasi. (as it appears on the title page and front cover of the thesis / dissertation).

Bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada: 6 Mac 2016.

(That the said thesis/dissertation is acceptable in form and content and displays a satisfactory knowledge of the field of study as demonstrated by the candidate through an oral examination held on: 6 March 2016).

Pengerusi Viva (Chairman for Viva)	:	Dr. Mohd Kamarul Irwan Abdul Rahim	Tandatangan (Signature)	44
Pemeriksa Luar (External Examiner)	:	Prof.Dato' Dr. Mohamed Amin Embi	Tandatangan (Signature)	Mart
Pemeriksa Dalam (Internal Examiner)	:	Dr. Mohamad Faizal Ahmad Zaidi	Tandatangan (Signature)	19/11
Tarikh: 6 Mac 2016 (Date)				0-10

Tandatangan (Signature)

Universiti Utara Malaysia

PERMISSION TO USE

In presenting this thesis in fulfilment of the requirements for a Post Graduate degree from the Universiti Utara Malaysia (UUM), I agree that the Library of this university may make it freely available for inspection. I further agree that permission for copying this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in their absence, by the Dean of School of Technology Management and Logistics where I did my thesis. It is understood that any copying or publication or use of this thesis or parts of it for financial gain shall not be allowed without written permission. It is also understood that due recognition shall be given to me and to the UUM in any scholarly use which may be made of any material in my thesis.

Request for permission to copy or to make other use of materials in this thesis in whole or in part should be addressed to:

ABSTRACT

Nowadays, Facebook is one of the most popular Social Networking Sites (SNS) among the tertiary education students. This site is seen to be used as technology alternative to support the main Learning Management System (LMS) that is provided by the university. However, the real situation nowadays, the students prefer to use Facebook compares to LMS as their e-Learning tool for communicating and sharing knowledge among them. Two well-known models are integrated in this study which is Unified Theory of Acceptance and Use of Technology (UTAUT) and End User Computing Satisfaction (EUCS) for better understanding the vital factors that stimulate students' Behavioural Intention (BI) in using Facebook as e-Learning tool. The sample size comprised of 472 students in Malaysia's Public Universities taken through the quota sampling technique. Thus, the total of 411 usable questionnaires was used for further analysis. Based on data analysis by utilizing PLS SEM method, the results supported the hypothesized of direct effects relationship between all four core factors of UTAUT (Performance Expectancy, Effort Expectancy, Social Influence and Facilitating Conditions) and EUCS on BI. Meanwhile, EUCS mediated the relationship between all four core factors of UTAUT on BI. These findings also supported the view that the integration between satisfaction and acceptance models increases the exploratory power on the users' behaviour of interest in using information technology. Lastly, theoretical, methodological practical and implications are discussed.

Keywords: Acceptance, e-Learning, Facebook, Social Networking Site, Malaysian Universities Students, Satisfaction.

Universiti Utara Malavsia

ABSTRAK

Dewasa kini, Facebook merupakan salah satu laman rangkaian sosial yang paling terkenal dalam kalangan pelajar pengajian tinggi. Laman rangkaian sosial ini dilihat telah dijadikan sebagai satu teknologi alternatif bagi menyokong Sistem Pengurusan Pembelajaran (SPP) yang disediakan oleh pihak universiti. Namun, hakikat sebenar pada masa kini, para pelajar lebih suka menggunakan Facebook sebagai alat e-Pembelajaran mereka yang utama berbanding SPP untuk berkomunikasi dan berkongsi pengetahuan dalam kalangan mereka. Dua model terkenal disepadukan dalam kajian ini iaitu Unified Theory of Acceptance and Use of Technology (UTAUT) dan End User Computing Satisfaction (EUCS) untuk memahami dengan lebih baik faktor-faktor penting yang merangsang niat pelajar dalam menggunakan Facebook sebagai alat e-Pembelajaran. Saiz sampel terdiri daripada maklum balas 472 pelajar Universiti Awam (UA) Malaysia di kumpul melalui teknik persampelan kuota. Namun hanya 411 data yang digunakan untuk analisis selanjutnya. Berdasarkan analisis data dengan menggunakan kaedah PLS SEM, keputusan hipotesis di sokong iaitu terdapat hubungan langsung di antara keempat-empat faktor teras UTAUT (Jangkaan Prestasi, Jangkaan Usaha, Pengaruh Sosial dan Keadaan Kemudahan) serta EUCS terhadap niat tingkah laku pelajar dalam menggunakaan Facebook sebagai alat e-Pembelajaran. Sementara itu, EUCS bertindak sebagai mediator di antara hubungan keempat-empat faktor teras UTAUT dan niat tingkah laku pelajar dalam menggunakan Facebook sebagai e-Pembelajaran. Penemuan ini juga menyokong pandangan bahawa integrasi di antara model Penerimaan dan model kepuasaan dapat meningkatkan kuasa eksplorasi untuk pemahaman dengan lebih baik terhadap kepentingan tingkah laku pengguna dalam menggunakan sistem maklumat. Akhir sekali, implikasi teori, metodologi dan praktikal dibincangkan.

Kata kunci: Penerimaan, e-Pembelajaran, Facebook, Laman Rangkaian Sosial, Pelajar Universiti Malaysia.

ACKNOWLEDGEMENTS

Glory be to Allah the most High, the most Patient and the most Merciful, may His peace and pleasant blessings be upon our sacred prophet, our model, Muhammad (S.A.W) the last and the leader of all the spiritual teachers sent to the earth. Alhamdulillah without Allah's grace, my dreams would have turned to illusions.

A billion thanks to my loving mother (Meriyam), who sacrificed for me during my master journey and I am unable to pay back your sacrifices time, money and emotionally towards me. I always found you besides me during my up and down time. To my father (Mohd Bashri), thanks for always supporting me and teaching me to become stronger in facing the true of real life.

My Master's journey would not have been easy without the constructive criticisms, quality contributions and tutelage of my supervisor, Dr. Fadhilah Binti Mat Yamin from start to end of my master journey. She always advises me in right direction to complete my task. If feel any difficulties in research she always available for me to share experience. Besides the research, she also encourages me when I feel down in process of completing my task.

A special thanks to my dear sister, Sis Irene. Thanks for your unstoppable support, teaching and motivating me. Thanks for sincerely be my side especially when I was struggling and facing difficult moments. Also, thanks to my two brothers (Fadzli and Fitri) and my two sister-in-laws (Fareha and Hamidah) for always supporting me through this study journey. To my two nieces (Aliesha and Alieyaa), you guys always make my life in the cloud nine. Throughout my journey to get Master, it is not about getting certificate. But, I learn a lot about the meaning of life. This thesis is not for me but I dedicated every word on this thesis to all my family members.

Also, I highly appreciate the UUM administration and non-teaching staff for promptly providing me all kinds of support as and when I needed. My gratitude goes to a number of people who in one way or the other played a part in this history making journey such as Fazilah, Siti Khadijah, Sis Adileen, Kayode, Not, Bro Hasheed, Sis Tina, Sis Nadia, Wan Hakimi, Siti Hajar, Giovann, Keats, Sis Punita, Hema and all friends of PG room. To those names that I do not mention, you are equally important and I hug you all with my prayers.

TABLE OF CONTENTS

			Page
PERN	AISION	TO USE	iv
ABST	TRACT		v
ABST	RAK		vi
ACK	NOWLE	DGEMENTS	vii
TABI	LE OF C	ONTENTS	viii
LIST	OF TAB	LES	xii
LIST	OF FIG	URES	xiv
LIST	OF APP	ENDICES	xv
LIST	OF ABB	REVIATION	xvi
CHAI	PTER ON	NE: INTRODUCTION	
1.0	Chapte	r Overview	1
1.1	Backgr	ound of the Study	1
1.2	Problem	m Statement	9
1.3	Resear	ch Questions	17
1.4	Resear	ch Objectives	18
1.5	Signifi	cant of the Study	20
1.6	Scope	of Study	21
1.7	Definit	ions of Key Terms	23
1.8	Organi	zation of the Thesis	25
CHAI	PTER TV	VO: LITERATURE REVIEW	
2.0	Chapte	r Overview	26
2.1	The SN	ISs as e-Learning Tools (In the Eye of Students)	26
2.2	Facebo	ok: The Most Preference of SNSs among The Students	29
2.3	A Chro	nicle of Facebook.com	31
2.4	The Fo	ormation of Social-Academic Communities via Facebook	35
	among	the Tertiary Students	
2.5	Modula	ar Object-Oriented Dynamic Learning Environment (Moodle)	37
2.6	Facebo	ok versus Moodle as e-Learning Tool	39
	26.1	Informal Learning versus Formal Learning	40
	2.6.2	Facebook and Moodle Features as e-Learning Tool	41
	2.6.3	The Nature Characteristics of Millennials	49
2.7	Review	of Previous Studies about the Integration of Acceptance and	50
	Satisfac	tion Theories	
2.8	Underp	inning Theories	53
	2.8.1	UTAUT	53
	2.8.2	EUCS	56
2.9	Behavio	oural Intention	59
2.10	Relation	nship of Four Factors of UTAUT and Behavioural Intention	60
	2.10.1	Performance Expectancy and Behavioural Intention	60
	2.10.2	Effort Expectancy and Behavioural Intention	66
	2.10.3	Social Intention and Behavioural Intention	68
	2.10.4	Facilitating Conditions and Behavioural Intention	70

2.11	The Direct Relationship between Four Factors of UTAUT and FUCS	72	
2.12	The Direct Relationship between EUCS and BI and EUCS as the	74	
	Potential Mediator Variable		
2.13	Theoretical Framework	78	
2.14	Justification of Adopting UTAUT and Eliminating Some of	79	
2 1 5	UTAUT'S valiable	02	
2.13	Dimension	0.5	
216	The Essential of integrating Assentance and Satisfaction Theory	07	
2.10	Dessential of Integrating Acceptance and Satisfaction Theory	0/	
2.17	Research Objectives, Desearch Overtions and Desearch Ukmetheses	09	
2.10	Research Objectives, Research Questions and Research Hypotheses	91	
2.19	Summary	92	
СНА	APTER THREE: RESEARCH METHODOLOGY		
3.0	Chapter Overview	94	
3.1	Research Design	94	
3.2	Data Collection Method	95	
3.3	Population	96	
3.4	Sample Size and Power Analysis	98	
3.5	Sampling Technique	100	
3.6	Operational Technique	102	
3.7	Questionnaire Design	103	
3.8	Ouestionnaire Language		
3.9	Questionnaire Scale	103	
3.10	Questionnaire Measure Items	106	
3.11	Demographic Variable	107	
3.12	The Features on Facebook	108	
3.13	Instrument Variables	109	
	3.13.1 Performance Expectancy	110	
	3.13.2 Effort Expectancy	111	
	3.13.3 Social Influence	112	
	3.13.4 Facilitating Conditions	112	
	3.13.5 Behavioural Intention	113	
	3.13.6 Four Dimensions of End User Computing Satisfaction	114	
3.14	Data Editing and Coding	117	
3.15	Content Validity and Face Validity	117	
3.16	Pilot Test	118	
	3.16.1 Sampling	119	
	3.16.2 Sample Size	119	
3.17	Data Collection Procedures	119	
3.18	Data Analysis Strategy	120	
	3.18.1 Basic Analysis	121	
	3.18.2 Four Assumptions of Multivariate Analysis and Factor	122	
	Analysis		
	3.18.3 Exploratory Factor Analysis (EFA)	124	
	3.18.4 Structural Equation Modeling (SEM)	127	
	3.18.5 Justification of Using Partial Least Squares (PLS)	128	
3.19	Summary	130	

CHAPTER FOUR: DATA ANALYSIS AND HYPOTHESES TESTING

4.0	Class		121	
4.0	Daga	Response Rate		
4.1	Dete S	use Rate	122	
4.2	121	Missing Data	132	
	4.2.1	Analysis of Outliers	132	
	4.2.2	Analysis of Outliers	135	
	4.2.5	Test of Linearity and Homoscodesticity	135	
	4.2.4	Test of Multicellineerity	135	
12	4.2.3 Non D	accorde Dieg Assessment	130	
4.5	Tost of	Ecommon Mothod Variance (CMV)	137	
4.4	Constr	Common Method Variance (CMV)	139	
4.5	Evelor	uci validity	140	
4.0		Easter Analysis (EFA)	141	
	4.0.1	Factor Analysis for Performance Expectancy	141	
	4.0.2	Factor Analysis for Effort Expectancy	142	
	4.0.3	Factor Analysis for Social millionce	143	
	4.6.4	Factor Analysis for Facilitating Conditions	144	
	4.0.5	Factor Analysis for End User Computing Satisfaction	145	
47	4.0.0 Daliah	Factor Analysis for Benavioural Intention	14/	
4./	Demos	inty rest after Conducting EFA	14/	
4.8	Demog	graphic Profile of the Respondents	140	
4.9	Descri	prive Statistics of Facebook Usage among the Respondents	161	
4.10	Descri	mont of DLS SEM Both Model Begulta	161	
4.11	Assess	ment of Measurement Model	162	
4.12	Assess	Individual Item Paliability	162	
	4.12.1	Internal Consistency Paliability	165	
	4.12.2	Convergent Validity	167	
	4.12.3	Discriminant Validity	167	
4 13	Second	Order Construct Establishment	170	
4.15	Assess	ment of Significance of the Structural Model	172	
	4 14 1	Assessment of Variance Explained in the Endogenous	174	
		I atent Variables	.,.	
	4 14 2	Assessment of Effect Size (f^2)	174	
	4.14.3	Predictive Relevance of the Model	175	
	4.14.4	Alternative Models	176	
4.15	Hypoth	nesis Testing	178	
	4.15.1	Testing for Direct Hypotheses	178	
	4.15.2	Testing for Mediating Effects	179	
	4.15.3	Testing for Control Variable Effect	182	
4.16	Summa	ary of Findings	183	
4.17	Summa	ary	184	
СНАР	TER FI	VE: DISCUSSION AND CONCLUSION		
5.0	Chapte	r Overview	185	
5.1	Recapi	tulation of the Study	185	
5.2	Discuss	sion of Findings	186	
	5.2.1	Direct Effects of Independent Variables on Dependent Variable	186	
		5.2.1.1 Performance Expectancy and Behavioural	187	

			Intonti	~ *					
		5212	Effort	UII Evina atamari	and Da	horio	venal Tent	antion	100
		5.2.1.2	Enon.	Expectancy		navio			100
		5.2.1.5	Social	influence an			ai inten		190
	6 0 0	5.2.1.4 D: 1	Facilita	ating Condit	ions an	a Ben	avioura	al Intention	191
	5.2.2	Direct	Effects	of Indepe	ndent	Varia	bles o	n Mediator	192
		Variable	e	~				<u> </u>	100
		5.2.2.1	Perform	nance Expe	ctancy	and E	nd Use:	r Computing	193
			Satisfa	ction		~ .	• •		
		5.2.2.2	Effort	Expectancy	and and	End	User	Computing	194
			Satisfa	ction		.			105
		5.2.2.3	Social	Influence	and	End	User	Computing	195
			Satisfa	ction		1 5	1	<u> </u>	100
		5.2.2.4	Facilita	iting Condit	tions a	nd En	d User	Computing	196
	5 Q Q	T 1 T T	Satista	ction		1.5		1	107
	5.2.3	End Use	er Comp	uting Satisfa	action a	ind Be	haviou	ral Intention	197
6.2	5.2.4	The Me	diating H	Effect of End	1 User	Comp	uting S	atisfaction	197
5.3	Contrit	outions of	the Stud	ly					198
	5.3.1	Theoret	ical Con	tributions					198
	5.3.2	Methodological Contributions 20				200			
5 A	5.3.3	Practica	I Contril	outions					201
5.4 5.5	Limitat	tion of Sta	idy	P					204
5.5 Suggestion for Future Studies					205				
5.0 DEEE	Conclu	sion							208
KEFE	NDICES	3							209
APPE	MUICES								245
Appen	din D								243
Appen	div C		/			-			252
Appen	div D		Un	iversit	i U1			lavsia	255
Appen	div E								255
Appen	div F								203
Annen	dix G								205
Annen	dix H								209
Annen	div I								205
Thhen									200

LIST OF TABLES

Table		Page
Table 2.1	Activities and Features of the Moodle platform	38
Table 2.2	The Comparison of LMS Learning and Community Learning	41
Table 2.3	The Comparison between Generation X, Y and Z	50
Table 2.4	The Development of UTAUT Model Main Constructs	56
Table 2.5	The Dimension and items of EUCS	57
Table 2.6	The Relationship between PE and BI	65
Table 2.7	The Relationship between EE and BI	67
Table 2.8	The Relationship between SI and BI	69
Table 2.9	The Relationship between FC and BI	71
Table 2.10	The Relationship between Independent Variables and EUCS	74
Table 2.11	The Relationship between Satisfaction and BI and Satisfaction as the Potential Mediator Variable	76
Table 2.12	List of Variables are Used in This Research	79
Table 2.13	The Appropriate Instruments for Measuring IT Satisfaction	85
	Based on the Type of IT	
Table 2.14	The Relationship between Research Hypotheses, Research Ouestions and Research Objectives	91
Table 3.1	The Total Number of First Degree Students' Enrolment in	97
	Malaysian Public Universities	2.1
Table 3.2	Evaluating Sample Size from a Particular Population	100
Table 3.3	The Total Number of Participants in Each University	101
Table 3.4	Operational Definitions of Variable and Dimension	102
Table 3.5	Description of Questionnaire for Each Part	103
Table 3.6	Five-Point Likert Scales for the Question in Part 1(k) until Part 8	106
Table 3.7	Ouestionnaire Items Related to Features on Facebook	109
Table 3.8	Questionnaire Items Related to PE	111
Table 3.9	Questionnaire Items Related to EE	112
Table 3.10	Questionnaire Items Related to SI	112
Table 3.11	Questionnaire Items Related to FCs	113
Table 3.12	Questionnaire Items Related to BI	114
Table 3.13	Questionnaire Items Related to Content	115
Table 3.14	Questionnaire Items Related to Accuracy	115
Table 3.15	Questionnaire Items Related to Format	115
Table 3.16	Questionnaire Items Related to Timeliness	115
Table 3.17	Instrumentation's Cronbach Alpha and Composite Factor Reliability	116
Table 3.18	Reliability Coefficient of Multiple Items in the Pilot Test	119
Table 3.19	The Plan of Collecting the Data in All Universities	120
Table 3.20	Assumptions before Conducting EFA	125
Table 3.21	Assumptions after conducting EFA	127
Table 4.1	Response Rate of the Ouestionnaires	132
Table 4.2	Total and Percentage of Missing Data	133
Table 4.3	Correlation Matrix of the Exogenous Latent Constructs	137
Table 4.4	Tolerance and Variance Inflation Factors (VIF)	137
Table 4.5	The Tentative Time of Collecting Data	138
Table 4.6	Results of Independent Samples T-test for Non-Response Bias	139

Table 4.7	Factor Analysis for PE	142	
Table 4.8	Factor Analysis for EE	143	
Table 4.9	Factor Analysis for SI	144	
Table 4.10	Factor Analysis for FC	145	
Table 4.11	Factor Analysis for EUCS	145	
Table 4.12	Factor Analysis for BI	147	
Table 4.13	Reliability Test after Conducting Factor Analysis	148	
Table 4.14	Demographic Profile of the Respondents	149	
Table 4.15	Descriptive Statistics of Hours spending on Facebook per day,	152	
	experience of using Facebook and numbers of Facebook's		
	friends.		
Table 4.16	Reasons for using Facebook	155	
Table 4.17	The degree of fondness on Facebook's features and the opinion	158	
	of these Facebook's features should have in LMS.		
Table 4.18	Descriptive Statistics for Each Variable and Dimension	161	
Table 4.19	The Result of Each Item's Outer Loading of Latent Variable. 1		
Table 4.20	The Value of Composite Reliability for Each Latent Construct 1		
Table 4.21	The Value of AVE for Every Latent Construct	167	
Table 4.22	Cross Loadings of the Items	168	
Table 4.23	Latent Variable Correlations and Square Roots of AVE	170	
Table 4.24	The Development of Second Order Construct	171	
Table 4.25	Variance Explained in Endogenous Latent Variables	174	
Table 4.26	Relationship Effect Size and Rating	175	
Table 4.27	Cross-Validated Redundancy	176	
Table 4.28	The Result of Alternative Models	178	
Table 4.29	The Test Result of Direct Hypotheses	179	
Table 4.30	Result of Mediating Hypotheses using Bootstrapping Method	181	
Table 4.31	Testing for Control Variable	182	
Table 4.32	Summary of Hypotheses Testing	183	

LIST OF FIGURES

	Page
The Breakdown of Facebook Users According to Age and	3
	~~
The SNSs Categories	32
Launch Dates of Various SNSs	33
Facebook Interface Website and Logo	34
The Relationship between SNSs Attributes for Learning and	35
Friendship	
The Top Six Most Popular LMS Software in 2015	38
The UTAUT Model	55
The EUCS Model	58
Basic Concept Underlying User Acceptance Models	60
Research Hypotheses	89
The Result of Minimum Sample Size for the Present Study	99
Measurement Model	164
Structural Model with Mediator	173
	The Breakdown of Facebook Users According to Age and Gender The SNSs Categories Launch Dates of Various SNSs Facebook Interface Website and Logo The Relationship between SNSs Attributes for Learning and Friendship The Top Six Most Popular LMS Software in 2015 The UTAUT Model The EUCS Model Basic Concept Underlying User Acceptance Models Research Hypotheses The Result of Minimum Sample Size for the Present Study Measurement Model Structural Model with Mediator

UUM

Universiti Utara Malaysia

LIST OF APPENDICES

and the second state and	
Appendix B Reliability Test	
Appendix C Missing Value Output	
Appendix D Mahalanobis Distance	
Appendix E Normality (Skewness and Kurtosis)	
Appendix F Test Linearity and Homoscedasticity	
Appendix G Results of Factor Analysis	
Appendix H Reliability Test after Conducting Factor Analys	sis
Appendix I Test of Mediating	

LIST OF ABBREVIATIONS

BI	Behavioural Intention
DOI	Diffusion of Innovation
EE	Effort Expectancy
e-Learning	electronic Learning
ECT	Expectation Confirmation Theory
EDT	Expectation Disconfirmation Theory
EFA	Exploratory Factor Analysis
EUCS	End User Computing Satisfaction
FC	Facilitating Conditions
PE	Performance Expectancy
PLS	Partial Least Squares
HEI	Higher Education Institution
ICT	Information Communication and Technology
IS	Information System
IT	Information Technology
IQ	Information Quality
LMS	Learning Management System
Moodle	Modular Object Oriented Dynamic Learning Environment
MOE	Ministry of Education
SNS	Social Networking Site
SI	Social Influence
SQ	System Quality
ServQual	Service Quality
SEM	Structural Equation Model
TAM	Technology Acceptance Model
TPB	Theory of Planned Behaviour
TRA	Theory of Reasoned Action
UTAUT	Unified Theory of Acceptance and Use of Technology
UniMAP	Universiti Malaysia Perlis
USM	Universiti Sains Malaysia
UUM	Universiti Utara Malaysia

l

CHAPTER ONE

INTRODUCTION

1.0 Chapter Overview

This chapter begins with the background of the study, a brief explanation about the history of e-Learning and the use of e-Learning tools among Higher Educational Institutions (HEIs) Students' in Malaysia. Then, the discussion is continued by articulating the advent of Web 2.0 tools, especially Social Networking Sites (SNSs) which have threatened the position of Learning Management System (LMS) as the main e-Learning tool in the education world for a long period. Next, the chapter elaborates the problem statement, research questions, research objectives, significance of the study, the scope of the study and finally the organization of study.

1.1 Background of the Study

E-Learning in Malaysia was not a new phenomenon but it was still being the hot topic in the Malaysia education sector (Endut et al., 2012). All the HEIs in Malaysia undoubtedly with the benefit of e-Learning implementation and they used LMS as the main e-learning tool (Embi & Adun, 2010). Currently, the new wave of the advent of Web 2.0 tools had indicated the evolution of virtual learning method from e-Learning 1.0 to e-Learning 2.0 (Othman, Mohamad, Yusuf, Yusof, & Suhaimi, 2012; Wang & Chiu, 2011; Yang, 2014). The use of Web 2.0 tools as a technology alternative to strengthen the implementation of e-Learning meanwhile the LMS still became as the main medium for implementing e-Learning was called as e-Learning 2.0 (Morley, 2014; Soumplis, Koulocheri, Kostaras, Karousos, & Xenos, 2011). The HEIs lecturers utilized Web 2.0 tools as the medium to improve their teaching

The contents of the thesis is for internal user only

REFERENCES

- Abdelraheem, A.Y. (2013, January). University students' use of social networks sites and their relation with some variables. Proceedings: *WEI International Academic Conference Proceedings* (pp.31-39).
- Abdinnour-Helm, S. F., Chapparro, B. S., & Farmer, S. M. (2005). Using the end user computing satisfaction (EUCS) instrument to measure satisfaction with a web site. *Decision Sciences*, 36 (2), 341-364.
- Abdul-Rahman, A.L., Jamaludin, A. & Mahmud, Z. (2011). Intention to use digital library based on modified UTAUT model: Perspectives of Malaysian postgraduate students. World Academy of Science, Engineering and Technology, 51, 116-122.
- Abu-Shanab, E. & Pearson, J.M. (2007). Internet banking in Jordon: The unified theory of acceptance and use of technology (UTAUT) perspective. *Journal of Systems and Information*, 9(1), 78-97. doi: 10.1108/13287260710817700
- Aggelidis, V. P., & Chatzoglou, P. D. (2012). Hospital information systems: Measuring end user computing satisfaction (EUCS). Journal of Biomedical Informatics, 45(3), 566-579. doi:10.1016/j.jbi.2012.02.009
- Aghaei, M., Salehi, A., Shahrbabak, M.M., Abyari, M. & Vazirifar, A. H. (2012). Ict's impacts on social networking websites and rate of people's satisfaction of Facebook in Malaysia. *International Journal of Science and Research Publications*, 2(1), 1-6.
- Ainin, S., Naqshbandi, M.M., Moghavvemi, S., & Jaafar, N.I. (2015). Facebook usage, socialization and academic performance. *Computers & Education*, 83, 64-73.
- Ajzen, I. (1991). The theory of planned behaviour. Organizational behaviour and Human Decision Processes, 50, 179-211.
- Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social Behaviour. Englewood Cliffs, NJ: Prentice-Hall.
- Aksoy, L., Riel, A. V., Kandampully, J., Bolton, R. N., Parasuraman, A., Hoefnagels, A., Migchels, N., Kabadayi, S., Gruber, T., Loureiro, Y.K., & Solnet, D. (2013). Understanding generation Y and their use of social media: a review and research agenda. *Journal of Service Management*, 24(3), 245-267.
- Akyildiz, M. & Argan, M. (2011). Using online social networking: Students' purpose of Facebook usage at the University of Turkey. *Journal of Technology Research*, 3(1), 1-11.

- Alexa.com (2015). *Top sites in Malaysia*. Retrieved from http://www.alexa.com/topsites/countries/MY
- Al-Gahtani, S.S., Hubona, G.S., & Wang, J. (2007). Information technology (IT) in Saudi Arabia culture and the acceptance and use of IT. *Information and Management*, 44, 681-691.
- Alharbi, S. & Drew, S. (2014, August). Mobile learning system usage: An integrated framework to measure students' behavioural intention. Proceedings: *Science and Information Conference* (pp.906-911).
- Alhazmi, A. K., & Abdul-Rahman, A. (2012a). Learning Management Systems from Popularity to Decline: Success, Failure and the Future Use. *Journal of Computing*, 4(3), 78–82.
- Alhazmi, A. K., & AbdulRahman, A. (2012b). Why LMS failed to support student learning in higher education institutions. Proceedings: *IEEE Symposium on E-Learning, E-Management and E-Services*, 1-5. doi:10.1109/IS3e.2012.6414943
- Allen, M. (2012). An education in Facebook. Digital Culture & Education, 4(3), 213-225.
- Alloway, T. P., Horton, J., Alloway, R. G., & Dawson, C. (2013). Computers & Education Social networking sites and cognitive abilities: Do they make you smarter? *Computers & Education*, 63, 10–16. doi:10.1016/j.compedu.2012.10.030
- Alenezi, A.M., & Shahi, K.K. (2015). Interactive e-Learning through second life with blackboard technology. Procedia-Social and Behavioural Sciences, 176, 891-897.
- Almadhoun, N.M., Lai, F.W., & Dominic, D.D. (2012). An examination of social networkings sites usage among the students in the Malaysian universities. Proceedings: International Conference on Management, Economics and Finance (ICMEF) Proceeding (pp.901-908).
- Al-rahimi, W. M., Othman, M. S., & Musa, M. A. (2013). Using TAM model to measure the use of social media for collaborative learning. *International Journal* of Engineering Trends and Technology (IJETT), 5(2), 90–95.
- Al-rahmi, W., & Othman, M. (2013). The Impact of Social Media use on Academic Performance among university students: A Pilot Study. *Journal of Information* Systems Research and Innovation, 1-10.
- Amoako-Gyampah, K., & Salam, A. F. (2004). An extension of the technology acceptance model in an ERP implementation environment. *Information & Management*, 41(6), 731-745.

- Anderson, J.E., Schwager, P.H. & Kerns, R.L. (2006). The drivers for acceptance of tablet PCs by faculty in a College of Business. *Journal of Information Systems Education*, 17 (4), 429-40.
- Armstrong, J. S., & Overton, T. S. (1977). Estimating Nonresponse Bias in Mail Surveys. Journal of Marketing Research, 14, 396-402.
- Ary, D., Jacobs, C.J., Razavieh, A., & Sorenson C.K. (2009). Introduction to research in education (8th ed). Wadsworth Publishing.
- Asiri, M. J., Mahmud, R. B., Abu Bakar, K., & Mohd Ayub, A. F. Bin. (2012). Factors Influencing the Use of Learning Management System in Saudi Arabian Higher Education: A Theoretical Framework. *Higher Education Studies*, 2(2), 125–137. doi:10.5539/hes.v2n2p125
- Askar, P. (2011). Social network analysis for e-learning environments. *Procedia-Social and Behavioural Sciences*, 28, 992.
- Attuquayefio, S. & Addo, H. (2014). Review of studies with UTAUT as conceptual framework. *European Scientific Journal*, 10(8), 249-258.
- Au, N., Ngai, E. & Cheng T. (2002). A critical review of end-user information system satisfaction research and new research framework, *Omega*, 30(6), 451-478.
- Awan, F., & Gauntlett, D. (2013). Young people's uses and understanding of online social networks in their everyday lives. Young, 21(2), 111-132. doi: 10.1177/1103308813477463
- Aypay, A., Celik, H.C., Aypay, A., & Sever, M. (2012). Technology acceptance in education: A study of pre-service teachers in Turkey. *The Turkish Online Journal of Educational Technology (TOJET)*, 11(4), 264-272.
- Ayu, A. R. R., & Abrizah, A. (2011). Do you Facebook ? Usage and applications of Facebook pages among academic libraries in Malaysia. *International Information & Library Review*, 43(4), 239–249. doi:10.1016/j.iilr.2011.10.005
- Aziz, J. A., Shah, P. M., Din, R., Puteh, S. N., Rahamat, R., & Bipachandra, J. S. (2014). The Process of Validation of Instrument Used for Teaching in a 2.0 ,Learning Environment. *Procedia - Social and Behavioral Sciences*, 118, 1–9. doi:10.1016/j.sbspro.2014.02.001
- Baboo, S.B., Pandian, A., Mustafa, M, Backer, M.B., Subramaniam, I., & Yi, L.J. (2012). Captivated with Facebook: Constructions, Contexts and Consequences. *Media Matter: Networked Media Content Research Report, 2*, 26-46.
- Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16, 74-94. doi: 10.1007/bf02723327

- Bailey, J., & Pearson, S. (1983). Development of a tool for measuring and analyzing computer user satisfaction. *Management Science*, 29(5), 530-545
- Balakrishnan, V., & Shamim, A. (2013). Malaysian Facebookers: Motives and addictive behaviours unraveled. *Computers in Human Behavior, 29*, 1342–1349.
- Baltaci-Goktalay, S. & Ozdilek, Z. (2010). Pre-service teachers' perceptions about web 2.0 technologies. *Procedia Social and Behavioural Sciences*, 2, 4737-4741. doi:10.1016/j.sbspro.2010.03.760
- Bankole, F.O., Bankole, O.O., Brown, I. (2011). Mobile banking adoption in Nigeria. *EJISDC*, 47(2), 1-23.
- Barker, V. (2009). Older adolescents' motivations for social network site use: The influence of gender, group identity, and collective self-esteem. *Cyber Psychology & Behavior*, 12(2), 209–213.
- Barnatt, C. (2009). Higher Education 2.0. *The International Journal of Management Education*, 7(3), 47–56. doi:10.3794/ijme.73.250
- Baron, R., & Kenny, D. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. *Journal of Personality and Social Psychology*, 51, 1173-82.
- Barrett E. & Lally V. (1999) Gender differences in an online learning environment. Journal of Computer Assisted Learning, 15, 48-60.
- BBC Worldwide. Inside Facebook HQ Mark Zuckerberg Inside Facebook BBC. Retrieved from https://www.youtube.com/watch?v=cGEb-q5JMU0 on 2013, July 19.
- Belanche, D., Casalo, L.V., & Guinaliu, M. (2012). Website usability, consumer satisfaction and the intention to use a website: The moderating effect of perceived risk. *Journal of Retailing and Consumer Services*, 19, 124-132.
- Bernard M., Mills M. & Friend C. (2000) Male and female attitudes towards computer-mediated group interactions. Internet publication for Usability News. Retrived from, http://www.surl.org/usabilitynews/22/gender.asp
- Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. *MIS Quarterly*, *36*(3), 421-458.
- Blanche W. O'Bannon, Jeffrey L. Beard & Virginia G. Britt (2013) Using a Facebook Group As an educational tool: Effects on student achievement, computers in the schools. *Interdisciplinary Journal of Practice, Theory, and Applied Research, 30*(3), 229-247. doi: 10.1080/07380569.2013.805972
- Blumberg, B., Cooper, D. R., & Schindler, P. S. (2005). *Business Research Methods* (1st ed.). United Kingdom: McGraw-Hill Higher Education.

- Bohn, A., Buchta, C., Hornik, K. & Mair, P. (2014). Making friends and communicating on Facebook: Implications for the access to social capital. *Social Networks*, *37*, 29-41.
- Borrero, J.D., Yousafzai, S. Y., Javed, U., Page, K. L. (2014). Expressive participation in Internet social movements: Testing the moderating effect of technology readiness and sex on student SNS use. *Computers in Human Behaviour, 30,* 39-49. doi.org/10.1016/j.chb.2013.07.032
- Bosch, T.E. (2009) Using online social networking for teaching and learning: Facebook use at the University of Cape Town. *Communicatio: South African Journal for Communication Theory and Research*, 35(2), 185-200, doi: 10.1080/02500160903250648
- Boulos, M. N. K., Maramba, I., & Wheeler, S. (2006). Wikis, blogs and podcasts : a new generation of Web-based tools for virtual collaborative clinical practice and education. *BMC Med Edu*, 6(41), 1–8. doi:10.1186/1472-6920-6-41
- Boyd, D. M., & Ellison, N. B. (2008). Social Network Sites : Definition, History, and Scholarship. *Journal of Computer-Mediated Communication*, 13, 210–230. doi:10.1111/j.1083-6101.2007.00393.x
- Brandtzaeg, P.B., & Nov, O. (2011). Facebook use and social capital-A longitudinal study. Proceedings: Fifth International AAAI Conference on Weblogs and Social Media. (pp. 454-457).
- Broadbent, B. (2002). ABCs of e-learning: Reaping the benefits and avoiding the pitfalls (1st ed.). San Francisco: Jossey-Bass/ Pfeiffer.
- Broder, H.L., McGrath C., Cisneros G.J. (2007). Questionnaire development: face validity and item impact testing of the child oral health impact profile. *Community Dent Oral Epidemiology*, 35 (1), 8–19.
- Brown, S.A. (2012). Seeing web 2.0 in context: A study of academic perceptions. Internet and Higher Education, 15, 50-57.
- Bugeja, M.J. (2007). Facing the Facebook. The Chronicle of Higher Education, 52(21), 1-3.
- Buhari, S.R., Ahmad, G.I., & HadiAshara, B. (2014). Use of social media among students of Nigerian Polytechnic. Proceedings: International Conference on Communication Media, Technology and Design. (pp.302-305).
- Byrne, B. (2010). Structural Equation Modeling With AMOS (2nd ed.): Taylor & Francis Group
- Cabral, J., (2011). Is generation Y addicted to social media? The Elon Journal of Undergraduate Research in Communications, 2 (1), 5–14.
- Cain, J., & Policastri, A. (2011). Instructional design and assessment: Using Facebook as an informal learning environment. *American Journal of Pharmaceutical Education*, 75(10), 207, 1-8.

- Cavus, N. (2015). Distance learning and learning management system. Procedia-Social and Behavioural Sciences, 191, 872-877.
- Cavus, N., & Zabadi, T. (2014). A comparison of open source learning management system. *Procedia-Social and Behavioral Sciences*, 143, 521-526.
- Ceccucci, W., Peslak, A., Merrimack, S. (2010). An empirical study of behavioral factors influencing text messaging intention. *Journal of Information Technology Management*, 21(1), 16-34.
- Chan, F.K.Y., Thong, J.Y.L., Venkatesh, V., Brown, S.A., & Tam, K.Y. (2010). Modeling citizen satisfaction with mandatory adoption of an e-government Technology. *Journal of the Association for Information Systems*, 11(1), 520-548.
- Chauhan, R. S., Buckley, M. R., & Harvey, M. G. (2013). Facebook and personnel selection : What's the big deal ? *Organizational Dynamics*, 42(2), 126–134.
- Chen, B., & Bryer, T. (2012). Investigating Instructional Strategies for Using Social Media in Formal and Informal Learning. *The International Review of Research in Open and Distance Learning*, 13(1), 87–104.
- Chen, S. C., Yen, D.C., & Hwang, M. I. (2012). Factors influencing the continuance intention to the usage of web 2.0: An empirical study. *Computers in Human Behaviour, 28*, 933-941.
- Chen, Y.C. (2014). The effect of using a Facebook group as a learning management system. *Computers in Education Journal*, 24(4), 43-53.
- Cheng, C.M.K., Lee, M. K. O. (2005). Research Framework for Consumer Satisfaction with Internet Shopping. City University of Hong Kong, China. Sprouts: Working Papers on Information Systems, 5(26). Retrieved from: http://sprouts.aisnet.org/5-2
- Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers (2nd ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.
- Cheung, C.M.K., & Lee, M. K. O. (2010). A theoretical model of intentional social action in online social networks. *Decision Support Systems*, 49, 24-30.
- Cheung, R., & Vogel, D. (2013). Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning. *Computer & Education*, 63, 160-175.
- Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), *Modern Methods for Business Research* (pp. 295-336). Mahwah, New Jersey: Laurence Erlbaum Associates.
- Chin, W.W., & Lee, M. K. O. (2000). A proposed model and measurement instrument for the information of is satisfaction: The case of end-user computing

satisfaction. Proceedings: Twenty First International Conferences On Information System. (pp. 175-186).

- Chin, W. W. (2010). How to write up and report PLS analyses. In: Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). Handbook of partial least squares: Concepts, methods and applications in marketing and related fields (655-690). Berlin: Springer.
- Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo Simulation study and an electronic-mail emotion/adoption study. *Information Systems Research*, 14, 189-217. doi: 10.1287/isre.14.2.189.16018
- Chiu, C.M, Chiu, C.S., & Chang, H..C. (2007). Examining the integrated influence of fairness and quality on learners' satisfaction and Web-based learning continuance intention. *Information Systems Journal*, 17(3), 271–287.
- Cho, N and Park, S. (2001). Development of electronic commerce user-computer satisfaction index (ECUSI) for internet shopping. *Industrial Management and Data System*, 101 (8), 400-405.
- Chu, K.M. (2013). Motives for participation in internet innovation intermediary platforms. *Information Processing and Management*, 49, 945-953.
- Chu, S. K., & Du, H. S. (2012). Social networking tools for academic libraries for academic libraries. *Journal of Librarianship and Information Science*, 45(1), 64-75, doi:10.1177/0961000611434361
- Churchill, Gilbert A., & Surprenant, C. (1982). An investigation into the determinants of customer satisfaction. *Journal of Marketing Research*, 19, 491 504.
- Clark, R. E. (2000). Evaluating distance education: Strategies and cautions. The Quarterly Journal of Distance Education, 1(1), 3-16.
- Coates, H., James, R. & Baldwin, G. (2005). A critical examination of the effects of learning management systems on university teaching and learning. *Tertiary Education and Management*, 11(1), 19-36.
- Cohen, J. (1992). A power primer. *Psychological Bulletin, 112,* 155-159. doi: 10.1037/0033-2909.112.1.155
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.
- Colley, A. & Comber, C. (2003). Age and gender differences in computer use and attitudes among secondary school students: What has changed? *Educational Research*, 45(2): 155-65.

- Cooper, D. R., & Schindler, P. S. (2009). *Business research methods* (10th ed.). New York: McGraw-Hill.
- Couillard, C. (2009). Facebook: the Pros and Cons of use in Education (Master's thesis, University of Wisconsin-Stout). Retrieved from http://clairecouillard.weebly.com/uploads/5/1/9/8/5198042/research_paper_tcs_701.pdf
- Costa, C., Alvelos, H., & Teixeira, L. (2012). The use of Moodle e-Learning platform: A study in a Portuguese University. *Procedia Technology*, 5, 334-343.
- Curtis, L., Edwards, C., Fraser, K.L., Gudelsky, S., Holmquist, J., Thornton, K., & Sweetser, K. D. (2010). Adoption of social media for public relations by nonprofit organizations. *Public Relations Review*, 36, 90–92.
- Dalsgaard, C. (2006). Social software: E-Learning beyond learning management systems. *European Journal of Open, Distance and E-Learning,* 7-12.
- Danyaro, K.U., Jaafar, J., Lara, R.A.A.D., Downe, A.G. (2010). An evaluation of the usage of web 2.0 among tertiary level students in Malaysia. *IEEE*, 1-6.
- Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. *MIS Quarterly*, 13(3), 319-339.
- Davis, F., Bagozzi, R., & Warshaw, P. (1989). User acceptance of computer technology: A comparison of two theoretical models. *Management science*, 35 (8), 982-1003.
- DeLone, W.H., & McLean, E.R. (1992). Information system success: The quest for the dependent variable. *Information System Research*, 3(1), 60-95.
- Deng, X., Doll, W., Al-Gahtani, S.S., Larsen, T. J., Pearson, J. M. & Raghunathan, T.S. (2008). A cross-cultural analysis of the end-user computing satisfaction instrument: A multi-group invariance analysis. *Information and Management*, 45, 211-220.
- DeSchryver, M., Mishra, P., Koehleer, M. & Francis, A. (2009). Moodle vs. Facebook: Does using Facebook for Discussions in an Online Course Enhance Perceived Social Presence and Student Interaction? Proceedings: Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 329-336).
- DeVelliss, R. F. (2012). Scale development: Theory and applications (3rd. ed.). Chapel Hill, U.S.A.: Sage Publication.
- Dhaha, I.S.Y., & Ali, A.Y.S. (2014a). Behavioural Intention and Satisfaction with 3G Technology among Students in Somalia: A Structural Equation Modeling Study. World Applied Sciences Journal, 32(2), 243-253. doi: 10.5829/idosi.wasj.2014.32.02.331

- Dhaha, I.S.Y.A., & Ali, A.Y.S. (2014b). Mediating effects of behavioural intention between 3g predictors and service satisfaction. Jurnal Komunikasi Malaysian, 30 (Special Issue), 107-128.
- Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods. *Journal of Econometrics*, 22, 67-90. doi: http://dx.doi.org/10.1016/0304-4076(83)90094-5
- Din, N., & Haron, S. (2012). Knowledge Sharing as a Culture among Malaysian Online Social Networking Users. *Proceedia-Social and Behavioural Science*, 50, 1043–1050. doi:10.1016/j.sbspro.2012.08.104
- Din, N., Yahya, S., & Haron, S. (2012). Information retrieval and academic performance among Facebook users. *Procedia-Social and Behavioural Science*, 68. doi: 10.1016/j.sbspro.2012.12.225
- DiVall, M. V., & Kirwin, J. L. (2012). Using Facebook to facilitate course-related discussion between students and faculty members. *American Journal of Pharmaceutical Education*, 76(2), 1–5.
- Doll, W. J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. *MIS Quarterly*, 12(6), 256-274.
- Doll, W. J., and Torkzadeh, G. (1991). Issues and Opinions: The Measurement of End-User Computing Satisfaction: Theoretical and Methodological Issues. MIS Quarterly, 15, 5-10.
- Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. *MIS Quarterly*, 18(4), 453-461.
- Duarte, P., & Raposo, M. (2010). A PLS model to study brand preference: An application to the mobile phone market. In V. Esposito Vinzi, W. W. Chin, J. Henseler & H. Wang (Eds.), *Handbook of Partial Least Squares* (pp. 449-485): Springer Berlin Heidelberg.
- Duncan, D.G., & Barezyk, C.C. (2013). Facebook in the university classroom: Do students perceive that this site enhances community of practice and sense of community? *International Journal of Business and Social Science*, 4(3), 1-14.
- Echeng, R., Usoro, A., & Majewski, G. (2013). Acceptance of web 2.0 in learning in higher education: A case study Nigeria. *International Journal of Advanced Computer Science and Application*, 4(10).
- Elliott, A. C., & Woodward, W. A. (2007). *Statistical analysis: Quick reference guidebook with SPSS examples.* Thousand Oaks, CA: Sage Publications.
- Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook friends social capital and college students' use of online social network sites. *Journal of*

Computer-Mediated Communication, 12, 1143–1168. doi:10.1111/j.1083-6101.2007.00367.x

- Embi, M. A., Atan, H., Abd-Aziz, S., Mohd-Nordin, N., & Hamat, A. Scenario Study Report: e-Learning Module. (2012). Bangi, Selangor: Higher Education Leadership Academy Ministry of Higher Education and Centre for Academic Advancement Universiti Kebangsaan Malaysia.
- Endut, A., Mohd, P., Rahayu, S., Aziz, A., Hajar, M. N., Jono, H., & Abdul, A. (2012). e-Learning for Universiti Teknologi MARA Malaysia (UiTM): Campus Wide Implementation and Accomplishments. *Procedia-Social and Behavioral Sciences*, 67, 26–35. doi:10.1016/j.sbspro.2012.11.304
- Escobar-Rodriguez, T., Carvajal-Trujillo, E., & Monge-Lozano, P. (2014). Factors that influence the perceived advantages and relevance of Facebook as a learning tool: An extension of the UTAUT. *Australian Journal of Educational Technology*, 30(4), 136-151.
- Everson, M., Gundlach, E., & Miller, J. (2013). Social media and the introductory statistics course. *Computers in Human Behavior*, 29, 69–81.
- Facebook(2015).Company Info. Retrieved from http://newsroom.Facebook.com/company-info/
- Falahah & Rosmala, D. (2012). Study of Social Networking Usage in Higher Education Environment. *Procedia-Social and Behavioral Sciences*, 67, 156– 166. doi:10.1016/j.sbspro.2012.11.316
- Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Ohio: The University of Akron Press.
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods*, 41, 1149-1160. doi: 10.3758/brm.41.4.1149
- Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavior Research Methods*, 39, 175-191. doi: 10.3758/bf03193146
- Ferdig, R. (2007). Examining social software in teacher education. Journal of Technology and Teacher Education, 15(1), 5-10.
- Fidani, A., & Idrizi, F. (2012). Investigating Students' Acceptance of a Learning Management System in University Education : A Structural Equation Modeling Approach. Proceedings: *ICT Innovations 2012 Web Proceedings* (pp. 311–320).
- Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Reading, MA: Addisson-Wesley.

- Flynn, B. B., Sakakibara, S., Schroeder, R. G., Bates, K. A., & Flynn, E. J. (1990). Empirical research methods in operations management. *Journal of Operations Management*, 9, 250-284.
- Fong, S.C.C. & Ho, M.W.H. (2014). Accounting information systems End-User Satisfaction: Evidence of Hong Kong Housing Authority. *The International Technology Management Review*, 4, 27-41.
- Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with unobservable variables and measurement error. *Journal of Marketing Research*, 18, 39-50.
- Frary, R. B. (1996). *Brief Guide to questionnaires development*. Washington, DC: ERIC Clearinghouse on Assessment and Evaluation.
- Frein, S. T., Jones, S. L., & Gerow, J. E. (2013). When it comes to Facebook there may be more to bad memory than just multitasking. *Computers in Human Behavior, 29,* 2179–2182.
- Friedman, H.H., & Friedman, L.W. (2011). Crises in education: Online learning as a solution. *Creative Education*, 2, 156-163.
- Gary, K., Annabell, L., & Kennedy, G. (2010). Medical students' use of Facebook to support learning: Insights from four case studies. *Medical Teacher*, 32, 971-976.
- Gay, L. R., and Diehl, P. L. (1996). Research methods for business and management. Singapore: Simon & Schruster (Asia) Pte. Ltd.
- Granovetter, M. (1983). The strength of weak ties: A network theory revisited. Sociological Theory, 1(1), 201-233
- Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Communications of the Association for Information Systems, 16(1), 109.
- Geisser, S. (1974). A predictive approach to the random effect model. *Biometrika*, 61, 101-107. doi: 10.1093/biomet/61.1.101
- Gomes, L.M., Guerra, H., Mendes, A., & Rego, I.E. (2015). Facebook vs moodle: Surveying university students on the use of learning management systems to support learning activities outside the classroom. Proceedings: 10th Iberian Conference on Information Systems and Technologies (CISTI), 1-4. doi: 10.1109/CISTI.2015.7170464
- Geladi, P., & Kowalski, B. (1986). Partial least-squares regression: A tutorial. *Analytica Chimica Acta*, 185, 1-17.
- Glasow, P. A. (2005). Fundamentals of survey research methodology. Virginia: Mitre Washington C3 Center.

- Goh, W.W., Hong, J.L., & Goh, K.S. (2013). Students' behavior and perception of using Facebook as a learning tool. Proceedings: 8th International Conference of Computer Science & Education (ICCSE). (pp.731–736). doi: 10.1109/ICCSE.2013.6554004
- Goodhue, D., Lewis, W., and Thompson, R. (2006). Small Sample Size, and Statistical Power in MIS Research, Proceedings: 39th Annual Hawaii International Conference on System Sciences (HICSS'06) (pp. 202b-202b). doi: 10.1109/HICSS.2006.381
- Gotz, O., Liehr-Gobbers, K., & Krafft, M. (2010). Evaluation of Structural Equation Models using the Partial Least Squares (PLS) Approach. In V. E. Vinzi, W. W. Chin, J. Henseler & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 691-711). Heidelberg: Springer.
- Grosseck, G. (2009). To use or not to use web 2 .0 in higher education? *Procedia* Social and Behavioral Sciences, 1, 478–482. doi:10.1016/j.sbspro.2009.01.087
- Grosseck, G., Bran, R., & Tiru, L. (2011). Dear teacher, what should I write on my wall? A case study on academic uses of Facebook. *Procedia-Social and Behavioural Sciences*, 15, 1425–1430. doi:10.1016/j.sbspro.2011.03.306
- Gruzd, A., Staves, K., Wilk, A. (2012). Computers in human behaviour connected scholars: Examining the role of social media in research practices of faculty using UTAUT model. *Computers in Human Behaviour*, 28, 2340-2350. doi: 10.1016/j.chb.2012.07.004
- Gelderman, M. (1998). The relation between user satisfactions, usage of information systems, and performance. *Information & Management 34* (1), 11–18.
- Gulieva, V. (2014). Moodle vs. Social Media Platforms: Competing for Space and Time. Proceedings: *Bunele Practici de Instruire Online*. (pp. 1-5).
- Hagle, T. (2004). Dichotomous Variables. In Michael S. Lewis-Beck, A. Bryman, & Tim Futing Liao (Eds.), The SAGE Encyclopedia of Social Science Research Methods. (p. 263). Thousand Oaks, CA: Sage Publications, Inc. doi: http://dx.doi.org/10.4135/9781412950589.n239
- Houghton, D.J., & Joinson A. N. (2010) Privacy, Social Network Sites, and Social Relations. Journal of Technology in Human Services, 28(1-2) 74-94, DOI: 10.1080/15228831003770775
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46, 1-12. doi: http://dx.doi.org/10.1016/j.lrp.2013.01.001
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). *Multivariate data* analysis (7th ed.). Upper Saddle River, New Jersey: Prentice Hall.

- Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage Publications.
- Hair, J. F., Money, A. H., Samouel, P., & Page, M. (2007). Research method for business. West Sussex, England: John Wiley & Sons Ltd.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 18, 139-152.
- Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. *Journal of the Academy of Marketing Science*, 40, 414-433.
- Hakkarainen K. & Palonen T. (2003) Patterns of female and male students' participation in peer interaction in computer-supported learning. *Computers and Education*, 40, 327–342.
- Hamade, S.N. (2013). Perception and use of social networking sites among university students. *Library Review*, 62 (6/7), 388 – 397. doi:10.1108/LR-12-2012-0131
- Hamat, A., Embi, M.A., & Hassan, H.A. (2012). The use of social networking sites among Malaysian university students. *International Education Studies*, 5(3), 56-66.
- Hamat, A., Embi, M. A., & Sulaiman, A. H. (2011). Learning Management Systems in Malaysian Higher Education Institutions. In M. A. Embi (Ed.), *E-Learning in Malaysian Higher Education Institutions: Status, Trends, & Challenges,* 30-51. Putrajaya: Department of Higher Education Ministry of Higher Education.
- Hanson, C., West, J., Neiger, B., Thackeray, R., Barnes, M., & McIntyre, E. (2011). Use and acceptance of social media among health educators. *American Journal* of Health Education, 42(4), 197-204. doi: 10.1080/19325037.2011.10599188
- Haque, A., Sarwar, A., & Ahmad, K. (2015). Using Facebook as an alternative learning tool in Malaysian higher learning institutions: A structural equation modeling approach. *International Journal of Social, Behavioural, Educational, Economic, Business and Industrial Engineering*, 9(5), 1616-1623.
- Harris, A. L., & Rea, A. (2009). Web 2 . 0 and Virtual World Technologies : A Growing Impact on IS Education. Journal of Information Systems Education, 20(2), 137-145.
- Harsono, L.D. & Suryana, L.A. (2014). Factors affecting the use behaviour of social media using UTAUT 2 model. Proceedings: First Asia-Pacific Conference on Global Business Economics, Finance and Social Sciences. (pp.1-14).

- Hartshorne, R. & Ajjan, H. (2009). Examining student decisions to adopt web 2.0 technologies: Theory and empirical tests. *Journal Computing Higher Education*, 21, 183-198.
- Hatcher, L. (1994). A step by step approach to using SAS for factor analysis and structural equation modeling. SAS Institute Inc. Nort California, USA
- Hayes, A. F., & Preacher, K. J. (2010). Quantifying and testing indirect effects in simple mediation models when the constituent paths are nonlinear. *Multivariate Behavioral Research*, 45(4), 627-660.
- Hayes, A.F. (2009). Beyond Baron and Kenny: Statistcal mediation analysis in the new millennium. *Communication Monographs*, 76(4), 408-420. doi:10.1080/03637750903310360
- Heemskerk, I., Brink, A., Volman, M. & Ten-Dam, G (2005). Inclusive and ICT in education: a focus on gender, ethnicity and social class. *Journal of Computer* Assisted Learning, 21(1), 1-16.
- Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), Advances in International Marketing (Vol. 20, pp. 277-320). Bingley: Emerald
- Hew, K. F. (2011). Students' and teachers'use of Facebook. Computers in Human Behavior, 27, 662-676. doi:10.1016/j.chb.2010.11.020
- Hoe, J.M.C. (2012). Facebook and learning: Students' perspective on a course. Journal of the NUS Teaching Academy, 2(3), 131-143.
- Holtz, B. & Krein, S. (2011). Understanding Nurse Perceptions of a Newly Implemented Electronic Medical Record System. *Journal of Technology in Human Services*, 29(4), 247-262, doi: 10.1080/15228835.2011.639931
- Hou, C.K. (2012). Examining the effect of user satisfaction on system usage and individual with business intelligence systems: An empirical study of Taiwan's electronic industry. *International Journal of Information Management*, 32, 560-573.
- Hsu, C.L., & Lin, J. C. C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. *Information & Management*, 45(1), 65–74
- Hsu, Hsin-I., & Yang, Mei-Hwa (2011). Marketing library services with the community features of Facebook. *Journal of Librarianship and Information Studies*, 3(1), 65-87
- Hunt, S. D., Richard D. S. Jr., and James B. W. (1982). The Pretest in Survey Research: Issues and Preliminary Findings. *Journal of Marketing Research*, 269-273.

- Hurt, N.E., Moss, G.S., Bradley, C.L., Larson, L.R., Lovelace, M.D., Prevost, L.B., Riley, N., Domizi, D. & Camus, M.S. (2012). The Facebook effect: college students' perceptions of online discussions in the age of social networking. *International Journal for the Scholarship of Teaching and Learning*, 6(2), 1-24.
- Hussain, I. (2012). A Study to Evaluate the Social Media Trends among University Students. *Procedia - Social and Behavioral Sciences, 64,* 639–645. doi:10.1016/j.sbspro.2012.11.075
- Hussien, K.A. (2013). A framework for implementing social computing in higher education in the Gulf States. Ph.D. Thesis. School of the Bulit Environment, University of Salford, Machester, UK.
- Ilias, A. & Razak, M.Z.A. (2011). End-User Computing Satisfaction (EUCS) towards Computerized Accounting System (CAS) in public sector: A validation of instrument. *Journal of Internet Banking and Commerce*, 16(2), 1-17.
- Issa, T., & Isaias, P. (2016). Internet factors influencing generations Y and Z in Australia and Portugal: A practical study. *Information Processing and Management*, 1-26.
- Ilias, A., Razak, M.Z., Abdul-Rahman, R., & Yasoa, M.R. (2009). End-user satisfaction in computerized accounting system: Which the critical factors? A case in Malaysia. *Computer and Information Science*, 2(1), 18-24.
- Im, I., Hong, S., & Kang, M.S. (2011). An international comparison of technology adoption Testing the UTAUT model. *Information & Tehnology*, 48, 1-8. doi:10.1016/j.im.2010.09.001
- Irwin, C., Ball, L., Desbrow, B., & Leveritt, M. (2012). Students' perceptions of using Facebook as an interactive learning resource at university. *Australia Journal of Educational Technology*, 28(7), 1221–1232
- Islam, A. K. M. N. (2011). The determinants of the post-adoption satisfaction of educators with an e-learning system. *Journal of Information Systems Education*, 22(4), 319-332.
- Ismail, S. (2010). International Students ' Acceptance on using Social Networking Site to Support Learning Activities. International Journal for the Advancement of Science & Arts, 1(2), 81–90.
- Ismail, S.A., Mohd-Saleh, N., & Kundari, S. (2012). Computerized accounting system at The Mara State Offices: Factors affecting user satisfaction and job performance. *International Journal of Research in Management & Technology*, 2(6), 565-573.
- Ives, B., Olson, M.H., & Baroudi, J.J. (1983). The measurement of user information satisfaction, *Communications of the ACM*, 26(10), 785-793.

- Jafarkarimi, H., Sim, A. T. H., Saadatdoost, R., & Hee, J. M. (2016). Facebook Addiction among Malaysian Students. International Journal of Information and Education Technology, 6(6), 465.
- Jones, C., Ramanau, R., Cross, S., & Healing, G. (2010). Net generation or Digital Natives: Is there a distinct new generation entering university?. *Computers & Education, 54, 772-732.*
- Jahan, I., & Zahed-Ahmed, S.M. (2012). Students' perceptions of academic use of social networking sites: A survey of university students in Bangladesh. *Information Development*, 28(3), 235-247.
- Jalal, A. & Zaidieh, Y. (2012). The Use of Social Networking in Education: Challenges and Opportunities. *World of Computer Science and Information Technology Journal (WCSIT)*, 2(1), 18-21.
- Jong, B., Lai, C., Hsia, Y., Lin, T., & Liao, Y. (2014). An exploration of the potential educational value of Facebook. *Computers in Human Behavior, 32,* 201–211. doi:10.1016/j.chb.2013.12.007
- Jong, D. & Wang, T.S. (2009). Student acceptance of web-based learning system. Proceedings: International Symposium on web information systems and application. (pp.533-536).
- Jumaat, N. F., & Tasir, Z. (2013). Students' Types of Online Interaction through Facebook Discussion. *Proceedia-Social and Behavioral Sciences*, 97, 353–360. doi:10.1016/j.sbspro.2013.10.245
- Junco, R. (2011). The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Computers & Education, 58(1), 162–171. doi:10.1016/j.compedu.2011.08.004
- Junco, R., & Cotton, S.R. (2012). No A 4 U: The relationship between multitasking and academic performance. *Computers & Education, 59,* 505-514.
- Junco, R. (2015). Student class standing, Facebook use, and academic performance. Journal of Applied Developmental Psychology, 36, 18-29.doi: 10.1016/j.appdev.2014.11.001
- Junco, R., & Cotten, S. R. (2012). No A 4 U : The relationship between multitasking and academic performance. *Computers & Education*, 59(2), 505–514. doi:10.1016/j.compedu.2011.12.023
- Kalpidou, M., Costin, D., & Morris, J. (2011). The relationship between Facebook and the well-being of undergraduate college students. *Cyberpsychology*, *Behavior and Social Networking*, 14(4),183-189. doi: 10.1089/cyber.2010.0061
- Kim, K. Altmann, J. & Hwang, J. (2010). The Impact of the Subgroup Structure on the Evolution of Networks: An Economic Model of Network Evolution. Proceedings: IEEE International Workshop on Network Science for Communication Networks (pp.1-9).
- Kirschner, P.A., & Karpinski, A.C. (2010). Facebook and academic performance. Computers in Human Behaviour, 26, 1237-1245.
- Kaba, B. & Toure, B. (2014). Understanding information and communication technology behavioural intention to use: Applying the UTAUT model to social networking site adoption by young people in a least developed country. *Journal of the Association for Information Science and Technology*, 65(8), 1662-1674.
- Kabilan, M. K., Ahmad, N., Jafre, M., & Abidin, M. J. Z. (2010). Internet and Higher Education Facebook: An online environment for learning of English in institutions of higher education? *The Internet and Higher Education*, 13(4), 179–187. doi:10.1016/j.iheduc.2010.07.003
- Kabilan, M.K., Ahmad, N., & Abidin, M.J.Z. (2010). Facebook: An online enviroment for learning of English in institutions of higher education? *Internet* and Higher Education, 13, 179-187.
- Kalton, G., & Schuman, H. (1982). The effect of the question on survey responses: A review. Journal of the Royal Statistical Society, Series A, 145, 42-73.
- Keeter, S. (2005). Survey Research. In D. Druckman (Ed.). Doing research: Methods of Inquiry for conflict analysis (pp. 123-162). Thousand Oaks, CA: Sage Publications, Inc.
- Kember, D., McNaught, C., Chong, F. C. Y. Y., Lam, P., & Cheng, K. F. F. (2010). Understanding the ways in which design features of educational websites impact upon student learning outcomes in blended learning environments. *Computers & Education*, 55(3), 1183–1192. doi:10.1016/j.compedu.2010.05.015
- Kementerian Pendidikan Malaysia (2013). Perangkaan Pendidikan Negara: Sektor Pengajian Tinggi. Putrajaya, Malaysia.
- Keong, M.L., Ramayah, T., Kurnia, S., & Chiun, L.M. (2012). Explaining intention to use an enterprise resource planning (ERP) system: an extension of the UTAUT model. *Business Strategy Series*, 13(4), 173 – 180.
- Khaled, A.,H. (2013). A framework for implementing social computing in higher education in the Gulf States. (Doctoral dissertation, University of Salford). Retrieved from: http://usir.salford.ac.uk/29456/
- Khechine, H., Lakhal, S., Pascot, D., & Bytha, A. (2014). UTAUT model for blended learning: The role of gender and age in the intention to use webinars. *Interdisciplinary Journal of E-learning and Leraning Objects, 10,* 33-52.

- Kijasanayotin, B., Pannarunothai, S. & Speedie, S.M. (2009). Factors influencing health information technology adoption in Thailand's community health centers: Applying the UTAUT model. *International Journal of Medical Information*, 78, 404-416.
- Kim, D. J., Ferrin, D. L, & Rao, H. R. (2008). A Trust-Based Consumer Decision Model in Electronic Commerce: The Role of Trust, Risk, and Their Antecedents. *Decision Support Systems*, 44(2), 544-564.
- Kim, K., Altmann J., & Hwang, J. (2011). Measuring and Analyzing the Openness of the Web 2.0 Service Network for Improving the Innovation Capacity of the Web 2.0 System through Collective Intelligence. In Bastiaens, T.J., Baumol, U., & Kramer, B. J. (Eds.), On Collective Intelligent (pp. 93-105). doi: 10.1007/978-3-642-14481-3 8
- Kiraz, E., & Ozdemir, D. (2006). The relationship between educational ideologies and technology acceptance in pre-service teachers. *Educational Technology and Society*, 9(2), 152-165.
- Kitsis, S. (2008) The Facebook generation: homework as social networking. *English Journal 98*(2), 30–36.
- Klarner, P., Sartedt, M., Hoeck, M. & Ringle, C.M. (2013). Disentangling the effects of team competences, team adaptability and client communication on the performance of management consulting teams. *Longe Range Planning*, 46, 258-286.
- Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New York: The Guilford Press.
- Koran, J. K. (2001). Aplikasi e-Pembelajaran dalam pengajaran dan pembelajaran di sekolah-sekolah Malaysia: Cadangan pelaksannaan senario masa kini. Retrieved April 22, 2013 from: http:// www.tutor.com.my/tutor/pix/2001/0716/dunia_pendidikan/kertas_kerja/kk_01.p df.
- Krejcie, R.V., & Morgan, D.W. (1970). Determing sample size for research activities. *Educational and Psychological Measurement*, 30, 607-610.
- Krischner, P.A., & Karpinski, A.C. (2010). Facebook and academic performance. Computers in Human Behaviour, 49(2), 1-4.
- Kumar, B. (2012). Theory of planned behaviour approach to understand the purchasing behaviour for environmentally sustainable products. Retrieved from http://www.iimahd.ernet.in/assets/snippets/workingpaperpdf/10260621182012-12-08.pdf
- Kwong-Kay, K.W. Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS.(2013). *Marketing Bulletin, Technical Note, 24*,(1).

- Lai, C.S.K. & Pires, G. (2010). Testing of a model evaluating e-Government portal acceptance and satisfaction. *Information Systems Evaluation*, 13(1), 35-46.
- Li, X., & Chen, W. (2014). Facebook or Renren? A comparative study of social networking site use and social capital among Chinese International Students in the United States. *Computers in Human Behaviour, 35,* 116-123.
- Laire, D., Casteleyn, J., & Mottart, A. (2012). Social media's learning outcomes within writing in efl classroom: Exploring, implementing and analyzing storify. *Procedia-Social and Behavioural Science*, 69, 442-448.
- Levickaite, R. (2010) Generations x, y, z: How social networks form the concept of the world without borders (the case of Lithuania). *LIMES: Cultural Regionalistics*, 3(2), 170-183. doi: http://dx.doi.org/10.3846/limes.2010.17
- Lakhani, A. (2013). Social networking sites and the legal profession: Balancing benefits with navigating minefields. *Computer Law & Security Review*, 9, 164–174.
- Lakshman, M., Sinha, L., Biswas, M., Charles, M., & Arora, N. K. (2000). Quantitative Vs Qualitative Research Methods. *Indian Journal of Pediatrics*, 67(5),369-377.
- Lallmahomed, M. Z. I., Zairah, N., Rahim, A., Ibrahim, R., & Rahman, A. A. (2013). Computers in Human Behavior Predicting different conceptualizations of system use : Acceptance in hedonic volitional context (Facebook). Computers in Human Behavior, 29(6), 2776–2787. doi:10.1016/j.chb.2013.07.018
- Lambert, D. M., & Harrington, T. C. (1990). Measuring nonresponse bias in customer service mail surveys. *Journal of Business Logistics*, 11(2), 5-25.
- Lampe, C., Ellison, N., & Steinfield, C. (2006, November). A Face (book) in the crowd: Social searching vs. social browsing. Proceedings: 20th anniversary conference on Computer supported cooperative work (pp. 167-170).
- Larue, E. M. (2012). Using Facebook as course management software : a case study 1. *Teaching and Learning in Nursing*, 7, 17–22. doi:10.1016/j.teln.2011.07.004
- Lee, E.B. (2012). Young, black and connected: Facebook usage among African American college students. *Journal of Black Studies*, 43(3), 336-354.
- Lee, J.S., Cho, H., Gay, G., Davidson, B. and Ingraffea, A. (2003). Technology acceptance and social networking in distance learning. *Educational Technology & Society*, 6(2), 50-61
- Lee, Y., Kozar, K. A., & Larsen, K. R. (2003). The technology acceptance model: past, present, and future. *Communications of the Association for Information Systems*, 12(1), 50.

- Lenth, R. V. (2001). Some practical guidelines for effective sample size determination. *The American Statistician*, 55, 187-193.
- Leong, L. Y., Ooi, K.B., Chong, A.Y.L., & Lin, B. (2013). Modeling the stimulators of the behavioural intention to use mobile entertainment: Does gender really matter? *Computers in Human Behavior, 29*, 2109-2121.
- Levickaite, R. (2010) Generations x, y, z: How social networks form the concept of the world without borders (the case of Lithuania), *LIMES: Cultural Regionalistics*, 3(2), 170-183.
- Li Q. (2002) Gender and computer-mediated communication: An exploration of elementary students' mathematics and science learning. *Journal of Computers in Mathematics and Science Teaching*, 21, 341–359.
- Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 1-55.
- Lin J.C.C., & Lu H. (2000). Toward an understanding of the behavioral intention to use a web site. *International Journal of Information Management, 20,* 197 208.
- Lin, H.X., Choong, Y.Y., & Salvendy, G. (1997). A proposed index of usability: A method for comparing the relative usability of different software systems. *Behaviours & Information Technology*, 16(4), 267-278.
- Lin, P.C., Hou, H.T., Wang, S.M., & Chang, K.E. (2013). Analyzing knowledge dimensions and cognitive process of a project-based online discussion instructional activity using Facebook in an adult and continuing education course. *Computers & Education*, 60, 110-121.
- Lin, S., Zimmer, J.C. & Lee, V. (2013). Poscasting acceptance on campus: The differing perspectives of teachers and students. *Computers and Education*, 68, 416-428.
- Ling, C.H. & Islam, M.A. (2015). User satisfaction towards online banking in Malaysia. International Business Management, 9 (1), 15-27.
- Lubis, S. H., Ridzuan, S., Ishak, I. Y., Othman, H. F., Mohammed, N., Abdul-Hamid, S.,... Isham, M. (2012). The relationship between time spent on facebook and cumulative grade point average (CGPA) among third year Biomedical Science students in Faculty Health Sciences, UKM. *Procedia-Social* and Behavioural Sciences, 60, 590–595. doi:10.1016/j.sbspro.2012.09.427
- Margo, M.J., Sharp, J.H., Ryan, K., & Ryan, S.D. (2013). Investigating ways to use Facebook at the university level: A Delphi study. *Issues in Informing Science* and Information Technology, 10, 295-311.

- Manca, S., & Ranieri, M. (2016). Facebook and the others. Potentials and obstacles of social media for teaching in higher education. *Computers & Education, 95,* 216-230.
- MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. *Psychological Methods*, 7, 83–104.
- Machado, M., & Tao, E. (2007). Blackboard vs. Moodle: Comparing user experience of learning management systems. Proceedings: 37th Annual Frontiers in Education Conference -Global Engineering: Knowledge without Borders, Opportunities without Passports. (pp.S4J-7-S4J-12). doi: 10.1109/FIE.2007.4417910
- Miron, E., & Ravid, G. (2015). Facebook Groups as an Academic Teaching Aid: Case Study and Recommendations for Educators. *Educational Technology & Society*, 18 (4), 371–384.
- Madge.C., Meek, J., & Wellens, J., & Hooley, T. (2009). Facebook, social integration and informal learning at university: It's is more for socializing and talking to friends about work than for actually doing work. *Learning, Media and Technology, 34*(2), 141-155.
- Meishar-Tal, H., Kurtz, G., & Pieterse, E. (2012). Facebook Groups as LMS: A Case Study. *International Review of Research in Open and Distance Learning*, 13(4), 33-48.
- MacKenzie, S. B., & Podsakoff, P. M. (2012). Common method bias in marketing: Causes, mechanisms, and procedural remedies. *Journal of Retailing, 88*, 542-555. doi: http://dx.doi.org/10.1016/j.jretai.2012.08.001
- MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. *Multivariate Behavioral Research*, 39(1), 99–128.
- Madhusudhan, M. (2012). Use of social networking sites by research scholars of the University of Delhi : A study. *The International Information & Library Review*, 44, 100–113. doi:10.1016/j.iilr.2012.04.006
- Mahamat-Helou, A., & Ab.Rahim, N. Z. (2011). The Influence of Social Networking Sites On Students' Academic Performance in Malaysia. Proceedings: International Conference on Internet Studies (pp. 1–8).
- Mahamat-Helou, A., Ab. Rahim, Z.Z., & Oye, N.D. (2012). Students' perception on social networking sites influence on academic performance. *International Journal of Social Networking and Virtual Communities*, 1(1), 7-15. ISSN: 2252-8784
- Maillet, E., Mathieu, L., & Sicotte, C. (2014). Modeling factors explaining the acceptance, actual use and satisfaction of nurses using an Electronic Patient

Record in acute care settings: An extension of the UTAUT. International Journal of Medical Informatics, 84(1), 36-47.

- Maleko, M., Nandi, D., Hamilton, M., D'Souza, D., & Harland, J. (2013). Facebook versus Blackboard for supporting the learning of programming in a fully online course: The changing face of computing education. 2013 Learning and Teaching in Computing and Engineering, 83-89. doi: 10.1109/LaTiCE.2013.31
- Malhorta, N.K. (2002). Basic Marketing Research-Applications to Contemporary Issues. Prentice Hall International: New Jersey.
- Malhotra, N.K. (2008). *Essentials of marketing: An applied orientation* (2nd ed.). Australia: Pearson Education
- Mali, A. S. M., & Syed-Hassan, S. S. (2013). Students' acceptance using Facebook as a learning tool: a case study. *International Journal of Asian Social Science*, 3(9), 2019–2025.
- Mandal, D. & McQueen, R. J. (2012). Extending UTAUT to explain social media adoption by microbusinesses. *International Journal of Managing Information Technology (IJMIT)*, 4(4), 1-11.
- Marakarkandy, B. & Yajnik, N. (2013). Reexamining and empirically validating the End User Computing Satisfaction models for satisfaction measurement in the internet banking context. *International Journal of Bank Marketing*, 31(6), 440 – 455. doi: org/10.1108/IJBM-06-2013-0051
- Marchewka, J.T. & Kostiwa, K. (2007). An application of the UTAUT model for understanding student perceptions using course management software. *Communications of the IIMA*, 7(2), 93-104.
- Mason, R., & Rennie, F. (2006). Elearning: The key concepts. New York: Routledge.
- Masrom, M. and Hussein, R. (2008), User Acceptance of Information Technology: Understanding Theories and Model. Venton Publishing, Kuala Lumpur.
- Mayr, S., Erdfelder, E., Buchner, A., & Faul, F. (2007). A short tutorial of GPower Tutorials in Quantitative Methods. *Psychology*, 3(2), 51-59.
- Mazer, J. P., Murphy, R. E., & Simonds, C. S. (2007). I'll see you on Facebook: The effects of computer-mediated teacher self-disclosure on studentmotivation, affective learning, and classroom climate. *Communication Education*, 56(1), 1–17.
- McHaney, R.& Hightower, R. (1999). EUCS test-retest reliability in representational model decision support systems. *Information & Management*, 36 (2), 109-119.
- McHaney, R., Hightower, R., & Person, J. (2002). A validation of the end-user computing satisfaction scale in Taiwan. *Information & Management, 39*(6), 503-511.

- McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web customer satisfaction: An expectation and disconfirmation approach. *Journal of Infromation system research*, 13(3).
- Mirabolghasemi, M., Iahad, N.A. & Ab. Rahim, N.Z. (2016). Social Networking and Education. *Lecture Notes in Social Networks*, 41-49. doi: 10.1007/978-3-319-17716-8_3
- Miyamoto, M., Kudo, S., & Lizuka, K. (2012). Measuring ERP Success: Integrated Model of User Satisfaction and Technology Acceptance: An Empirical Study in Japan. Proceedings: Conference on Business, Management and Governance (ICBMG2012) (pp. 86–91).doi: 10.7763/IPEDR. 2012. V57. 16
- MOE (2011). Dasar e-Pembelajaran Negara: Institusi Pengajian Tinggi. Putrajaya, Malaysia.
- Mohamad-Salleh-Dzulkefli, Z., Mat-Sin, N., & Mohamad, N. (2012). Selection of web 2.0 technologies and teaching practices among lecturers in selected Malaysia higher education institutions. Proceedings: IEEE Colloquium on Humanities, Science and Engineering (CHUSER) (pp. 560–565). doi:10.1109/CHUSER.2012.6504376
- Mohamed,N, Hussin, H, and Hussein, R. (2009). Measuring users satisfaction with Malaysia's electronic government systems. *Electronic Journal of e-Government*, 7(3), 283-294.
- Mohamed, N, Hussin, H, and Hussein, R. (2009). Measuring Users Satisfaction with Malaysia's Electronic Government Systems. Electronic. Journal of e-Government, 7(3), 283 – 294.
- Monidepa, T., Tu, Q., & Ragu-Nathan, T.S. (2010). Impact of Technostress on End-User Satisfaction and Performance. *Journal of management Information Systems*, 27, 303-334.
- Moore, G.C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. *Information Systems Research*, 2(3), 192-222.
- Morley, D. A. (2014). Supporting student nurses in practice with additional online communication tools. *Nurse Education in Practice*, 14(1), 69–75. doi:10.1016/j.nepr.2013.06.005
- Morris, M. G., & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. *Personnel Psychology*, 53(2), 375–403.
- Morris, M. G., Venkatesh, V., & Ackerman, P. L. (2005). Gender and age differences in employee decisions about new technologies: An extension to the

theory of planned behavior. Proceedings: IEEE Transactions on Engineering Management, 52, 69-84.

- Moser, C.A. (1952). Quota Sampling. Journal of the Royal Statistical Society. Series A (General), 115(3), 411-423.
- Muhametjanova, G., Cagiltay, K., Kara, A. G., & Akimaliev, M. (2011). Using online social networking: Graduate students' gender differences in using Facebook. Proceedings: *World Conference on Educational Multimedia*, *Hypermedia and Telecommunications*, 1,821-825.
- Munguatosha, G. M., Muyinda, P. B., & Lubega, J. T. (2011). A social networked learning adoption model for higher education institutions in developing countries. *On the Horizon, 19*(4), 307–320. doi:10.1108/10748121111179439
- Muylee, S., Moenaert, R., & Despontin, M. (2004). The conceptualization and empirical validitation of web site user satisfaction. *Infromation & Management*, 41, 543-560.
- Murphy, J.(2012). LMS teaching versus Community Learning: a call for the latter. Asia Pacific Journal of Marketing and Logistics, 24(5), 826 – 841. doi:http://dx.doi.org/10.1108/13555851211278529
- Nadkarni, A., & Hofmann, S. G. (2012). Why do people use Facebook? Personality and Individual Differences, 52(3), 243-249. doi:10.1016/j.paid.2011.11.007
- Napitupulu, T.A. & Patria, S.H.J (2013). Factors that determine e-electronic medical records users' satisfaction: A case of Indonesia. *Journal of Theoretical and Applied Information Technology*, 58(3), 499-504.
- Malaysian Higher Education (2012). National Education Statistic: Higher Education. Retrieved on 22 November 2014 from http://www.mohe.gov.my/web_statistik/Perangkaan_SPT_2012.pdf
- Ng, E. M. W. & Wong, H. C. H. (2013). Facebook: More than social networking for at risk students. *Procedia-Social and Behavioural Sciences*, 73, 22-29.
- Noh, N. M., Hajar, S., Razak, A., Alias, N., & Siraj, S. (2013). Usage Of Facebook : The Future Impact Of Curriculum Implementation On. *Procedia-Social and Behavioral Sciences*, 103, 1261–1270. doi:10.1016/j.sbspro.2013.10.455
- Nunnally, J. C. (1978). Psychometric Theory. McGraw-Hill, Inc. New York.
- Ogedebe, P.M., & Musa, J.A.E.Y. (2012). A survey on Facebook and Academic Performance in Nigeria Universities. *International Journal of Engineering Research and Application (IJERA), 2*(4), 788-797.
- Oh, H. J., Ozkaya, E., & Larose, R. (2014). Computers in Human Behavior How does online social networking enhance life satisfaction? The relationships among online supportive interaction, affect, perceived social support, sense of

community ,and life satisfaction. Computers in Human Behaviour, 30, 69-78. doi:10.1016/j.chb.2013.07.053

- Ok, S., & Shon, J. (2006, December). The determinant of internet banking usage behaviour in Korea: A comparison of two theoretical models. Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.3786&rep=rep1& type=pdf
- Oliver, R.L., 1980. A cognitive model for the antecedents and consequences of satisfaction. *Journal of Marketing Research*, 17, 460–469.
- Omar, H., Embi, M. A., & Yunus, M. (2012). Learners 'Use of Communication Strategies in an Online Discussion via Facebook. *Procedia-Social and Behavioural Sciences*, 64, 535–544. doi:10.1016/j.sbspro.2012.11.063
- Omar, R. & Haji-Ahmad, J. (2009). Awareness, evaluation and acceptance of elearning among the university's academic staff. Jurnal Pendidikan Malaysia, 34(1), 155-172.
- Ong, C.S., Day, M.Y. & Hsu, W.L. (2009). The measurement of user satisfaction with question answering systems. *Information & Management*, 46, 397-403.
- Oshlyansky, L., Cairns, P., & Thimbleby, H. (2007, September). Validating the Unified Theory of Acceptance and Use of Technology (UTAUT) tool crossculturally. Retrieved from: http://www.bcs.org/upload/pdf/ewic hc07 sppaper21.pdf
- Othman, M. S., Mohamad, N., Yusuf, L. M., Yusof, N., & Suhaimi, S. M. (2012). An Analysis of e-Learning System Features. *Proceedia - Social and Behavioral Sciences*, 56, 454 – 460. doi: 10.1016/j.sbspro.2012.09.676
- Othman, M. S., Mohd- Suhaimi, S., Yusuf, L. M., Yusof, N., & Mohamad, N. (2009). An Analysis of Social Network Categories: Social Learning and Social Friendship. *Procedia - Social and Behavioral Sciences, 56*, 441 – 447. doi: 10.1016/j.sbspro.2012.09.674
- Petrovic, N., Jeremic, V., Cirovic, M., Radojicic, Z., & Milenkovic, N. (2014). Facebook versus Moodle in Practice. American Journal of Distance Education, 28(2), 117-125. doi: 10.1080/08923647.2014.896581
- Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. New York, NY: Simon and Schuster.
- Ponnudurai, P., & Jacob, T.T. (2013). Facebook: A shift from social to academia. Procedia-Social and Behavioral Sciences, 123, 122-129.
- Pai, P., & Arnott, D. C. (2013). User adoption of social networking sites : Eliciting uses and gratifications through a means – end approach. *Computers in Human Behavior*, 29(3), 1039–1053. doi:10.1016/j.chb.2012.06.025

- Pallant, J. F. (2002). SPSS Survival Manual: A step by step guide to data analysis using SPSS for Windows (Version 12) (2nd ed.). Allen & Unwin, Australia: Ligare.
- Pardamean, B., & Susanto, M. (2012). Assessing User Acceptance toward Blog Technology Using the UTAUT Model. *International Journal of Mathematics and Computers in Simulation*, 6(27), 203–212.
- Park, S. (2009). An Analysis of the Technology Acceptance Model in Understanding University Students' Behavioral Intention to Use e-Learning. *Educational Technology & Society*, 12(3), 150–162.
- Pay, B. S., Hosseini, S. H., & Shakouri, H. G. (2013). Why do students use virtual social networks in Iran: A system approach. *Interdisciplinary Description of Complex System*, 11(1), 108–122. doi:10.7906/indecs.11.1.9
- Pempek, T. A., Yermolayeva, Y. A., & Calvert, S. L. (2009). College students' social networking experiences on Facebook. *Journal of Applied Developmental Psychology*, 30, 227–238. doi:10.1016/j.appdev.2008.12.010
- Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. Journal of Operations Management, 30, 467-480. doi: http://dx.doi.org/10.1016/j.jom.2012.06.002
- Perez, T., Araiza, M.D.J., & Doerfer, C. (2013). Using facebook for learnig: A case study on the perception of students in higher education. *Procedia-Social and Behavioural Sciences*, 106, 3259-3267.
- Petrovic, N., Jeremic, V., Cirovic, M., Radojicic, Z., & Milenkovic, N. (2013). Facebook vs. Moodle: What do students really think? Proceedings: International Conference on Information Communication Technologies in Education (ICICTE) (pp. 413-421).
- Philippens, M., Loosveldt, G., Stoop, I., & Billiet, J. (2004). Noncontact rates and interviewer calling strategies in the ESS. *The contact description form in the European Social Survey*, 32-44.
- Pikkarainen, K., Pikkarainen, T., Karjaluoto, H., & Pahnila, S. (2006). The measurement of end-user computing satisfaction of online banking services: empirical evidence from Finland. *International Journal of Bank Marketing*, 24(3), 158–172. doi:10.1108/02652320610659012
- Pilli, O. (2014). LMS vs. SNS: Can social networking sites act as a learning management systems? American International Journal of Contemporary Research, 4(5), 90-97.
- Pituch, K.A. & Lee, Y.K. (2011). The influence of system characteristics on elearning use. Computers & Education, 47, 222-244, doi: 10.1016/j.compedu.2004.10.007

- Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. *Journal of Management*, 12,531-544. doi: 10.1177/014920638601200408
- Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. *Annual review of psychology*, 63, 539-569.
- Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. *Journal of Applied Psychology*, 88, 879-903.
- Preacher, K.J., & Hayes, A.F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. *Behaviour Research Methods*, *Instruments & Computer*, 36(4), 717-731.
- Preacher, K.J., & Hayes, A.F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator variable. *Behaviour Research Methods*, 48(3), 879-891.
- Pusnik, M., Sumak, B., Heričko, M. (2010, 10-16 Feb). Investigation of Virtual Learning Environment in the Context of Web 2.0. Proceedings: Second International Conference on Mobile, Hybrid, and On-Line Learning. (pp. 1-6) doi: 10.1109/eLmL.2010.12
- Qi, M., & Edgar-Nevill, D. (2011). Social networking searching and privacy issues. Information Security Technical Report, 16, 74-78.
- Raman, A., Mohd-Sani, R., & Kaur, P. (2014). Facebook as a collaborative and communication tool: A study of secondary school students in Malaysia. *Procedia-Social and Behavioural Sciences*, 155, 141-146.
- Ramayah, T., Sulaiman, M., Jantan, M., Ng, F.C. (2004).organizational learning, Proprietary Technology and Manufacturing Performance: A Glimpse from the Malaysian Manufacturing Firms. *International journal of innovation and incubation 1*(1), 63-90
- Rauniar, R., Rawski, G., Johnson, B., & Yang, J. (2013). Social Media User Satisfaction—Theory Development and Research Findings. *Journal of Internet Commerce*, 12(2), 195-224. doi: 10.1080/15332861.2013.817864
- Rauniar, R., Rawski, G., Crumbly, G., & Simms, J. (2009). C2C online auction website performance: Buyer's perspective. *Journal of Electronic Research*, 10 (2), 56–75.
- Renes, S., & Strange, A. T. (2011). Using technology to enhance higher education. Innovative Higher Education, 36 (3), 203-213.

- Ringle, C.M., Wende, S., & Will, S. (2005). SmartPLS 2.0 beta: University of Hamburg, Hamburg. Retrieved from http://www.smartpls.de/forum/index.php.
- Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor's comments: a critical look at the use of PLS-SEM in MIS quarterly. *MIS Quarterly*, 36(1), iii-xiv.
- Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do psychosocial and study skill factors predict college outcomes? A metaanalysis. *Psychological Bulletin*, 130(2), 261–288.
- Roblyer, M.D., McDaniel, M., Webb, M., Herman, J., Witty, J.V. (2010). Findings on Facebook in higher education: A comparison of college faculty and students uses and perceptions of social networking sites. *Internet and Higher Education* 13, 134–140.
- Roca, J.C., Chiu, C.M. & Martinez, F.J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. *International Journal of Human-Computer Studies*, 64, 683-696.
- Rosenberg, M. J. (2001). E-learning: Strategies for delivering knowledge in the digital age. NY: McGraw Hill.
- Rovai, A. (2002). Sense of community, perceived cognitive learning, and persistence in asynchronous learning networks. *The Internet and Higher Education*, 5(4), 319–332.
- Rozac, J., Pogaenik, M., Kos, A., Buendia, F., & Ballester, J.V. (2012). Integration of learning management systems with social networking platforms: E-learning in a Facebook supported environment. Proceedings: *The Fourth International Conference on Mobile, Hybrid, and On-line Learning* (pp. 100-105).
- Russell, M. L., Moralejo, D. G., and Burgess, E. D. (2000). Paying research subjects: Participants' perspectives. *Journal of Medical Ethics*, 26(2), 126-130.
- Soumplis, A., Koulocheri, E., Kostaras, N., Karousos, N., & Xenos, M. (2011). Learning Management Systems and Learning 2.0. International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 6 (4), 1-18.
- Saade, R. & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the model. *Information and Technology Management*, 42(2), 317-327.
- Saba, T.(2012). Implications of e-learning systems and self-efficiency on students' outcomes: A model approach. *Computing and Information Science*, 2(6), 1-11.
- Salim, B. (2012). An Application of UTAUT Model for Acceptance of Social Media in Egypt: A Statistical Study. *International Journal of Information Science*, 2(6), 92–105. doi:10.5923/j.ijis.20120206.05

- Salim, B. (2012). An application of UTAUT model for acceptance of social media in Egypt: A statistical study. *International Journal of Information Science*, 2(6), 92-105.
- Sattler, H., Völckner, F., Riediger, C., & Ringle, C. M. (2010). The Impact of Brand Extension Success Factors on Brand Extension Price Premium. International Journal of Research in Marketing, 27(4), 319-328.
- Saunders, M., Lewis, P., & Thornhill, A. (2009). *Research methods for business students (5th ed.)*. New Jersey: Prentice Hall.
- Saw, G., Abbott, W., Donaghey, J., & McDonald, C. (2013). Social media for international students: It's not all about Facebook. *Library Management*, 34(3), 156-174.
- Schaper, L. K. and Pervan, G. P. (2007). Ict and ots: A model of information and communication technology acceptance and utilization by occupational therapists. *International Journal of Medical Informatics*, 76, 212–S221
- Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: investigating subjective norm and moderation effects. *Information & Management*, 44, 90–103.
- Schroeder, J., & Greenbowe, T. J. (2009). The chemistry of Facebook: Using social networking to create an online community for the organic chemistry laboratory. *Innovate: Journal of Online Education*, 5(4), 1-7.
- Sclater, N. (2008). Web 2. 0, Personal Learning Environments, and the Future of Learning Management Systems. EDUCAUSE Center for Applied Research, (13), 1-13.
- Schumacker, R. E., & Lomax, R. G. (2010). A Beginner's Guide to Structural Equation Modeling. New York: Routledge.
- Sedana, I.G.N. & Wijaya, St. W. (2010). UTAUT Model for understanding learning mananegement system. *Internetworking Indonesia Journal*, 2(2), 27-32.
- Seddon, P. (1997). A respecification and extension of the DeLone and McLean's model of IS success. *Information Systems Research*, 8(3), 240-253.
- Sekaran, U. and Bougie, R. (2009). Research methods for business: A skill- building approaches (5th ed.). New York: John Wiley & Sons, Inc.
- Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D., & Mermelstein, R. J. (2012). A practical guide to calculating Cohen's f², a measure of local effect size, from PROC MIXED. Frontiers in psychology, 3, 111-116. doi: 10.3389/fpsyg.2012.00111

- Sharifah Sofiah, S.Z., Omar, S.Z. Bolong, J., Osman, M.N. (2011). Facebook addiction among female university students. *Revista De Administratie Publica Si Politici Sociale*, 2 (7), 95-109.
- Sharma, A. K., Ganpati, A., & Kumar, D. (2013). Effect of Moderators on Determinants: A Case Study of Technology Acceptance Models. *IJRCCT*, 2(5), 254-260.
- Sharma, S.J., Joshi, A., & Sharma, H. (2015). A multi-analytical approach to predict the Facebook usage in higher education. *Computers in Human Behaviour, 55*, 340-353.
- Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The Theory of Reasoned Action: A Meta-Analysis of Past Research with Recommendations for Modifications and Future Research. *Journal of Consumer Research*, 15(3), 325-343.
- Shi, N., Lee. M.K.O., Cheung, C.M.K. & Chen, H. (2010). The continuance of online social networks: How to keep people using Facebook? Proceedings: 43rd Hawaii International Conference on System Sciences.(pp.1-10).
- Shittu, A. T., Basha, K. M., AbdulRahman, N. S. N., & Tunku-Ahmad, T. B. (2011). Investigating students' attitude and intention to use social software in higher institution of learning in Malaysia. *Multicultural Education & Technology Journal*, 5(3), 194–208. doi:10.1108/17504971111166929
- Sibona, C., & Choi, J.H. (2012). Factors affecting end-user satisfaction on Facebook. Proceedings: Sixth International AAAI Conference on Weblogs and Social Media. (pp.575-578)
- Sim, T.Y., Naidu, D., & Apparasamy, D. (2014). Improving students' engagement through social media: A case study of a private university in Malaysia using Facebook. *International Journal of e-Business, e-Management and e-Learning,* 4(6), 396-409.
- Souleles, N. (2012). Perceptions of undergraduate Graphic Design students on the educational potential of Facebook. *Research in Learning Technology*, 20, 241-252.
- Soumplis, A., Koulocheri, E., Kostaras, N., Karousos, N., & Xenos, M. (2011). Learning Management Systems and Learning 2 .0. International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 6, (4) 1-18.
- Socialbakers (2014). Statistics of Facebook Users in Malaysia. Retrieved from http://www.socialbakers.com/statistics/facebook/pages/total/malaysia/
- Steinfield, C., Ellison, N. B., & Lampe, C. (2008). Social capital, self-esteem, and use of online social network sites: A longitudinal analysis. *Journal of Applied Developmental Psychology*, 29, 434–445. doi:10.1016/j.appdev.2008.07.002

- Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 36, 111-147. doi: 10.2307/2984809
- Straub, E. T. (2009). Understanding technology adoption: Theory and future directions for informal learning. American Educational Research Association, 79(2), 625-649.
- Subramaniam, B. (2014). On the social media circuit. Retrieved on December, 17, 2014 from http://www.thestar.com.my/News/Education/2014/01/05/On-the-social-media-circuit/
- Suki, N.M, Ramayah, T., & Ly, K.K. (2012). Empirical investigation on factors influencing the behavioural to use Facebook. *Univ Access Inf. Soc, 11,* 223-231.
- Sumak, B., Polancic, G., & Hericko, M. (2010). An empirical study of virtual learning environment adoption using UTAUT. Proceedings: Second International Conference on Mobile, Hybrid and On-Line learning, IEEE Computer Society. (pp.17-22)
- Sun, H. (2003). Toward a deeper understanding of technology acceptance model: An integrative analysis of TAM. Proceedings: 9th American Conference on Information Systems. (pp. 2255-2289).
- Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. Int. J. Human-Computer Studies, 64, 53-78.
- Sun, W., Chou, C.-P., Stacy, A., Ma, H., Unger, J., & Gallaher, P. (2007). SAS and SPSS macros to calculate standardized Cronbach's alpha using the upper bound of the phi coefficient for dichotomous items. *Behavior Research Methods*, 39(1), 71-81. doi: 10.3758/bf03192845
- Spector, P. E. (2006). Method Variance in Organizational Research: Truth or Urban Legend? Organizational Research Methods, 9, 221-232.
- Steinfield, C., Ellison, N. B., & Lampe, C. (2008). Social capital, self-esteem, and use of online social network sites: A longitudinal analysis. *Journal of Applied Developmental Psychology*, 29, 434–445. doi:10.1016/j.appdev.2008.07.002
- Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston, MA: Allyn & Bacon/Pearson Education.
- Tu, Chih-Hsiung (2002). The relationship between social presence and online privacy. *The Internet and Higher Education*, 5, 293-318.
- Tamir, D.,Komogortsev, O.V., Mueller, C.J., (2008). An effort and time based measure of usability. In: 6th International Workshop on Software Quality, ACM, Leipzig, 47–52.

- Tan, P. J. B. (2013). Applying the UTAUT to understand factors affecting the use of english e-Learning website. Sage Open, 1-12.
- Taylor, S., & Todd, P. (1995). Understanding information technology usage: A test of competing models. *Information Systems Research*, 6(2), 144-176.
- Teo, T. (2011). Factors influencing teachers' intention to use technology: Model development and test. *Computers and Education*, 57, 2432-2440.
- Tess, P.A. (2013). The role of social media in higher education classes (real and virtual)-A literature review. *Computers in Human Behavior, 29,* 60-68.
- Thang, S.M., Lee, K.W., Murugaiah, P., Mohd-Jaafar, N., Tan, C.K., & Ahmad-Bukhari, N. I. (2016). ICT Tools Pattern of Use among Malaysian ESL undergraduates. *GEMA Online Journal of Language Studies*, 16(1), 49-65.
- Thomas, T.D., Singh, L. & Gaffar, K. (2013). The utility of the UTAUT model in explaining mobile learning adoption in higher education in Guyana. International Journal of Education and Development using Information and Communication Technology (IJEDICT), 9(3), 71-85.
- Torkzadeh, G., & Doll, W. J. (1991). Test-retest reliability of the end-user computing satisfaction instrument. *Decision Sciences*, 22(3), 26-37.
- Traud, A. L., Mucha, P. J., & Porter, M. A. (2012). Social structure of Facebook networks. *Physica A*, 391(16), 4165–4180. doi:10.1016/j.physa.2011.12.021
- Tuckman Bruce W. (1985). Evaluating Instructional Program. (2nd ed.) Boston: Allyn and Bacon.
- Tulaboev, A. (2013). Blended learning approach with web 2.0 tools. Proceedings: 3rd International Conference on Research and Innovation in Information Systems (ICRIIS'13), 118-122.
- Tulaboev, A., & Oxley, A. (2012, June 12-14). A case study on using Web 2.0 social networking tools in higher education. Proceedings: Computer & Information Science (ICCIS) 2012 International Conference, 1, 84-88 .doi: 10.1109/ICCISci.2012.6297217
- Usluel, Y. K., & Mazman, S. G. (2009). Adoption of Web 2 . 0 tools in distance education. Proceedings: World Conference on Educational Sciences, 1, 818– 823. doi:10.1016/j.sbspro.2009.01.146
- Usoro, A., Echeng, R., & Majewski, G. (2013). A model of acceptance of web 2.0 in learning in higher education: a case study of two cultures. *GSTF Journal on Computing (JoC), 3*(3). doi:10.7603/s40601-013-0024-y
- Valova, I. (2015). Facebook or Learning Management System. Proceedings: International Conference on Learning. (pp.237-242).

- Vallerend, R.J., Deshaies, P., Cuerrier, J. P., Pelletier, L.G., & Mongeau, C. (1992). Ajzen and Fishbein's Theory of Reasoned Action as Applied to Moral Behaviour: A Confirmatory Analysis. *Journal of Personality and Social Psychology*, 62(1), 98-109.
- Verardi, V., & Croux, C. (2008). *Robust Regression in Stata*. Retrieved from: http://ssrn.com/abstract=1369144 or http://dx.doi.org/10.2139/ssrn.1369144
- Vagias, W.M. (2006). *Likert-type scale response anchors*. Retrieved from: https://www.clemson.edu/centers-institutes/tourism/documents/samplescales.pdf
- Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. *Management Science*, 46(2), 186-204.
- Venkatesh, V., Morris, M, G., Davis, G. B., & Davis, F. D.(2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly*, 27, 425-478.
- Venkatesh, V., Sykes, T.A. & Xiaojun, Z. (2011). Just what the doctor ordered: a revised UTAUT for EMR system adoption and use by doctors. Proceedings: 44th Hawaii International Conference on System Sciences (HICSS). (pp. 1-10).
- Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS Path Modeling: From Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. In: Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). Handbook of partial least squares: Concepts, methods and applications in marketing and related fields (47-82). Berlin: Springer.
- Virkus, S. (2008). Use of web 2.0 technologies in LIS education: experiences at Tallinn University, Estonia. *Electronic Library and Information Systems*, 42(3), 262-274.
- Viswanathan, M., & Kayande, U. (2012). Commentary on common method bias in marketing: Causes, mechanisms, and procedural remedies. *Journal of Retailing*, 88, 556-562. doi: http://dx.doi.org/10.1016/j.jretai.2012.10.002
- Vovides, Y., Sanchezalonso, S., Mitropoulou, V., & Nickmans, G. (2007). The use of e-learning course management systems to support learning strategies and to improve self-regulated learning. *Educational Research Review, 2*, 64-74.
- Walsh, S., & White, K. (2007). Me, my Mobile, and I: The role of self and prototypical identity influences in the prediction of mobile phone behavior. *Journal of Applied Social Psychology*, 37, 2405–2434.
- Wang, H. C., & Chiu, Y. F. (2011). Assessing e-learning 2.0 system success. Computers & Education, 57(2), 1790–1800. doi:10.1016/j.compedu.2011.03.009

- Wang, Q., Woo, H.L., Quek, C.L., Yang, Y., & Liu, M. (2012). Using the Facebook group as a learning management system: An exploratory study. *Briish Journal* of Educational Technology, 43(3), 428-438. doi: 10.111/j.1467-8535.2011.01195.x.
- Wang, Y.S., Tang, T.I., & Tang, J.E. (2001). An instrument for measuring customer satisfaction toward web sites that market digital products and services. *Journal* of Electronic Commerce Research, 2(3), 89-102.
- Warshaw, P. R., & Davis, F. D. (1985). Disentangling behavioral intention and behavioral expectation. *Journal of Experimental Social Psychology*, 21, 213-228.
- Weiqin, E.L., Campbell, M., Kimpton, M., Wozencroft, K., & Orel, A. (2016). Journal of Educational Computing Research, 1-22. doi: 10.1177/0735633116631886 jec.sagepub.com
- Wei-Tsong, W., & Chun-Chieh, W. (2009). An empirical study of instructor adoption of web based learning systems. *Computers & Education*, 53, 761-774.
- Wen, B. L. (2008). Factors influencing online and post purchase behaviour on construction of relevant models. *Journals of International Consumer Marketing*, 20 (3-4), 23-38.
- Wesner, M.S. & Miller, T. (2008), Boomers and Millennials have much in common. Organizational Development, 26(3), 89-96.
- Wilson, J. (2010). Essentials of business research A guide to doing your research project. New Delhi: SAGE Publications India Pvt. Ltd.
- Wise, L. Z., Skues, J. & Williams, B. (2011). Facebook in higher education promotes social but not academic engagement: In Changing demands, changing directions. Retrieved from:http://www.ascilite.org.au/conferences/hobart11/downloads/papers/Wisefull.pdf
- Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. *Information Systems Research*, 16 (1), 85-102. doi: 10.1287/isre.1050.0042.
- Wolski, S., & Jackson, S. (1999, February-March). Technological diffusion within educational institutions: applying the technology acceptance model. Proceedings: The Society for Information Technology & Teacher Education International Conference. (pp.3-7).
- Wright, K. B. (2005). Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. *Journal of Computer-Mediated Communication*, 10(3). doi: 10.1111/j.1083-6101.2005.tb00259.x

- Wu, M.Y., Yu, P.Y., & Weng, Y.C. (2012). A study on user behaviour for I pass by UTAUT using Taiwan's MRT as an example. Asia Pacific Management Review, 17(1), 91-111.
- Wu, Y.L., Tao, Y.H., & Yang, P.C. (2007). Using UTAUT to explore the behavior of 3G mobile communication users. Proceedings: IEEE International Conference on Industrial Engineering and Engineering Management, 199-203.doi: 10.1109/IEEM.2007.4419179
- Xu, G. (2011). Social networking sites, Web 2.0 technologies and e-learning. (Master's thesis, Unitec Institute of Technology). Retrieved from http://unitec.researchbank.ac.nz/bitstream/handle/10652/1864/Guorong%20Xu %20MComp.pdf?sequence=1
- Yahaya, N., Yusof, S. P., & Abdul-Halim, N. D. (2013). Students' participation in social networking writing tasks. *Procedia -Social and Behavioral Sciences*, 2-5.
- Yang, H. H. (2014). New World, New Learning: Trends and Issues of E-Learning. *Procedia - Social and Behavioral Sciences*, 77, 429–442. doi:10.1016/j.sbspro.2013.03.098
- Yoo, S. J., & Huang, W. D. (2011). Comparison of Web 2.0 Technology Acceptance Level based on Cultural Differences. *Educational Technology & Society*, 14(4), 241–252.
- Zakaria, M. H., Watson, J., & Edwards, S. L. (2010). Investigating the use of Web 2.0 technology by Malaysian students. *Multicultural Education & Technology Journal*, 4(1), 17–29. doi:10.1108/17504971011034700
- Zorica, M. B., Biskupic, I.O., Ivanjko, T., & Spirance, S. (2011). Students and privacy in the networked environment. Proceedings: *MIPRO*, 34th International Convention. (pp.1090 1094).
- Zanamwe, N., Rupere, T., & Kufandirimbwa, O. (2013). Use of Social Networking Technologies in Higher Education in Zimbabwe: A learners ' perspective . International Journal of Computer and Information Technology, 2(1), 8–18.
- Zhang, L., Zhang, L. Qian, G., & Zhang, L. (2009). Measuring user satisfaction of networked software based on user behaviour. Proceedings: *IEEE Computer Society World Congress on Software Engineering*. (pp.43-48)
- Zikmund, W. G. (2003). Business research methods. (7th ed.) . Mason: Thomson South-Western.
- Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2009). Business research methods. (8th ed.). USA: South-Western College Publishing.

Appendix A

Dear Respondent,

This questionnaire is designed to evaluate behavioural intention to use Facebook e-Learning tool among the Malaysian Public Universities' students. The information provided will help the researcher to better understand the determinants of factors that influence the students' behaviour intention towards the use of Facebook as e-Learning tool. Because you are the one who can give me the correct picture of how you experience the use of Facebook as e-Learning tool, I importune you to give honest and frank answer. 10 to 15 minutes are expected to be necessary to complete all questions.

Your response will be kept strictly confidential. Only people concerned at the Universiti Utara Malaysia will have access to the information you give.

Thank you very much for your spending time and kind cooperation.

Sincerely,

NUR FATHIAH BINTI MOHD BASHRI

Master Student (814178) School of Technology Management and Logistics Othman Yeop Abdullah Graduate School of Business

PART ONE: DEMOGRAPHIC INFO

Please kindly write or mark your responses (\checkmark) on questions that are relevant to you. Further instructions will be given to you at all relevant sections. There will be no RIGHT or WRONG answers.

A. GENDER

Male		Female	
B. AGE			
17 below		30-33	
18-21		34-37	
22-25		38-41	
26-29		42 above	
C. YEAR OF STUDY			
First Year	हे।	Fourth Year	
Second Year		Final Year	
Third Year			
	Univers	siti Utara M	alaysia
D. NATIONALITY			
Malaysian			
International. Please Sp	ecify:		
E. ETHNICITY			
Malay	Indian		
Chinese	Others. Pl	ease Specify:	
F. FIELD			
Applied Sciences		Pure Sciences	
Applied Arts		Engineering	
Pure Arts			

G. Which of the following Social Networking Sites that you own besides Facebook? You may mark your responses (\checkmark) more than one option.

Twitter	Weibo	
Instagram	MySpace	
Blog	Friendster	
Google Plus+	Youtube	
LinkedIn	Tagged	
Tumblr	Others	
Pinterest		

H. How many hours you spend on Facebook a day?

< 1 hour /day 1-3 hours/day 4-6 hours/day	7-9 hours/day
I. Experience of using I Less than 1 year	Facebook in years 5-6 years
1-2 years	7-8 years
3-4 years	9-10 years
J. No of Facebook frier	ıds
Less than 200	2601-3000
201-600	2901-3300
601-1000	3001-3400
1001-1400	3401-3800
1401-1800	3801-4200
1801-2200	4201-4600
2201-2600	4601-5000

K. The following question is about the reason of using Facebook. Please circle the appropriate number which indicates extent to which you disagree or agree with the following statement.

	Strongly Disagree	Disagree	Neither Agree or Disagree	Agree	St	ron	gly	Agı	·ee
	1	2	3	4			5		
1.	I like to c instructors)	that with the co by using Faceboo	ommunities (Fam ok.	ily, peers and	1	2	3	4	5
2.	Facebook i people.	s a good Social	Networking Site	e to meet new	1	2	3	4	5
3.	Facebook h	elps me to keep u	p with the friends	' activities	1	2	3	4	5
4.	I use Facel family.	book as the med	lium to stay in t	ouch with the	1	2	3	4	5
5.	I use Faceb	ook to share infor	mation with the c	ommunities.	1	2	3	4	5
6.	I use Faceb	ook to find out in	formation		1	2	3	4	5
7.	Facebook entertainme	is a good S ent.	Social Networki	ng Site for	1	2	3	4	5
8.	I use Faceb	ook to post the ph	otos/ videos		1	2	3	4	5
9.	I always use	e Facebook for ed	lucation purpose		1	2	3	4	5
10.	I can search	for the job on Fa	cebook		1	2	3	4	5

PART TWO:

Second part of this questionnaire is about to evaluate the students' perception towards the features on Facebook that attracts the students to use Facebook besides the opinion either Learning Management System should have this features or not. Please circle the appropriate number which indicates the extent to which you disagree or agree with the applications on Facebook as e-Learning using the following scale.

2	Strongly Disagree	Disagree	Neither Agree or Disagree	Agree	St	ron	gly	Agı	·ee
	1	2	3	4			5		
Nev	vs Feed								
1.	I like Faceb	ook News Feed			1	2	3	4	5
2.	I like if Fac	ebook News Feed	l has in Learning	Zone	1	2	3	4	5
Stat	us Update								
3.	I like Faceb	ook Status Updat	e		1	2	3	4	5
4.	I like if Fac	ebook Status Upd	late has in Learnin	ng Zone	1	2	3	4	5
Con	nment								
5.	I like Faceb	ook Comment			1	2	3	4	5
6.	I like if Fac	ebook Comment	has in Learning Z	one	1	2	3	4	5
Wal	1								
7.	I like Faceb	ook Wall			1	2	3	4	5
8.	I like if Fac	ebook Wall has in	n Learning Zone		1	2	3	4	5

Not	ification			-		
9.	I like Facebook Notification	1	2	3	4	5
10.	I like if Facebook Notification has in Learning Zone	1	2	3	4	5
Pag	e					
11.	I like Facebook Page	1	2	3	4	5
12.	I like if Facebook Page has in Learning Zone	1	2	3	4	5
Cha	nt/Instant Message					
13.	I like Facebook Chat/Message	1	2	3	4	5
14.	I like if Facebook Chat/Message has in Learning Zone	1	2	3	4	5
Frie	end List					
15.	I like Facebook Friend List	1	2	3	4	5
16.	I like if Facebook Friend List has in Learning Zone	1	2	3	4	5
Eve	nts					
17.	I like Facebook events	1	2	3	4	5
18.	I like if Facebook events has in Learning Zone	1	2	3	4	5
Atta	ach Files					
19.	I like Facebook Attach Files	1	2	3	4	5
20.	I like if Facebook Attach Files has in Learning Zone	1	2	3	4	5
Gro	up					
21.	I like Facebook Group	1	2	3	4	5
22.	I like if Facebook group has in Learning Zone	1	2	3	4	5
Use	r Profile/ Personal Timeline application					
23.	I like Facebook User Profile/ Personal Timeline	1	2	3	4	5
24.	I like if Facebook User Profile/Personal Timeline has in	1	2	3	4	5
	Learning Zone					
Pho	tos and Video Uploads/ Sharing					
25.	I like Facebook Photos and Video Uploads/ Sharing	1	2	3	4	5
26.	I like if Facebook Photos and Video Uploads/ Sharing has in	1	2	3	4	5
	Learning Zone					

PART THREE:

The following statements refer to **Performance Expectancy**, **Effort Expectancy**, **Social Influence**, **Facilitating Condition** and **Behavioural Intention** in using Facebook as e-Learning tool. Please follow the numbers which denote the following answers to circle one answer for each question.

2 1	Strongly Disagree	Disagree	Neither Agree or	Agree	St	ron	gly	Agr	·ee
			Disagree						
	1	2	3	4			5		
1.	I find Faceb	ook useful in my	virtual learning	process.	1	2	3	4	5
2.	Facebook a	is e-Learning too	ol increase the di	scussion about	1	2	3	4	5
	my study ar	mong me and my	peers/ lecturers.						
3.	Using Face	book as e-Learni	ng tool increase	my knowledge	1	2	3	4	5
	and informa	ation sharing amo	ng my peers and	lecturers.					
4.	The use of	f Facebook as e	e-Learning tool	enables me to	1	2	3	4	5
	accomplish	my tasks more of	uickly (e.g. send	messages and					
	assignments	s to my friends/le	cturers via Facebo	ook)					

5.	Using Facebook as e-Learning tool increases my academic	1	2	3	4	5
	performance.					-
6.	The use of Facebook as e-Learning tool quickened	1	2	3	4	5
	acquisition of knowledge and information.					
7.	Using Facebook as e-learning tool increase my productivity	1	2	3	4	5
	as the students.					
8.	In the scope of Facebook as e-learning tool, my interaction	1	2	3	4	5
	with this site is clear and understandable				ļ	
9.	It is simple for me to navigate Facebook as e-Learning tool	1	2	3	4	5
10.	The features on Facebook (e.g. groups, pages, events,	1	2	3	4	5
	messages) are very easy to be used as e-Learning tool.				ļ	
11.	It would easy for me to become skilful at using Facebook.	1	2	3	4	5
12.	I find it easy to get Facebook to do what I want it to do.	1	2	3	4	5
13.	The use of Facebook as e-Learning tool does not require a	1	2	3	4	5
	lot of mental effort.					
14.	My peers/ lecturers who are important to me think that I	1	2	3	4	5
	should use Facebook as e-Learning tool.					
15.	My peers/ lecturers who are important to me think that using	1	2	3	4	5
	Facebook as e-Learning tool is a good idea.					
16.	My peers/ lecturers who are important to me think that I	1	2	3	4	5
	should try out Facebook as e-Learning tool.					
17.	My peers/ lecturers who influence my decisions think that I	1	2	3	4	5
	should use Facebook as e-Learning tool.		4			
18.	My lecturers/ peers have been supportive in the use of	1	2	3	4	5
	Facebook as e-Learning tool					
19.	I have the resources necessary to use Facebook as e-	1	2	3	4	5
	Learning tool.			_		-
20.	I have the necessary knowledge required to make use of	ц,	2	3	4	5
	Facebook as e-Learning tool.	1				_
21.	Specialized instruction on now to use Facebook is available	I	2	3	4	5
	to me.	1	2	2	4	5
22.	My peers/lecturers are available for assistance with Eacaback difficulties	I	2	3	4	פ
22	In the score of using Facebook as a learning tool, this site	1	2	2	1	5
23.	would be entirely within my control	1	2	5	-	
24	I have the required ability to make use of Facebook as e-	1	2	3	4	5
	Learning tool.	î	-			
25.	I intend to use Facebook as e-Learning tool for next	1	2	3	4	5
	semester.	_	-	-	-	
26.	I plan to continue using Facebook as e-Learning tool.	1	2	3	4	5
27.	I will tell others about the positive aspects of using	1	2	3	4	5
	Facebook as e-Learning tool.					
28.	I will prefer to use Facebook compared others SNS as e-	1	2	3	4	5
	Learning tool.					
29.	I have the intention to use Eachack for wintral learning of	1	2	2	4	5
	I have the intention to use Facebook for virtual learning as	I	4	3	-	

PART FOUR:

The following statements refer to End User Computing Satisfaction of using Facebook **Content, Accuracy, Format** and **Timeliness** as e-Learning tool. Please follow the numbers which denote the following answers to circle one answer for each question.

	Strongly Disagree	Disagree	Neither Agree or	Agree	S	tror	gly	Ag	ree
			Disagree						
	1	2	3	4			_ 5		
1.	Facebook in	nformation (text,	image, video)cont	tent fits my	1	2	3	4	5
	virtual learn	ning needs							
2.	I can easily	understand the le	arning informatio	n posted by	1	2	3	4	5
	my peers an	nd lecturers in Fac	cebook.						
3.	Facebook ir	nformation conter	it meets my needs	s	1	2	3	4	5
4.	Facebook p	rovides sufficient	information.		1	2	3	4	5
5.	Facebook is	s free from error			1	2	3	4	5
6.	I am satisfie	ed with the accura	cy of Facebook.		1	2	3	4	5
7.	Facebook is	reliable			1	2	3	4	5
8.	I do not obt	ain any errors in t	the information w	hen using	1	2	3	4	5
	Facebook as	s e-Learning tool							
9.	Facebook is	well organized			1	2	3	4	5
10.	Facebook fo	ormat is easy to re	ead		1	2	3	4	5
11.	The organiz	ation of Facebool	k information is v	ery clear	1	2	3	4	5
12.	The information	ation on the Facel	book is presented	in useful	1	2	3	4	5
	format								
13.	The sequence	ce of Facebook e	screen is very clea	arara Mal	1	2	3	4	5
14.	Facebook w	ebsite homepage	loads quickly		1	2	3	4	5
15.	Postings and	d other informatio	on on Facebook re	fresh quickly	1	2	3	4	5
16.	The search e	engine of Faceboo	ok website genera	tes result	1	2	3	4	5
	quickly		-						
17.	Facebook pr	rovides up-to-date	e information of n	ny friends'	1	2	3	4	5
	and lecturer	s' postings.							
18.	Facebook is	user friendly.			1	2	3	4	5

I sincerely appreciate your time and cooperation. Please check and make sure that you have not skipped any questions purposely. Thank you!

Appendix B

Reliability Test before Conducting EFA Performance Expectancy

Reliability Statistics

Cronbach's	
Alpha	N of Items
.802	7

Social Influence

Reliability Statistics

Cronbach's	
Alpha	N of Items
.754	5

Behavioural Intention

Reliability Statistics

Cronbach's	
Alpha	N of Items
.748	5

Content

Cronbach's	
Alpha	N of Items
.768	4

Format

Reliability Statistics

Cronbach's	
Alpha	N of Items
.766	5

Effort Expectancy

Reliability Statistics

Cronbach's	
Alpha	N of Items
.838	6

Facilitating Condition

Reliability Statistics

Cronbach's	
Alpha	N of Items
.778	6

All Satisfaction

Reliability Statistics

Cronbach's	
Alpha	N of Items
.911	17

Accuracy

Reliability Statistics Reliability Statistics

Cronbach's	
Alpha	N of Items
.741	4

Timeliness Reliability Statistics

15	[
Cronbach's	
Alpha	N of Items
722	4

Appendix C Missing Value Output

			Result Varial	Dies		
			Case Number of	of Non-Missing		
		N of Replaced	Valu	jes		Creating
	Result Variable	Missing Values	First	Last	N of Valid Cases	Function
1	IPE01_1	1	1	457	457	SMEAN(IPE01)
2	IPE07_1	1	1	457	457	SMEAN(IPE07)
3	IEE01_1	1	1	457	457	SMEAN(IEE01)
4	IEE05_1	1	1	457	457	SMEAN(IEE05)
5	ISI03_1	1	1	457	457	SMEAN(ISI03)
6	IAY02_1	1	1	457	457	SMEAN(IAY02)
7	IAY04_1	1	1	457	457	SMEAN(IAY04)
8	IFT02_1	1	1	457	457	SMEAN(IFT02)
9	IFT03_1	1	1	457	457	SMEAN(IFT03)
10	ITS03_1	1	1	457	457	SMEAN(ITS03)

Appendix D

Mahalanobis Distance

Cases	Mahal.Distance
1	26.95512
2	8.54406
3	33.30811
4	27.9017
5	29.70204
6	72.46385
7	35.02601
9	38.55873
10	76.73522
12	70.22857
14	26.15476
15	75.63104
16	56.30299
17	47.8406
18	30.85617
19	25.09543
20	31.19989
21	38.23376
22	55.16444
23	28.01938
24	16.80153
25	E4 59406

30	57.8346
31	79.97387
32	41.71257
33	24.59123
34	41.62152
38	29.74376
39	30.55208
40	34.52075
41	40.78881
42	26.09566
43	51.77016
44	45.35453
45	36.89733
46	32.79003
47	40.36887
49	34.17794
50	32.23482
51	16.36616
52	54.53009
53	48.47058
54	54.5107
55	53.89696
56	28.4012
57	77.34091
58	45.7963
59	54.82442
60	68.86691
61	44.80696
62	53.0026
65	19.3378
66	6.18131
67	10.51151
68	64.35235
69	47.3266
70	77.2923
71	24.8755
72	39.96835

27

28 29 33.09905

46.85165 56.46689

54.523

<mark>a</mark> Malaysia

25.72068

65.19234 35.80659

34.51323

73

74

75

	1			
77	39.91811			
78	67.28501			
79	32.3551			
80	24.41253			
81	29.31227			
82	27.07688			
83	60.18279			
84	63.11338			
86	76.95243			
87	42.05428			
88	32.04299			
90	56.39596			
91	73.92002			
92	38.45126			
93	79.72881			
94	31.87287			
95	29.36659			
96	61.85744			
97	38.13526			
98	33.27968			
99	22 70202			
100	29 11134			
101	29.82199			
102	37 61361			
102	15 648			
104	28.01556			
104	60.27992			
100	50.02114			
100	09.92114			
100	28.47034			
109	48.36501			
110	40.29727			
111	48.17199			
112	34.22823			
113	34.1/1			
114	36.92403			
115	50.63865			
116	34.65564			
117	37.62726			
118	25.11779			
119	46.93975			
120	33.79284			
121	33.20928			
122	21.36941			
123	18.18469			
124	37.22087			
	254			

0	a N	1a	ys	ia

	1	
125	45.12343	
126	36.59015	
127	51.69669	
129	28.40333	
130	30.02876	
131	31.09973	
132	36.17844	
133	61.00564	
134	76.11336	
136	28.82313	
137	58.08964	
138	21.19889	
139	39.92551	1
140	41.69703	
141	70.79403	-
142	34.85527]
143	39.74044]
144	56.3535	
145	51.4384	
146	62.4915	
147	29.68086	
148	64.22018	
149	28.17078	
150	35.68349	
151	44.35122	Malayai
152	34.32979	a malaysi
153	28.49779	-
154	32.68673	
155	36.56727	
156	39.01122	
157	33.78551	
159	43.00673	
160	47.35328	
161	72.90539	
162	30.29409	
163	41.85958	
165	51.58576	
166	41.10466	
167	25.90502	
168	43.59435	
169	49.01854	
170	28.51732	
171	29.30167	
172	33.15453	
173	34.8223	

177	30.80552
178	32.42318
179	31.70329
181	20.00818
182	45.80035
183	13.08885
184	22.9846
186	37.55048
187	63.09282
188	31.51275
189	32.9825
190	36.15743
191	29.88377
192	48.87149
193	52.73457
194	26.84964
195	13.19179
196	35.88598
197	54.37149
198	46.13841
199	8.92146
200	35.02165
201	53.24381
202	39.81589
203	40.86262
204	65.53007
205	46.70173
206	50.91758
207	14.67345
208	39.30064
209	_18.62104
210	64.20344
211	12.38529
212	24.39846
213	17.37825
214	62.59135
215	11.44586
216	55.03833
217	73.91136
218	53.3471
219	36.11689
220	30.08321
221	72.33437

175

25.7235 56.16419

ara Malaysia

	I.	1
	222	29.61488
	223	19.39122
	224	30.95674
	225	18.98408
	226	57.41081
	227	54.34716
	228	79.30433
	229	62.78368
	230	25.43019
	231	53.46974
	233	31.007
	234	17.67087
	235	47.70616
	236	21.80708
	237	57.78528
	238	17.95
	239	23.44332
	240	41.64933
	241	50.22556
	242	16.23514
	244	28.15307
	245	79.10626
	246	61.30215
	247	42.07674
	248	26.95512
	249	70.30365
	250	56. <u>10105</u>
	251	24.55816
	252	30.54915
	253	13.70605
	254	20.78162
	255	32.56504
	257	24.76245
	258	37.17887
	260	20.20714
	261	21.83239
	262	47.51981
	263	35.11225
	264	74.50294
	265	39.79053
	266	40.54632
	267	52.7746
	269	41.22295
	270	27.84786
	271	30.18278

Ţ

	272	23.15931		_
	273	78.48847		_
	274	66.97853		_
	275	47.3429		
	276	22.39585		
	278	27.02784		
	279	64.04363		
	280	42.36436		
	282	37.73384		
	283	45.67318		
	284	37.46741		
	285	28.04728		
	287	74.08514		
	288	33.83572		
	289	20.12473		
	290	45.17683		
	291	17.37515		
	292	42.00623		
	293	17.4472	_	
	294	39.427		
	295	61.55417		
	296	25.76729		
	297	19.65646		
	298	54.03983		
	299	34.5588		. Malaysia
	300	27.60695		a Flataysic
	301	56.67987		
	302	49.99866		
	303	39.59975		
	304	20.53524		
	306	70.15759		
	307	35.56377		
	308	35.26074		
	310	38.61381		
	311	24.80087		
	312	38.35303		
	313	41.03743		
	315	34.40965		
	316	60.1552		
	317	24.05141		
	318	32.74171		
	319	35.06676		
	321	34.76774		
	322	28.53984		
	323	29.0169		

	324	33.94977	
	325	55.90035	-
	327	46.05977	-
	328	21.26219	-
	329	_29.57446	
	330	23.00972	
	331	65.35334	
	332	20.88906	
	333	53.03199	
	334	17.05375	
	335	36.37223	
	336	35.48333	
	337	65.57102	
	338	56.81717	
	339	1.32637	
	340	38.70223	
	341	29.22917	
	343	46.36312	
	344	39.96288	
	345	59.4213	
	346	20.07669	
	347	26.31875	
	348	42.7135	
	349	24.7703	
	350	39.50419	Malavsia
	351	58.82751	a Fidiaysia
	352	22.01004	
	353	23.94839	
	354	28.78025	
	355	19.34789	
	357	28.80125	
	358	28.51812	
	359	62.44122	
	360	43.48948	
	361	30.41102	
	362	33.08133	
	363	26.75786	
	364	38.88028	
-	365	22.5397	
	366	35.95701	
	368	31.33213	
	369	43.96175	
ļ	370	39.04883	
	371	48.16753	
	372	38.34194	

	373	31.53104
	374	31.55653
	375	23.83914
	378	79.35434
	379	23.01701
	380	59.3425
	381	28.60055
	382	25.69987
	383	28.17378
	385	46.69348
	386	65.00113
	387	19.97154
	388	41.61954
	389	25.56147
	390	32.42255
	391	58.94228
	392	56.01897
	393	36.32577
ļ	395	50.84992
	396	72.0696
	397	44.47643
	398	25.4211
	399	52.55419
	400	19.7227
	401	56.91757
}	402	48.31833
-	403	42.48945
┟	405	39.18807
╞	406	34.46696
ŀ	407	44.87818
	408	42.88253
╞	410	23.70854
┝	411	32.35902
$\left \right $	412	25.31753
	413	40.583
+	414	66.18276
ł	415	48.48106
┝	416	11.66688
$\left \right $	417	48.48463
	418	19.79204
ŀ	419	23.59165
$\left \right $	420	9.46263
$\left \right $	421	52.14872
	423	24.52037
L	424	63.3336

a Malaysia
427	32.81955
428	60 44296
429	42 8297
430	43.08914
430	56 08653
400	22.0516
432	23.0510
433	00.05044
434	36.65011
435	35.54128
436	33.3209
437	16.2198
438	16.50534
439	50.40091
440	65.81868
441	22.79853
444	32.88356
445	48.80789
446	22.52323
447	46.16293
448	18.19251
449	34.24124
450	46.96069
451	44.83392
452	33.44946
453	40.32622
454	32.90778
455	44.85142
456	43.45158
457	45.9182

Malaysia

Appendix E

Normality (Skewness and Kurtosis)

				12	
	N	Skew	ness	Kurt	OSIS
L	Statistic	Statistic	Std. Error	Statistic	Std. Error
IPE01	411	478	.120	.329	.240
IPE02	411	495	.120	.236	.240
IPE03	411	608	.120	.783	.240
IPE04	411	503	.120	.459	.240
IPE05	411	176	.120	.012	.240
IPE06	411	441	.120	.439	.240
IPE07	411	534	.120	.785	.240
IEE01	411	361	.120	.091	.240
IEE02	411	684	.120	.922	.240
IEE03	411	471	.120	.572	.240
IEE04	411	498	.120	.359	.240
IEE05	411	567	.120	.444	.240
IEE06	411	Ve397	.120	.096	avs .240
ISI01	411	284	.120	018	.240
IS102	411	346	.120	.058	.240
IS103	411	379	.120	.214	.240
IS104	411	358	.120	019	.240
IS105	411	351	.120	058	.240
IFC01	411	340	.120	.063	.240
IFC02	411	451	.120	.212	.240
IFC03	411	410	.120	094	.240
IFC04	411	254	.120	281	.240
IFC05	411	333	.120	.062	.240
IFC06	411	538	.120	.470	.240
IBI01	411	621	.120	.416	.240
IB102	411	536	.120	.290	.240
IBI03	411	496	.120	.416	.240
IBI04	411	542	.120	.323	.240
IB105	411	431	.120	.059	.240
ICT01	411	420	.120	.232	.240
ICT02	411	641	.120	.815	.240
ICT03	411	405	.120	.270	.240

Descriptive Statistics

262

			100	740	
ICT04	411	632	.120	.719	.240
IAY01	411	275	.120	398	.240
IAY02	411	280	.120	254	.240
IAY03	411	586	.120	.242	.240
IAY04	411	327	.120	228	.240
IFT01	411	618	.120	.414	.240
IFT02	411	562	.120	.408	.240
IFT03	411	382	.120	.216	.240
IFT04	411	450	.120	.480	.240
IFT05	411	567	.120	.426	.240
ITS01	411	420	.120	.038	.240
ITS02	411	454	.120	.077	.240
ІТОЗ	411	622	.120	.658	.240
IT04	411	737	.120	.895	.240
Valid N (listwise)	411				

.

Appendix F A. Test of Linearity and Homoscedasticity Dependent Variable: Behavioural Intention

Performance Expectancy

B. Test of Linearity and Homoscedascitiy Dependent Variable: Satisfaction

Performance Expectancy

Effort Expectancy

Internet Can Freb

Social Influence

Facilitating Conditions

Appendix G

1. Performance Expectancy

			Corr	elation Matr	ix ^a			
		IPE01	IPE02	IPE03	IPE04	IPE05	IPE06	IPE07
Correlation	IPE01	1.000	.668	.562	.463	.517	.512	.445
	IPE02	.668	1.000	.646	.490	.495	.512	.492
	IPE03	.562	.646	1.000	.558	.509	.530	.467
	IPE04	.463	.490	.558	1.000	.560	.557	.531
	IPE05	.517	.495	.509	.560	1.000	.639	.519
	IPE06	.512	.512	.530	.557	.639	1.000	.538
	IPE07	.445	.492	.467	.531	.519	.538	1.000
Sig. (1-tailed)	IPE01		.000	.000	.000	.000	.000	.000
	IPE02	.000		.000	.000	.000	.000	.000
	IPE03	.000	.000		.000	.000	.000	.000
	IPE04	.000	.000	.000		.000	.000	.000
	IPE05	.000	.000	.000	.000		.000	.000
	IPE06	.000	.000	.000	.000	.000		.000
	IPE07	.000	.000	.000	.000	.000	.000	

a. Determinant = .033

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.897
Bartlett's Test of Sphericity	Approx. Chi-Square	1384.825
	df	21
	Sig.	.000

			Anti-imay	e matrices				
		IPE01	IPE02	IPE03	IPE04	IPE05	IPE06	IPE07
Anti-image Covariance	IPE01	.487	187	060	015	069	047	017
	IPE02	187	.427	152	016	011	025	068
	IPE03	060	152	.477	113	032	051	019
	IPE04	015	016	113	.528	096	078	116
	IPE05	069	011	032	096	.489	166	075
	IPE06	047	025	051	078	166	.478	094
	IPE07	017	068	019	116	075	094	.585
Anti-image Correlation	IPE01	.888 ^a	410	124	029	142	098	032
	IPE02	410	.859 ^a	337	034	025	056	135
	IPE03	124	337	.902ª	225	066	106	036
	IPE04	029	034	225	.915 ^a	190	156	208
131	IPE05	142	025	066	190	.899ª	343	140
	IPE06	098	056	106	156	343	.902 ^a	179
A.F.	IPE07	032	135	036	208	140	179	.929 ^a

Anti-image Matrices

a. Measures of Sampling Adequacy(MSA)

Universiti Utara Malaysia

	Communali	ties
	Initial	Extraction
IPE01	1.000	.591
IPE02	1.000	.633
IPE03	1.000	.624
IPE04	1.000	.586
IPE05	1.000	.612
IPE06	1.000	.627
IPE07	1.000	.534

Extraction Method: Principal

Component Analysis.

		Initial Eigenvalu	ies	Extractio	on Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.206	60.086	60.086	4.206	60.086	60.086
2	.728	10.397	70.483			
3	.517	7.388	77.871			
4	.498	7.119	84.990			
5	.396	5.658	90.648			
6	.355	5.066	95.714			
7	.300	4.286	100.000			

Total Variance Explained

Extraction Method: Principal Component Analysis.

2. Effort Expectancy

			Correlation	n Matrix ª			
		IEE01	IEE02	IEE03	IEE04	IEE05	IEE06
Correlation	IEE01	1.000	.594	.553	.470	.480	.388
	IEE02	.594	1.000	.617	.545	.567	.501
	IEE03	.553	.617	1.000	.586	.537	.406
	IEE04	.470	.545	.586	1.000	.673	.466
	IEE05	.480	.567	.537	.673	1.000	.560
	IEE06	.388	.501	.406	.466	.560	1.000
Sig. (1-tailed)	IEE01		.000	.000	.000	.000	.000
	IEE02	.000		.000	.000	.000	.000
	IEE03	.000	.000		.000	.000	.000
	IEE04	.000	.000	.000		.000	.000
	IEE05	.000	.000	.000	.000		.000
	IEE06	.000	.000	.000	.000	.000	

a. Determinant = .066

КМС) and Bartlett's Test	toro Ma	lavsia
Kaiser-Meyer-Olkin Measure	e of Sampling Adequacy.	.870	aysia
Bartlett's Test of Sphericity	Approx. Chi-Square	1108.620	
	df	15	
	Sig.	.000	

		7414	magemaa	1000			
		IEE01	IEE02	IEE03	IEE04	IEE05	IEE06
Anti-image Covariance	IEE01	.576	156	120	028	042	024
	IEE02	156	.461	137	041	060	105
	IEE03	120	137	.497	123	039	003
	IEE04	028	041	123	.464	190	037
	IEE05	042	060	039	190	.437	155
	IEE06	024	105	003	037	155	.632
Anti-image Correlation	IEE01	.891 ^a	302	225	055	084	040
	IEE02	302	.872 ^ª	285	088	134	195
	IEE03	225	285	.879 ^a	256	083	005
	IEE04	055	088	256	.856 ^ª	421	069
	IEE05	084	134	083	421	.845 ^ª	294
	IEE06	040	195	005	069	294	.893 ^a

Anti-image Matrices

a. Measures of Sampling Adequacy(MSA)

	Communalit	lies
2	Initial	Extraction
IEE01	1.000	.549
IEE02	1.000	.674
IEE03	1.000	.631
IEE04	1.000	.647
IEE05	1.000	.672
IEE06	1.000	.487

Extraction Method: Principal

Component Analysis.

Total Variance Explained

	Initial Eigenvalues			Extractio	on Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.659	60.979	60.979	3.659	60.979	60.979
2	.696	11.603	72.583			
3	.560	9.335	81.918			
4	.423	7.044	88.961			
5	.358	5.965	94.927			
6	.304	5.073	100.000			

Extraction Method: Principal Component Analysis.

Component Matrix^a

	Component	
	1	
IEE01	.741	
IEE02	.821	
IEE03	.794	
IEE04	.804	
IEE05	.820	
IEE06	.698	
Extractio	n Method:	Universiti Utara Malaysia
Dringing	Component	Universiti Otara Plalaysia

Principal Component

Analysis.

a. 1 components

extracted.

3. Social Influence

Correlation Matrix ^a						
		IS <u>I</u> 01	IS102	IS103	ISI04	IS105
Correlation	ISI01	1.000	.764	.710	.687	.655
	ISI02	.764	1.000	.767	.728	.712
	IS103	.710	.767	1.000	.768	.718
	ISI04	.687	.728	.768	1.000	.792
	ISI05	.655	.712	.718	.792	1.000
Sig. (1-tailed)	ISI01		.000	.000	.000	.000
	IS102	.000		.000	.000	.000
	ISI03	.000	.000		.000	.000
	ISI04	.000	.000	.000		.000
	ISI05	.000	.000	.000	.000	

a. Determinant = .018

KMC	and Bartlett's Test	
Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.887
Bartlett's Test of Sphericity	Approx. Chi-Square	1642.071
	df	10
-	Sig.	.000

Universiti Utara Malaysia

Anti-image Matrices						
		ISI01	ISI02	ISI03	ISI04	IS105
Anti-image Covariance	ISI01	.364	131	058	041	025
	ISI02	131	.290	091	032	054
	ISI03	058	091	.301	089	043
	IS104	041	032	089	.276	138
	ISI05	025	054	043	138	.324
Anti-image Correlation	ISI01	.902ª	404	176	129	. - .072
	IS102	404	.880 ^ª	308	113	176
	ISI03	176	308	.901 ^a	310	138
	IS104	129	113	310	.867ª	462
	ISI05	072	176	138	462	.886 ^a

a. Measures of Sampling Adequacy(MSA)

Communalities					
	Initial	Extraction			
ISI01	1.000	.740			
ISI02	1.000	.805			
ISI03	1.000	.803			
ISI04	1.000	.808			
ISI05	1.000	.766			

Extraction Method: Principal

Component Analysis.

Total Variance Explained

		Initial Eigenvalu	ies	Extractio	on Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.921	78.425	78.425	3.921	78.425	78.425
2	.396	7.926	86.351			
3	.267	5.340	91.691			
4	.225	4.498	96.189			
5	.191	3.811	100.000			

Extraction Method: Principal Component Analysis.

Component Matrix^a

	Component	
	1	
ISI01	.860	
ISI02	.897	
ISI03	.896	
ISI04	.899	
ISI05	.875	

Extraction Method:

Principal Component Analysis.

4. Facilitating Conditions

Correlation Matrix ^a							
		IFC01	IFC02	IFC03	IFC04	IFC05	IFC06
Correlation	IFC01	1.000	.609	.470	.454	.492	.429
	IFC02	.609	1.000	.523	.474	.471	.534
	IFC03	.470	.523	1.000	.586	.515	.455
	IFC04	.454	.474	.586	1.000	.554	.479
	IFC05	.492	.471	.515	.554	1.000	.534
	IFC06	.429	.534	.455	.479	.534	1.000
Sig. (1-tailed)	IFC01		.000	.000	.000	.000	.000
	IFC02	.000		.000	.000	.000	.000
	IFC03	.000	.000		.000	.000	.000
	IFC04	.000	.000	.000		.000	.000
	IFC05	.000	.000	.000	.000		.000
	IFC06	.000	.000	.000	.000	.000	

a. Determinant = .091

КМО	and Bartlett's Test		
Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.865	
Bartlett's Test of Sphericity	Approx. Chi-Square	976.790	ara Malavs
MU BL	df	15	ara marays
	Sig.	.000	

Communalities					
	Initial	Extraction			
IFC01	1.000	.561			
IFC02	1.000	.619			
IFC03	1.000	.597			
IFC04	1.000	.596			
IFC05	1.000	.602			
IFC06	1.000	.552			

Extraction Method: Principal

Component Analysis.

		,					
		IFC01	IFC02	IFC03	IFC04	IFC05	IFC06
Anti-image Covariance	IFC01	.560	210	052	046	102	013
	IFC02	210	.502	101	035	013	144
	IFC03	052	101	.547	179	086	039
	IFC04	046	035	179	.541	133	075
	IFC05	102	013	086	133	.546	149
	IFC06	013	144	039	075	149	.592
Anti-image Correlation	IFC01	.855°	397	094	084	185	022
	IFC02	397	.836ª	192	068	026	265
	IFC03	094	192	.878 ^a	328	157	069
	IFC04	084	068	328	.869 ^a	245	133
	IFC05	185	026	157	245	.875 ^ª	262
	IFC06	022	265	069	133	262	.880 ^ª

Anti-image Matrices

a. Measures of Sampling Adequacy(MSA)

Total Variance Explained

	ER	Initial Eigenvalu	ies	Extractio	Extraction Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	3.528	60.798	60.798	3.528	60.798	60.798		
2	.660	10.001	70.799					
3	.580	9.659	80.458	i Utar	a Malay	sia		
4	.486	7.106	87.564					
5	.402	6.700	94.263					
6	.344	5.737	100.000					

Extraction Method: Principal Component Analysis.

Compo	onent Matrix ^a
	Component
	1
IFC01	.749
IFC02	.787
IFC03	.773
IFC04	.772
IFC05	.776
IFC06	.743

Extraction Method:

Principal Component

Analysis.

a. 1 components

extracted.

278

5. EUCS

Rotated	Compone	nt Matrix ^a			-
	Compone	nt			
	1	2	3	4	
ICT01			.773		
ICT02		.303	.786		
ICT03			.733		
ICT04	.354		.705		
IAY01	.797				
IAY02	.772				
IAY03	.691	.349			
IAY04	.749				
IFT01	.342	.687			
IFT02		.765			
IFT03		.750			
IFT04	RA	.602	.311		
IFT05	12	.524		.462	
ITS01				.787	
ITS02	S I S			.781	
ІТОЗ				.748	
IT04		.381	.318	.513	

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 6 iterations.

.

		Initial Eigenvalu	sər	Extractio	n Sums of Square	od Loadings	Rotatior	Sums of Square	d Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
. 	8.187	48.161	48.161	8.187	48.161	48.161	4.322	25.425	25.425
2	1.353	7.959	56.120	1.353	7.959	56.120	3.214	18.905	44.330
з	1.205	7.087	63.207	1.205	7.087	63.207	3.209	18.877	63.207
4	1.011	5.748	68.955	1.011	5.748	68.955	2.793	16.429	68.955
5	.662	3.891	72.847	U					
6	.632	3.715	76.561	ni					
7	.600	3.528	80.089	V					
8	.453	2.667	82.756	er					
6	.414	2.437	85.193	si					
10	.389	2.290	87.483	ti					
11	.349	2.055	89.538	U					
12	.344	2.025	91.563	ta					
13	.336	1.978	93.541	1173					
14	.317	1.866	95.408	3 1					
15	.295	1.738	97.145	Ma					
16	.251	1.478	98.624	aTa					
17	.234	1.376	100.000	ау					
Extraction Meth	od: Principal	Component Anal	ysis.	sia					

Total Variance Explained

r

280

	Communali	ties				Comp	onent	
	Initial	Extraction			1	2	3	4
ICT01	1.000	.668		ICT01	617	.515		
ICT02	1.000	.731		ICT02	647	.553		
ICT03	1.000	.701		ICT03	.722	.393		
ICT04	1.000	.613		ICT04	.682			
IAY01	1.000	.738		IAY01	.670		.458	
IAY02	1.000	.741		IAY02	.718	316	.354	
IAY03	1.000	.652		IAY03	.712		.314	
IAY04	1.000	.701		IAY04	.695	330	.329	
IFT01	1.000	.580		IFT01	.753			335
IFT02	1.000	.533		IFT02	.685			406
IFT03	1.000	.525		IFT03	.708			416
IFT04	1.000	.566		IFT04	.745			
IFT05	1.000	.590		IFT05	.727			
ITS01	1.000	.628		ITS01	.654	327	304	.328
ITS02	1.000	.643		ITS02	.704		313	.325
ITS03	1.000	.636	4	ITS03	.725			.308
ITS04	1.000	.501	11Z-1	ITS04	614		- 337	

Component Matrix^a

Extraction Method: Principal Component Analysis.

ITS04 .614 -.337 Extraction Method: Principal Component Analysis. a. 4 components extracted.

KMO and Bartlett's Test VETSILIUTATA MALAYSIA

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.931
Bartlett's Test of Sphericity	Approx. Chi-Square	3970.555
	df	136
	Sig.	.000

6. Behavioural Intention

Correlation Matrix ^a								
		IBI01	IBI02	IBI03	IB104	IBI05		
Correlation	IBI01	1.000	.751	.651	.567	.564		
	IBI02	.751	1.000	.710	.578	.596		
	IBI03	.651	.710	1.000	.598	.641		
	1BI04	.567	.578	.598	1.000	.697		
	IBI05	.564	.596	.641	.697	1.000		
Sig. (1-tailed)	IBI01		.000	.000	.000	.000		
	IBI02	.000		.000	.000	.000		
	IBI03	.000	.000		.000	.000		
	IBI04	.000	.000	.000		.000		
	IBI05	.000	.000	.000	.000			

a. Determinant = .049

KMC) and Bartlett's Test		
Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.851	
Bartlett's Test of Sphericity	Approx. Chi-Square	1224.867	
-	df	10	
	Sig.	.000	ra Malavsia

Anti-inlage matrices							
		IBI01	IB102	IBI03	IBI04	IB105	
Anti-image Covariance	IBI01	.393	180	067	055	025	
	IB102	180	.340	126	031	038	
	IB103	067	126	.401	055	102	
	IBI04	055	031	055	.455	202	
	IBI05	025	038	102	202	.425	
Anti-image Correlation	IBI01	.848ª	492	168	131	060	
	IBI02	492	.824 ^a	341	079	099	
	IBI03	168	341	.884 ^a	129	248	
	IB104	131	079	129	.856 ^a	459	
	IBI05	060	099	248	459	.846 ^ª	

Anti-image Matrices

a. Measures of Sampling Adequacy(MSA)

Communalities					
	Initial	Extraction			
IBI01	1.000	.707			
IBI02	1.000	.752			
IB103	1.000	.736			
IBI04	1.000	.661			
IB105	1.000	.687			

Extraction Method: Principal

Component Analysis.

Total Variance Explained

		Initial Eigenvalu	Jes	Extractio	on Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.543	70.853	70.853	3.543	70.853	70.853
2	.579	11.577	82.431			
3	.352	7.039	89.470			
4	.290	5.802	95.272			
5	.236	4.728	100.000			

Extraction Method: Principal Component Analysis.

IBI01 IBI02 IBI03 IBI04 IBI05 Extraction Method			
IBI01 IBI02 IBI03 IBI04 IBI05 Extraction Method	ersit	i Utara	Malaysia
IBI02 IBI03 IBI04 IBI05 Extraction Method	.841		
IBI03 IBI04 IBI05 Extraction Method	.867		
IBI04 IBI05 Extraction Method	.858		
IBI05 Extraction Method	.813		
Extraction Method	.829		
Dringing! Compor	d:		
Principal Compor	nent		
Analysis.			

a. 1 components

extracted.

Appendix H Reliability Test after conducting Factor Analysis

Performance Expectancy

Reliability Statistics

Cronbach's	
Alpha	N of Items
.889	7

Social Influence

Reliability Statistics

Cronbach's	
Alpha	N of Items
.931	5

Behavioural Intention

Reliability Statistics						
Cronbach's	E.					
Alpha	N of Items					
.897	5					

Accuracy

Reliability Statistics

Cronbach's	
Alpha	N of Items
.863	4

Timeliness

Reliability Statistics

Cronbach's	
Alpha	N of Items
.828	4

Effort Expectancy

Reliability Statistics					
Cronbach's					
Alpha	N of Items				

Facilitating Conditions

6

.870

Reliability Statistics

1	Cronbach's	
	Alpha	N of Items
1	.859	6

Content

Reliability Statistics					
Cronbach's					
Alpha	N of Items				
.931	17				

Reliability Statistics

Universiti Utara Formatysia

Cronbach's	
Alpha	N of Items
.864	5

Satisfaction

Reliability Statistics

Cronbach's	
Alpha	N of Items
.931	17

Appendix I

ample	a2	a4	al	a3	b	al*b	a2*b	a3*b	a4*b
	EE -> ST	FC -> ST	PE -> ST	SI -> ST	ST -> BI				
Sample 0	0.398082	0.249388	0.023507	0.06911	0.147597	0.0034696	0.0587557	0.0102004	0.0368089
Sample 1	0.317706	0.110634	0.11196	0.142846	0.202025	0.0226187	0.0641846	0.0288585	0.0223508
Sample 2	0.226361	0.185192	0.120633	0.208987	0.146682	0.0176947	0.0332031	0.0306546	0.0271643
Sample 3	0.282181	0.15481	0.139806	0.13963	0.143034	0.019997	0.0403615	0.0199718	0.0221431
Sample 4	0.245448	0.256272	0.129451	0.112715	0.21102	0.0273168	0.0517944	0.0237851	0.0540785
Sample 5	0.241758	0.226054	0.099987	0.183093	0.133676	0.0133659	0.0323172	0.0244751	0.030218
Sample 6	0.316397	0.225199	0.119514	0.137756	0.196604	0.0234969	0.0622049	0.0270834	0.044275
Sample 7	0.339916	0.141161	0.079037	0.158747	0.190312	0.0150417	0.0646901	0.0302115	0.0268646
Sample 8	0.375025	0.044315	0.050533	0.212846	0.145929	0.0073742	0.054727	0.0310604	0.0064668
Sample 9	0.359378	0.210242	0.140606	0.036871	0.15495	0.0217869	0.0556856	0.0057132	0.032577
Sample 10	0.306467	0.229097	0.053954	0.181841	0.166668	0.0089924	0.0510782	0.0303071	0.0381831
Sample 11	0.335882	0.157738	0.081188	0.128873	0.194645	0.0158028	0.0653778	0.0250845	0.0307029
Sample 12	0.254904	0.288361	0.108208	0.034409	0.146932	0.0158992	0.0374536	0.0050558	0.0423695
Sample 13	0.238247	0.210878	0.131028	0.172696	0.19539	0.0256016	0.0465511	0.0337431	0.0412035
Sample 14	0.256698	0.257203	0.068321	0.085692	0.194008	0.0132548	0.0498015	0.0166249	0.0498994
Sample 15	0.206102	0.137509	0.178225	0.192253	0.143479	0.0255715	0.0295713	0.0275843	0.0197297
Sample 16	0.241684	0.174544	0.114783	0.174988	0.14605	0.0167641	0.0352979	0.025557	0.0254922
Sample 17	0.261048	0.108016	0.166721	0.214008	0.166687	0.0277902	0.0435133	0.0356724	0.0180049
Sample 18	0.249362	0.249741	0.092811	0.101509	0.164082	0.0152286	0.0409158	0.0166558	0.040978
Sample 19	0.313362	0.176806	0.119337	0.163666	0.177716	0.0212081	0.0556894	0.0290861	0.0314213
Sample 20	0.351963	0.160103	0.112064	0.10579	0.207648	0.0232699	0.0730844	0.0219671	0.0332451
Sample 21	0.175675	0.147202	0.175873	0.251863	0.106815	0.0187859	0.0187647	0.0269027	0.0157234
Sample 22	0.19156	0.243357	0.133997	0.176135	0.154033	0.02064	0.0295066	0.0271306	0.037485
Sample 23	0.354085	0.075341	0.116434	0.256665	0.170564	0.0198594	0.0603942	0.0437778	0.0128505
Sample 24	0.304865	0.215171	0.115679	0.105145	0.17675	0.0204463	0.0538849	0.0185844	0.0380315
Sample 25	0.250252	0.143344	0.145463	0.185224	0.223266	0.0324769	0.0558728	0.0413542	0.0320038
Sample 26	0.172359	0.197305	0.256723	0.08548	0.154701	0.0397153	0.0266641	0.0132238	0.0305233
Sample 27	0.211612	0.225387	0.160678	0.139973	0.195645	0.0314358	0.0414008	0.027385	0.0440958
Sample 28	0.152978	0.270206	0.113618	0.227379	0.180421	0.0204991	0.0276004	0.0410239	0.0487508
Sample 29	0.344717	0.15646	0.134546	0.130999	0.17085	0.0229872	0.0588949	0.0223812	0.0267312
Sample 30	0.328462	0.244977	0.137976	0.038218	0.29184	0.0402669	0.0958584	0.0111535	0.0714941
Sample 31	0.267035	0.283885	0.081469	0.141534	0.144165	0.011745	0.0384971	0.0204042	0.0409263
Sample 32	0.294752	0.124065	0.122118	0.212511	0.211815	0.0258664	0.0624329	0.045013	0.0262788
Sample 33	0.293685	0.057445	0.163829	0.138935	0.203388	0.0333209	0.059732	0.0282577	0.0116836
Sample 34	0.265976	0.207377	0.092617	0.144876	0.186877	0.017308	0.0497048	0.027074	0.038754
Sample 35	0.196042	0.222074	0.076318	0.198323	0.236082	0.0180173	0.046282	0.0468205	0.0524277
Sample 36	0.243732	0.144186	0.197562	0.139998	0.200787	0.0396679	0.0489382	0.0281098	0.0289507
Sample 37	0.244548	0.243572	0.120522	0.13488	0.178046	0.0214585	0.0435408	0.0240148	0.043367
Sample 38	0.396619	0.203428	0.028061	0.147939	0.245991	0.0069028	0.0975647	0.0363917	0.0500415

Sample 39	0.277038	0.184201	0.073166	0.110069	0.157041	0.0114901	0.0435063	0.0172853	0.0289271
Sample 40	0.233261	0.319451	0.132812	0.079722	0.17408	0.0231199	0.0406061	0.013878	0.05561
Sample 41	0.249954	0.139047	0.110122	0.189385	0.161696	0.0178063	0.0404166	0.0306228	0.0224833
Sample 42	0.227266	0.210394	0.146026	0.132045	0.165906	0.0242266	0.0377048	0.0219071	0.0349056
Sample 43	0.296585	0.231583	0.136236	0.093371	0.222481	0.0303099	0.0659845	0.0207733	0.0515228
Sample 44	0.295386	0.155465	0.20708	0.040433	0.173695	0.0359688	0.0513071	0.007023	0.0270035
Sample 45	0.430073	0.070926	0.188269	0.082714	0.194095	0.0365421	0.083475	0.0160544	0.0137664
Sample 46	0.084059	0.202917	0.21061	0.239952	0.164735	0.0346948	0.0138475	0.0395285	0.0334275
Sample 47	0.145505	0.200838	0.06849	0.285558	0.220723	0.0151173	0.0321163	0.0630292	0.0443296
Sample 48	0.224421	0.172032	0.172705	0.095705	0.216959	0.0374699	0.0486902	0.0207641	0.0373239
Sample 49	0.291809	0.171751	0.120261	0.152043	0.187775	0.022582	0.0547944	0.0285499	0.0322505
Sample 50	0.298518	0.155512	0.202649	0.090223	0.12061	0.0244415	0.0360043	0.0108818	0.0187563
Sample 51	0.242948	0.190733	0.195192	0.122332	0.207075	0.0404194	0.0503085	0.0253319	0.039496
Sample 52	0.278443	0.194253	0.098197	0.196843	0.162272	0.0159346	0.0451835	0.0319421	0.0315218
Sample 53	0.27727	0.258923	0.133182	0.127505	0.178604	0.0237868	0.0495215	0.0227729	0.0462447
Sample 54	0.252738	0.142332	0.178905	0.209944	0.23138	0.041395	0.0584785	0.0485768	0.0329328
Sample 55	0.411344	0.206986	0.009769	0.063342	0.202409	0.0019773	0.0832597	0.012821	0.0418958
Sample 56	0.271421	0.2009	0.10435	0.232918	0.274273	0.0286204	0.0744435	0.0638831	0.0551014
Sample 57	0.31779	0.186831	0.094732	0.152125	0.133255	0.0126235	0.0423471	0.0202714	0.0248962
Sample 58	0.2427	0.181094	0.13177	0.172228	0.163158	0.0214993	0.0395984	0.0281004	0.0295469
Sample 59	0.184727	0.189205	0.115253	0.151911	0.074173	0.0085487	0.0137018	0.0112677	0.0140339
Sample 60	0.209781	0.1785	0.151046	0.158788	0.157575	0.0238011	0.0330562	0.025021	0.0281271
Sample 61	0.190585	0.167578	0.111673	0.24726	0.102074	0.0113989	0.0194538	0.0252388	0.0171054
Sample 62	0.209506	0.193859	0.104437	0.177218	0.210406	0.0219742	0.0440813	0.0372877	0.0407891
Sample 63	0.38589	0.117865	0.149779	0.110528	0.175053	0.0262193	0.0675512	0.0193483	0.0206326
Sample 64	0.273708	0.16389	0.2034	0.187196	0.211052	0.042928	0.0577666	0.0395081	0.0345893
Sample 65	0.20349	0.304364	0.051652	0.206468	0.150186	0.0077574	0.0305613	0.0310086	0.0457112
Sample 66	0.175435	0.339659	0.129642	0.132777	0.139219	0.0180486	0.0244239	0.0184851	0.047287
Sample 67	0.405542	0.115554	0.10559	0.153397	0.180051	0.0190116	0.0730182	0.0276193	0.0208056
Sample 68	0.168179	0.199991	0.221963	0.152029	0.222831	0.0494602	0.0374755	0.0338768	0.0445642
Sample 69	0.316053	0.154444	0.116257	0.155116	0.197481	0.0229585	0.0624145	0.0306325	0.0304998
Sample 70	0.328909	0.201093	0.104086	0.070294	0.167087	0.0173914	0.0549564	0.0117452	0.0336
Sample 71	0.235027	0.22848	0.112485	0.192134	0.143048	0.0160908	0.0336201	0.0274844	0.0326836
Sample 72	0.256353	0.176313	0.152892	0.154747	0.236434	0.0361489	0.0606106	0.0365875	0.0416864
Sample 73	0.228262	0.225006	0.126663	0.111537	0.196945	0.0249456	0.0449551	0.0219667	0.0443138
Sample 74	0.411402	0.253477	-0.005414	0.059125	0.2296	-0.001243	0.0944579	0.0135751	0.0581983
Sample 75	0.273859	0.18068	0.08352	0.146499	0.203721	0.0170148	0.0557908	0.0298449	0.0368083
Sample 76	0.242797	0.131933	0.200946	0.129403	0.130151	0.0261533	0.0316003	0.0168419	0.0171712
Sample 77	0.293876	0.131803	0.118725	0.210412	0.2004	0.0237925	0.0588928	0.0421666	0.0264133
Sample 78	0.300234	0.134943	0.223387	0.161605	0.15263	0.0340956	0.0458247	0.0246658	0.0205964
Sample 79	0.227539	0.247028	0.127647	0.181811	0.184903	0.0236023	0.0420726	0.0336174	0.0456762
Sample 80	0.141971	0.220751	0.159344	0.184512	0.162966	0.0259677	0.0231364	0.0300692	0.0359749
Sample 81	0.211743	0.169496	0.127138	0.218259	0.189145	0.0240475	0.0400501	0.0412826	0.0320593
Sample 82	0.355252	0.15022	0.098521	0.096316	0.173384	0.017082	0.061595	0.0166997	0.0260457
Sample 83	0.303243	0.272858	0.09537	0.127164	0.204222	0.0194767	0.0619289	0.0259697	0.0557236

Sample 84	0.174537	0.233384	0.11232	0.192878	0.142742	0.0160328	0.0249138	0.0275318	0.0333137
Sample 85	0.257199	0.277594	0.226518	0.012416	0.170405	0.0385998	0.043828	0.0021157	0.0473034
Sample 86	0.298628	0.235648	0.037044	0.125562	0.195816	0.0072538	0.0584761	0.024587	0.0461436
Sample 87	0.290123	0.226185	0.005418	0.16324	0.200006	0.0010836	0.0580263	0.032649	0.0452384
Sample 88	0.299847	0.088533	0.184504	0.152187	0.133979	0.0247197	0.0401732	0.0203899	0.0118616
Sample 89	0.153749	0.304154	0.028221	0.219178	0.201007	0.0056726	0.0309046	0.0440563	0.0611371
Sample 90	0.285912	0.162371	0.137314	0.166546	0.191628	0.0263132	0.0547887	0.0319149	0.0311148
Sample 91	0.327376	0.122364	0.135879	0.157286	0.178715	0.0242836	0.058507	0.0281094	0.0218683
Sample 92	0.182177	0.276157	0.093499	0.185404	0.253925	0.0237417	0.0462593	0.0470787	0.0701232
Sample 93	0.209913	0.222276	0.142821	0.166125	0.216722	0.0309525	0.0454928	0.0360029	0.0481721
Sample 94	0.311948	0.334581	0.113272	0.067959	0.132127	0.0149663	0.0412168	0.0089792	0.0442072
Sample 95	0.287646	0.210793	0.064636	0.165872	0.207983	0.0134432	0.0598255	0.0344986	0.0438414
Sample 96	0.37733	0.196197	0.026446	0.11154	0.181882	0.0048101	0.0686295	0.0202871	0.0356847
Sample 97	0.311161	0.270008	0.119552	0.103484	0.22039	0.0263481	0.0685768	0.0228068	0.0595071
Sample 98	0.192265	0.228462	0.160171	0.164728	0.210379	0.0336966	0.0404485	0.0346553	0.0480636
Sample 99	0.244023	0.154175	0.118338	0.205704	0.156567	0.0185278	0.0382059	0.0322065	0.0241387
Sample 100	0.225519	0.148454	0.098362	0.222649	0.203669	0.0200333	0.0459312	0.0453467	0.0302355
Sample 101	0.249104	0.21967	0.16736	0.102432	0.190238	0.0318382	0.047389	0.0194865	0.0417896
Sample 102	0.11745	0.359064	0.163702	0.099127	0.19771	0.0323655	0.023221	0.0195984	0.0709905
Sample 103	0.146234	0.192753	0.174784	0.213697	0.177367	0.0310009	0.0259371	0.0379028	0.034188
Sample 104	0.387701	0.152072	0.173228	0.04968	0.237604	0.0411597	0.0921193	0.0118042	0.0361329
Sample 105	0.296848	0.192214	0.133401	0.138922	0.173238	0.0231101	0.0514254	0.0240666	0.0332988
Sample 106	0.303185	0.271256	0.111736	0.070444	0.198743	0.0222067	0.0602559	0.0140003	0.0539102
Sample 107	0.29299	0.197835	0.147011	0.146597	0.155828	0.0229084	0.045656	0.0228439	0.0308282
Sample 108	0.272114	0.222547	0.093768	0.160369	0.148403	0.0139155	0.0403825	0.0237992	0.0330266
Sample 109	0.208298	0.163302	0.112626	0.268997	0.225422	0.0253884	0.046955	0.0606378	0.0368119
Sample 110	0.285669	0.198561	0.155016	0.09551	0.117922	0.0182798	0.0336867	0.0112627	0.0234147
Sample 111	0.363203	0.186758	0.129259	0.070736	0.169662	0.0219303	0.0616217	0.0120012	0.0316857
Sample 112	0.191181	0.246015	0.15404	0.19052	0.132648	0.0204331	0.0253598	0.0252721	0.0326334
Sample 113	0.337059	0.123951	0.164063	0.161956	0.081513	0.0133733	0.0274747	0.0132015	0.0101036
Sample 114	0.23312	0.158582	0.172619	0.202721	0.136558	0.0235725	0.0318344	0.0276832	0.0216556
Sample 115	0.277373	0.091894	0.18736	0.17995	0.137427	0.0257483	0.0381185	0.02473	0.0126287
Sample 116	0.261253	0.195126	0.083251	0.24182	0.100561	0.0083718	0.0262719	0.0243177	0.0196221
Sample 117	0.23873	0.265491	0.150747	0.067699	0.199009	0.03	0.0475094	0.0134727	0.0528351
Sample 118	0.298675	0.260572	0.069737	0.106552	0.186083	0.0129769	0.0555783	0.0198275	0.048488
Sample 119	0.291698	0.225088	0.089747	0.143977	0.137463	0.0123369	0.0400977	0.0197915	0.0309413
Sample 120	0.330801	0.148786	0.112484	0.150551	0.176766	0.0198833	0.0584744	0.0200123	0.0203003
Sample 121	0.405075	0.138259	0.043024	0.116335	0.154437	0.0066445	0.0625586	0.03/2625	0.0213323
Sample 122	0.194581	0.179451	0.116564	0.267087	0.128282	0.0149531	0.0249612	0.0342023	0.0230203
Sample 123	0.172307	0.329174	0.146264	0.129963	0.195931	0.0286577	0.0337603	0.0234038	0.0044934
Sample 124	0.187454	0.125514	0.152410	0.129749	0.11344/	0.021733	0.0212001	0.0204919	0.0360155
Sample 125	0.303935	0.102074	0.100750	0.021222	0.10070	0.0327403	0.0847005	0.0290097	0.0196655
Sample 126	0.22474	0.103074	0.102739	0.021232	0.19079	0.0190034	0.065611	0.0151303	0.0284058
Sample 127	0.334/4	0.144923	0.142745	0.077239	0.120462	0.0219709	0.0370751	0.0244116	0.0118021
Sample 128	0.284181	0.090463	0.101155	0.18/115	0.130403	0.0210248	0.0370731	0.0244110	0.0110021

Sample 129	0.354328	0.116033	0.046756	0.247193	0.291639	0.0136359	0.1033359	0.0720911	0.0338397
Sample 130	0.256747	0.179534	0.148756	0.128953	0.135507	0.0201575	0.034791	0.017474	0.0243281
Sample 131	0.388879	0.068618	0.0899999	0.14889	0.222295	0.0200063	0.0864459	0.0330975	0.0152534
Sample 132	0.382878	0.057481	0.141189	0.178705	0.165965	0.0234324	0.0635443	0.0296588	0.0095398
Sample 133	0.312731	0.21847	0.146981	0.139394	0.176427	0.0259314	0.0551742	0.0245929	0.038544
Sample 134	0.210011	0.257108	0.0457	0.222455	0.160753	0.0073464	0.0337599	0.0357603	0.0413309
Sample 135	0.338357	0.155661	0.12992	0.150003	0.196946	0.0255872	0.0666381	0.0295425	0.0306568
Sample 136	0.27813	0.338735	0.127629	0.028368	0.167401	0.0213652	0.0465592	0.0047488	0.0567046
Sample 137	0.284102	0.118448	0.22791	0.113827	0.15868	0.0361648	0.0450813	0.0180621	0.0187953
Sample 138	0.277586	0.257404	0.123695	0.08856	0.215521	0.0266589	0.0598256	0.0190865	0.055476
Sample 139	0.313637	0.112712	0.159288	0.154794	0.175204	0.0279079	0.0549505	0.0271205	0.0197476
Sample 140	0.381754	0.147901	0.063885	0.157276	0.217527	0.0138967	0.0830418	0.0342118	0.0321725
Sample 141	0.258661	0.208012	0.175363	0.108778	0.206508	0.0362139	0.0534156	0.0224635	0.0429561
Sample 142	0.258924	0.239942	0.175263	0.090176	0.085098	0.0149145	0.0220339	0.0076738	0.0204186
Sample 143	0.119519	0.221399	0.267157	0.159749	0.099579	0.0266032	0.0119016	0.0159076	0.0220467
Sample 144	0.371037	0.191559	0.087282	0.105281	0.147742	0.0128952	0.0548177	0.0155544	0.0283013
Sample 145	0.222731	0.217683	0.069606	0.244224	0.163419	0.0113749	0.0363985	0.0399108	0.0355735
Sample 146	0.258763	0.207463	0.133395	0.129991	0.220374	0.0293968	0.0570246	0.0286466	0.0457195
Sample 147	0.245122	0.140235	0.236451	0.137878	0.202477	0.0478759	0.0496316	0.0279171	0.0283944
Sample 148	0.244038	0.14735	0.15465	0.183443	0.213954	0.033088	0.0522129	0.0392484	0.0315261
Sample 149	0.290825	0.115588	0.163723	0.154187	0.159877	0.0261755	0.0464962	0.024651	0.0184799
Sample 150	0.234831	0.289507	0.090414	0.103874	0.183615	0.0166014	0.0431185	0.0190728	0.0531578
Sample 151	0.281545	0.225096	0.169858	0.02649	0.201079	0.0341549	0.0566128	0.0053266	0.0452621
Sample 152	0.338028	0.152329	0.139345	0.056728	0.214329	0.0298657	0.0724492	0.0121585	0.0326485
Sample 153	0.37163	0.174656	0.116026	0.088907	0.171088	0.0198507	0.0635814	0.0152109	0.0298815
Sample 154	0.224844	0.178416	0.192213	0.134924	0.159124	0.0305857	0.0357781	0.0214696	0.0283903
Sample 155	0.328647	0.161212	0.117461	0.188637	0.19452	0.0228485	0.0639284	0.0366937	0.031359
Sample 156	0.210117	0.170901	0.189568	0.158295	0.178638	0.033864	0.0375349	0.0282775	0.0305294
Sample 157	0.195703	0.22559	0.201502	0.147457	0.15213	0.0306545	0.0297723	0.0224326	0.034319
Sample 158	0.349454	0.169055	0.147721	0.123345	0.253044	0.0373799	0.0884272	0.0312117	0.0427784
Sample 159	0.263918	0.095362	0.194172	0.143474	0.21492	0.0417314	0.0567213	0.0308354	0.0204952
Sample 160	0.305969	0.092391	0.239666	0.13835	0.151268	0.0362538	0.0462833	0.0209279	0.0139758
Sample 161	0.231415	0.097221	0.145409	0.22357	0.172396	0.0250679	0.039895	0.0385426	0.0167605
Sample 162	0.257898	0.261733	0.147316	0.066866	0.139406	0.0205367	0.0359525	0.0093215	0.0364872
Sample 163	0.218838	0.199963	0.144694	0.186184	0.229294	0.0331775	0.0501782	0.0426909	0.0458503
Sample 164	0.213405	0.186602	0.190788	0.179155	0.134665	0.0256925	0.0287382	0.0241259	0.0251288
Sample 165	0.276487	0.226805	0.037506	0.221745	0.19772	0.0074157	0.054667	0.0438434	0.0448439
Sample 166	0.286161	0.089836	0.208119	0.215591	0.216099	0.0449743	0.0618391	0.046589	0.0194135
Sample 167	0.153345	0.227003	0.258375	0.134176	0.262878	0.0679211	0.040311	0.0352719	0.0596741
Sample 168	0.248817	0.206304	0.119709	0.174606	0.181809	0.0217642	0.0452372	0.0317449	0.0375079
Sample 169	0.349418	0.174301	0.044115	0.178841	0.194357	0.0085741	0.0679118	0.034759	0.0338766
Sample 170	0.233339	0.179177	0.156606	0.197611	0.242071	0.0379098	0.0564846	0.0478359	0.0433736
Sample 171	0.258603	0.216031	0.092643	0.156081	0.273155	0.0253059	0.0706387	0.0426343	0.0590099
Sample 172	0.190886	0.254513	0.161521	0.170831	0.107737	0.0174018	0.0205655	0.0184048	0.02/4205
Sample 173	0.351714	0.160461	0.062074	0.10054	0.147222	0.0091387	0.05178	0.0148017	0.0236234

Sample 174	0.207003	0.199891	0.145358	0.189528	0.185979	0.0270335	0.0384982	0.0352482	0.0371755
Sample 175	0.296353	0.221773	0.069763	0.110679	0.213704	0.0149086	0.0633318	0.0236525	0.0473938
Sample 176	0.234371	0.227019	0.085095	0.204821	0.247879	0.0210933	0.0580956	0.0507708	0.0562732
Sample 177	0.232106	0.239348	0.061908	0.201436	0.113759	0.0070426	0.0264041	0.0229152	0.027228
Sample 178	0.299939	0.23695	0.134398	0.078087	0.245742	0.0330272	0.0737076	0.0191893	0.0582286
Sample 179	0.372167	0.115607	0.092833	0.169207	0.216905	0.0201359	0.0807249	0.0367018	0.0250757
Sample 180	0.222509	0.236784	0.074036	0.164328	0.190961	0.014138	0.0424905	0.0313802	0.0452165
Sample 181	0.27934	0.193811	0.154279	0.138326	0.202148	0.0311872	0.056468	0.0279623	0.0391785
Sample 182	0.358903	0.17681	0.02971	0.211378	0.222722	0.0066171	0.0799356	0.0470785	0.0393795
Sample 183	0.321256	0.199801	-0.023579	0.229229	0.134361	-0.003168	0.0431643	0.0307994	0.0268455
Sample 184	0.350916	0.16382	0.068447	0.152849	0.146971	0.0100597	0.0515745	0.0224644	0.0240768
Sample 185	0.436109	0.239741	-0.035349	0.069243	0.285847	-0.010104	0.1246604	0.0197929	0.0685292
Sample 186	0.319669	0.187677	0.12762	0.093964	0.154886	0.0197666	0.0495123	0.0145537	0.0290685
Sample 187	0.258499	0.14626	0.176802	0.12114	0.208178	0.0368063	0.0538138	0.0252187	0.0304481
Sample 188	0.267607	0.190478	0.091444	0.213118	0.187144	0.0171132	0.050081	0.0398838	0.0356468
Sample 189	0.353924	0.156623	0.145694	0.083434	0.153732	0.0223978	0.0544094	0.0128265	0.024078
Sample 190	0.235373	0.204637	0.118736	0.19616	0.222569	0.026427	0.0523867	0.0436591	0.0455459
Sample 191	0.253959	0.233152	0.089781	0.135007	0.247972	0.0222632	0.0629747	0.033478	0.0578152
Sample 192	0.400939	0.242355	-0.085446	0.135878	0.123418	-0.010546	0.0494831	0.0167698	0.029911
Sample 193	0.288582	0.14967	0.15655	0.190383	0.196873	0.0308205	0.056814	0.0374813	0.029466
Sample 194	0.29046	0.186141	0.216199	0.092863	0.217893	0.0471082	0.0632892	0.0202342	0.0405588
Sample 195	0.252132	0.242346	0.110946	0.149869	0.188568	0.0209209	0.047544	0.0282605	0.0456987
Sample 196	0.319612	0.059428	0.143743	0.208771	0.19672	0.0282771	0.0628741	0.0410694	0.0116907
Sample 197	0.280956	0.221884	0.104237	0.115877	0.105832	0.0110316	0.0297341	0.0122635	0.0234824
Sample 198	0.298827	0.231324	0.069121	0.119039	0.178594	0.0123446	0.0533687	0.0212597	0.0413131
Sample 199	0.261186	0.221565	0.119003	0.078612	0.160387	0.0190865	0.0418908	0.0126083	0.0355361
Sample 200	0.193321	0.186991	0.151926	0.218757	0.255795	0.0388619	0.0494505	0.0559569	0.0478314
Sample 201	0.312687	0.159978	0.002645	0.174432	0.183709	0.0004859	0.0574434	0.0320447	0.0293894
Sample 202	0.25526	0.132842	0.18879	0.193708	0.199865	0.0377325	0.0510175	0.0387154	0.0265505
Sample 203	0.32801	0.152073	0.120718	0.135397	0.195727	0.0236278	0.0642004	0.0265008	0.0297648
Sample 204	0.208488	0.103892	0.09731	0.223258	0.253126	0.0246317	0.0527737	0.0565124	0.0262978
Sample 205	0.359235	0.229121	0.034544	0.083242	0.175419	0.0060597	0.0630166	0.0146022	0.0401922
Sample 206	0.357949	0.136054	0.068981	0.197303	0.158414	0.0109276	0.0567041	0.0312556	0.0215529
Sample 207	0.29307	0.260726	0.120348	0.119011	0.247496	0.0297856	0.0725337	0.0294547	0.0645286
Sample 208	0.284823	0.245775	0.103499	0.148021	0.134581	0.013929	0.0383318	0.0199208	0.0330766
Sample 209	0.298624	0.178069	0.066648	0.21579	0.130691	0.0087103	0.0390275	0.0282018	0.023272
Sample 210	0.331873	0.218699	0.005449	0.13291	0.189601	0.0010331	0.0629235	0.0251999	0.0414655
Sample 211	0.207455	0.148988	0.256025	0.150704	0.148056	0.037906	0.030715	0.0223126	0.0220586
Sample 212	0.328898	0.1552	0.145486	0.174285	0.206282	0.0300111	0.0678457	0.0359519	0.032015
Sample 213	0.368651	0.105373	0.07634	0.137822	0.21881	0.016704	0.0806645	0.0301568	0.0230567
Sample 214	0.113154	0.283872	0.233136	0.148653	0.253696	0.0591457	0.0287067	0.0377127	0.0720172
Sample 215	0.399163	0.18491	0.065365	0.046574	0.168542	0.0110167	0.0672757	0.0078497	0.0311651
Sample 216	0.285539	0.21778	0.10623	0.1173	0.221179	0.0234958	0.0631552	0.0259443	0.0481684
Sample 217	0.234732	0.190578	0.14254	0.204002	0.167313	0.0238488	0.0392737	0.0341322	0.0318862
Sample 218	0.217226	0.177052	0.224038	0.126873	0.177068	0.03967	0.0384638	0.0224651	0.0313502

Sample 219	0.369154	0.202601	0.033518	0.154808	0.178858	0.005995	0.0660261	0.0276886	0.0362368
Sample 220	0.332916	0.103693	0.226796	0.117694	0.157205	0.0356535	0.0523361	0.0185021	0.0163011
Sample 221	0.297474	0.176604	0.10151	0.185515	0.174519	0.0177154	0.0519149	0.0323759	0.0308208
Sample 222	0.280467	0.158607	0.142595	0.148937	0.173868	0.0247927	0.0487642	0.0258954	0.0275767
Sample 223	0.379262	0.109762	0.101648	0.09308	0.176669	0.0179581	0.0670038	0.0164444	0.0193915
Sample 224	0.295842	0.093558	0.210013	0.155743	0.209447	0.0439866	0.0619632	0.0326199	0.0195954
Sample 225	0.286519	0.123899	0.198313	0.109169	0.140579	0.0278786	0.0402786	0.0153469	0.0174176
Sample 226	0.288609	0.242933	0.158299	0.031199	0.153646	0.024322	0.0443436	0.0047936	0.0373257
Sample 227	0.249186	0.221091	0.109885	0.182127	0.16343	0.0179585	0.0407245	0.029765	0.0361329
Sample 228	0.224152	0.124105	0.135379	0.236908	0.233091	0.0315556	0.0522478	0.0552211	0.0289278
Sample 229	0.266277	0.235307	0.209244	0.079452	0.154461	0.03232	0.0411294	0.0122722	0.0363458
Sample 230	0.213453	0.261826	0.167994	0.147691	0.235215	0.0395147	0.0502073	0.0347391	0.0615854
Sample 231	0.404645	0.017253	0.149606	0.151074	0.141336	0.0211447	0.0571909	0.0213522	0.0024385
Sample 232	0.207964	0.159797	0.127889	0.192078	0.19505	0.0249447	0.0405634	0.0374648	0.0311684
Sample 233	0.414688	0.264173	0.035221	0.059465	0.220508	0.0077665	0.091442	0.0131125	0.0582523
Sample 234	0.253565	0.096693	0.197815	0.177092	0.235731	0.0466311	0.0597731	0.0417461	0.0227935
Sample 235	0.172815	0.243576	0.196002	0.139574	0.214885	0.0421179	0.0371354	0.0299924	0.0523408
Sample 236	0.295768	0.226293	0.043153	0.180869	0.156635	0.0067593	0.0463276	0.0283304	0.0354454
Sample 237	0.229775	0.203228	0.201636	0.139035	0.163599	0.0329874	0.037591	0.022746	0.0332479
Sample 238	0.338338	0.164557	0.080341	0.193446	0.225581	0.0181234	0.0763226	0.0436377	0.0371209
Sample 239	0.259086	0.255763	0.102863	0.139494	0.112352	0.0115569	0.0291088	0.0156724	0.0287355
Sample 240	0.245735	0.243781	0.268726	0.017648	0.197945	0.053193	0.048642	0.0034933	0.0482552
Sample 241	0.262039	0.259046	0.068712	0.198908	0.165401	0.011365	0.0433415	0.0328996	0.0428465
Sample 242	0.314519	0.141468	0.109345	0.199409	0.240137	0.0262578	0.0755276	0.0478855	0.0339717
Sample 243	0.257233	0.240053	0.173939	0.09019	0.17732	0.0308429	0.0456126	0.0159925	0.0425662
Sample 244	0.211751	0.208747	0.168906	0.096302	0.189282	0.0319709	0.0400807	0.0182282	0.039512
Sample 245	0.138993	0.292052	0.19642	0.167398	0.166218	0.0326485	0.0231031	0.0278246	0.0485443
Sample 246	0.264067	0.280635	0.115952	0.071328	0.175818	0.0203864	0.0464277	0.0125407	0.0493407
Sample 247	0.31838	0.162347	0.215928	0.084685	0.163905	0.0353917	0.0521841	0.0138803	0.0266095
Sample 248	0.277971	0.141723	0.21142	0.09784	0.159367	0.0336934	0.0442994	0.0155925	0.022586
Sample 249	0.380471	0.135294	0.089133	0.138758	0.164925	0.0147003	0.0627492	0.0228847	0.0223134
Sample 250	0.410095	0.225703	0.058511	0.073795	0.083237	0.0048703	0.0341351	0.0061425	0.0187868
Sample 251	0.378006	0.097908	0.116696	0.16229	0.199892	0.0233266	0.0755604	0.0324405	0.019571
Sample 252	0.242279	0.170229	0.166921	0.205634	0.177825	0.0296827	0.0430833	0.0365669	0.030271
Sample 253	0.189986	0.209315	0.276418	0.100938	0.180912	0.0500073	0.0343707	0.0182609	0.0378676
Sample 254	0.222089	0.307507	0.128179	0.10141	0.147061	0.0188501	0.0326606	0.0149135	0.0452223
Sample 255	0.287409	0.222336	0.131576	0.11118	0.204565	0.0269158	0.0587938	0.0227435	0.0454822
Sample 256	0.175758	0.195676	0.093326	0.208105	0.226717	0.0211586	0.0398473	0.0471809	0.0443631
Sample 257	0.348129	0.167061	0.061881	0.086114	0.282488	0.0174806	0.0983423	0.0243262	0.0471927
Sample 258	0.178363	0.240248	0.210537	0.095874	0.178988	0.0376836	0.0319248	0.0171603	0.0430015
Sample 259	0.302156	0.145364	0.102983	0.123628	0.182955	0.0188413	0.055281	0.0226184	0.0265951
Sample 260	0.178651	0.163634	0.276349	0.12557	0.199856	0.05523	0.0357045	0.0250959	0.0327032
Sample 261	0.210502	0.279884	0.06176	0.126228	0.286915	0.0177199	0.0603962	0.0362167	0.0803029
Sample 262	0.237466	0.220473	0.159279	0.181001	0.267485	0.0426047	0.0635186	0.0484151	0.0589732
Sample 263	0.246851	0.221058	0.041641	0.177797	0.19932	0.0082999	0.0492023	0.0354385	0.0440613

Sample 264	0.225305	0.217202	0.146074	0.188476	0.12379	0.0180825	0.0278905	0.0233314	0.0268874
Sample 265	0.33914	0.191481	0.086433	0.075418	0.153051	0.0132287	0.0519057	0.0115428	0.0293064
Sample 266	0.285996	0.224965	0.077207	0.169672	0.182932	0.0141236	0.0523178	0.0310384	0.0411533
Sample 267	0.174937	0.233969	0.210486	0.095683	0.1695	0.0356774	0.0296518	0.0162183	0.0396577
Sample 268	0.422809	0.107247	0.122288	0.087586	0.17274	0.021124	0.073036	0.0151296	0.0185258
Sample 269	0.27114	0.166691	0.210699	0.158134	0.149033	0.0314011	0.0404088	0.0235672	0.0248425
Sample 270	0.35088	0.123993	0.150734	0.087343	0.166708	0.0251286	0.0584945	0.0145608	0.0206706
Sample 271	0.218319	0.232204	0.152659	0.175276	0.157491	0.0240424	0.0343833	0.0276044	0.03657
Sample 272	0.246615	0.228067	0.105445	0.198379	0.222966	0.0235106	0.0549868	0.0442318	0.0508512
Sample 273	0.271566	0.160179	0.184707	0.095484	0.214774	0.0396703	0.0583253	0.0205075	0.0344023
Sample 274	0.324352	0.098637	0.033918	0.249456	0.136564	0.004632	0.0442948	0.0340667	0.0134703
Sample 275	0.201398	0.17098	0.122697	0.249412	0.202065	0.0247928	0.0406955	0.0503974	0.0345491
Sample 276	0.113082	0.276587	0.195033	0.21331	0.214753	0.0418839	0.0242847	0.045809	0.0593979
Sample 277	0.279358	0.19207	0.124248	0.168755	0.160974	0.0200007	0.0449694	0.0271652	0.0309183
Sample 278	0.248703	0.252979	0.148536	0.102043	0.209785	0.0311606	0.0521742	0.0214071	0.0530712
Sample 279	0.210051	0.288663	0.029036	0.191684	0.201973	0.0058645	0.0424246	0.038715	0.0583021
Sample 280	0.347197	0.186845	-0.008351	0.164945	0.124344	-0.001038	0.0431719	0.0205099	0.0232331
Sample 281	0.272795	0.234751	0.107226	0.147903	0.224144	0.0240341	0.0611454	0.0331516	0.052618
Sample 282	0.222909	0.190867	0.160886	0.195287	0.152994	0.0246146	0.0341037	0.0298777	0.0292015
Sample 283	0.3727	0.096973	0.119194	0.168196	0.171538	0.0204463	0.0639322	0.028852	0.0166346
Sample 284	0.122632	0.25614	0.215033	0.210714	0.166415	0.0357847	0.0204078	0.035066	0.0426255
Sample 285	0.255618	0.248099	0.073127	0.151986	0.204748	0.0149726	0.0523373	0.0311188	0.0507978
Sample 286	0.370229	0.160274	0.08785	0.147522	0.111605	0.0098045	0.0413194	0.0164642	0.0178874
Sample 287	0.291521	0.153807	0.131771	0.1786	0.194121	0.0255795	0.0565903	0.03467	0.0298572
Sample 288	0.393713	0.141433	0.054671	0.116796	0.165225	0.009033	0.0650512	0.0192976	0.0233683
Sample 289	0.399375	0.226517	0.092243	-0.004235	0.231122	0.0213194	0.0923043	-0.000979	0.0523531
Sample 290	0.259535	0.288313	0.076844	0.141619	0.192342	0.0147803	0.0499195	0.0272393	0.0554547
Sample 291	0.198794	0.20229	0.010643	0.24213	0.206582	0.0021987	0.0410673	0.0500197	0.0417895
Sample 292	0.327237	0.239071	0.088349	0.082794	0.215617	0.0190495	0.0705579	0.0178518	0.0515478
Sample 293	0.338207	0.160744	0.063461	0.185757	0.163058	0.0103478	0.0551474	0.0302892	0.0262106
Sample 294	0.245814	0.206534	0.146851	0.178634	0.171726	0.0252181	0.0422127	0.0306761	0.0354673
Sample 295	0.260911	0.174157	0.142769	0.186556	0.150187	0.021442	0.0391854	0.0280183	0.0261561
Sample 296	0.297752	0.166426	0.159576	0.09894	0.15288	0.024396	0.0455203	0.0151259	0.0254432
Sample 297	0.203666	0.187016	0.144733	0.183144	0.147464	0.0213429	0.0300334	0.0270071	0.0275781
Sample 298	0.320045	0.196232	0.075041	0.165858	0.169786	0.0127409	0.0543392	0.0281604	0.0333174
Sample 299	0.303503	0.207867	0.126072	0.107715	0.161721	0.0203885	0.0490828	0.0174198	0.0336165
Sample 300	0.180161	0.286088	0.151179	0.058606	0.110886	0.0167636	0.0199773	0.0064986	0.0317232
Sample 301	0.283616	0.268082	-0.026566	0.160831	0.20253	-0.00538	0.0574407	0.0325731	0.0542946
Sample 302	0.168094	0.212972	0.178281	0.196415	0.187571	0.0334403	0.0315296	0.0368418	0.0399474
Sample 303	0.261476	0.193208	0.105607	0.199513	0.164625	0.0173856	0.0430455	0.0328448	0.0318069
Sample 304	0.426918	0.070037	0.038137	0.222084	0.160291	0.006113	0.0684311	0.0355981	0.0112263
Sample 305	0.272212	0.138894	0.164986	0.209675	0.205166	0.0338495	0.0558486	0.0430182	0.0284963
Sample 306	0.314317	0.168087	0.014134	0.155737	0.179957	0.0025435	0.0565635	0.028026	0.0302484
Sample 307	0.288296	0.210218	0.16471	0.122813	0.180208	0.0296821	0.0519532	0.0221319	0.037883
Sample 308	0.279952	0.277095	0.074057	0.139301	0.126257	0.0093502	0.0353459	0.0175877	0.0349852

Sample 309	0.290561	0.161323	0.176758	0.156429	0.191643	0.0338744	0.055684	0.0299785	0.0309164
Sample 310	0.243761	0.110025	0.155488	0.203176	0.201266	0.0312944	0.0490608	0.0408924	0.0221443
Sample 311	0.304608	0.256734	0.094463	0.14666	0.17414	0.0164498	0.0530444	0.0255394	0.0447077
Sample 312	0.316225	0.141715	0.159908	0.083749	0.204229	0.0326579	0.0645823	0.017104	0.0289423
Sample 313	0.306023	0.166229	0.050963	0.158486	0.232915	0.01187	0.0712773	0.0369138	0.0387172
Sample 314	0.293593	0.156604	0.088692	0.239538	0.236844	0.0210062	0.0695357	0.0567331	0.0370907
Sample 315	0.161365	0.235634	0.154491	0.189688	0.14037	0.0216859	0.0226508	0.0266265	0.0330759
Sample 316	0.227891	0.21027	0.097497	0.179313	0.197476	0.0192533	0.045003	0.03541	0.0415233
Sample 317	0.402361	0.095447	0.102633	0.121277	0.158002	0.0162162	0.0635738	0.019162	0.0150808
Sample 318	0.19753	0.298436	0.059091	0.224903	0.178178	0.0105287	0.0351955	0.0400728	0.0531747
Sample 319	0.161293	0.232615	0.125368	0.189285	0.18998	0.0238174	0.0306424	0.0359604	0.0441922
Sample 320	0.358373	0.186857	0.124689	0.073532	0.210626	0.0262627	0.0754827	0.0154878	0.0393569
Sample 321	0.312719	0.287092	0.046149	0.074299	0.254015	0.0117225	0.0794353	0.0188731	0.0729257
Sample 322	0.226498	0.149507	0.318099	0.121299	0.206108	0.0655627	0.046683	0.0250007	0.0308146
Sample 323	0.279425	0.259121	0.036496	0.102301	0.191225	0.0069789	0.053433	0.0195625	0.0495504
Sample 324	0.206202	0.161142	0.11517	0.185251	0.139212	0.016033	0.0287058	0.0257892	0.0224329
Sample 325	0.245136	0.148758	0.203892	0.206066	0.203127	0.041416	0.0497937	0.0418576	0.0302168
Sample 326	0.318848	0.118795	0.119301	0.180627	0.228978	0.0273173	0.0730092	0.0413596	0.0272014
Sample 327	0.214163	0.314163	0.077257	0.122794	0.200402	0.0154825	0.0429187	0.0246082	0.0629589
Sample 328	0.30441	0.150346	0.059051	0.222882	0.186648	0.0110218	0.0568175	0.0416005	0.0280618
Sample 329	0.216307	0.211267	0.136687	0.126773	0.220923	0.0301973	0.0477872	0.0280071	0.0466737
Sample 330	0.290605	0.221338	0.025788	0.212731	0.210088	0.0054177	0.0610526	0.0446922	0.0465005
Sample 331	0.333878	0.229977	0.108998	0.118739	0.198618	0.021649	0.0663142	0.0235837	0.0456776
Sample 332	0.140304	0.273531	0.163007	0.164677	0.259176	0.0422475	0.0363634	0.0426803	0.0708927
Sample 333	0.318575	0.183364	0.194172	0.068785	0.177688	0.034502	0.056607	0.0122223	0.0325816
Sample 334	0.20235	0.175502	0.156121	0.151265	0.182293	0.0284598	0.036887	0.0275746	0.0319928
Sample 335	0.37445	0.143025	0.061431	0.172913	0.186488	0.0114561	0.0698304	0.0322462	0.0266724
Sample 336	0.349088	0.177508	0.070678	0.156921	0.189467	0.0133911	0.0661407	0.0297314	0.0336319
Sample 337	0.324184	0.263438	0.048154	0.143425	0.231874	0.0111657	0.0751698	0.0332565	0.0610844
Sample 338	0.271137	0.208032	0.109098	0.092445	0.206382	0.0225159	0.0559578	0.019079	0.0429341
Sample 339	0.327917	0.028593	0.136565	0.24701	0.204037	0.0278643	0.0669072	0.0503992	0.005834
Sample 340	0.185502	0.246453	0.104842	0.207878	0.199318	0.0208969	0.0369739	0.0414338	0.0491225
Sample 341	0.314892	0.108052	0.124239	0.172652	0.123965	0.0154013	0.0390356	.0.0214028	0.0133947
Sample 342	0.324266	0.205728	0.133164	0.075215	0.196263	0.0261352	0.0636414	0.0147619	0.0403768
Sample 343	0.246112	0.228048	0.091431	0.16332	0.1784	0.0163113	0.0439064	0.0291363	0.0406838
Sample 344	0.330887	0.232332	0.093562	0.062523	0.233129	0.021812	0.0771394	0.0145759	0.0541633
Sample 345	0.285132	0.137459	0.169327	0.145534	0.145155	0.0245787	0.0413883	0.021125	0.0199529
Sample 346	0.320106	0.099801	0.161771	0.190901	0.211068	0.0341447	0.0675641	0.0402931	0.0210648
Sample 347	0.270996	0.111527	0.136345	0.264004	0.15908	0.0216898	0.04311	0.0419978	0.0177417
Sample 348	0.181006	0.232316	0.135257	0.202297	0.122614	0.0165844	0.0221939	0.0248044	0.0284852
Sample 349	0.279442	0.150896	0.151413	0.191833	0.238127	0.0360555	0.0665427	0.0456806	0.0359324
Sample 350	0.189921	0.335633	0.061654	0.172225	0.281488	0.0173549	0.0534605	0.0484793	0.0944767
Sample 351	0.225494	0.186611	0.104945	0.19202	0.237286	0.024902	0.0535066	0.0455637	0.0442802
Sample 352	0.39421	0.180376	0.096033	0.094136	0.211723	0.0203324	0.0834633	0.0199308	0.0381897
Sample 353	0.179592	0.222245	0.114888	0.220097	0.175565	0.0201703	0.0315301	0.0386413	0.0390184

.

Sample 354	0.228468	0.189098	0.189155	0.153871	0.174078	0.0329277	0.0397713	0.0267856	0.0329178
Sample 355	0.230555	0.167738	0.170338	0.151973	0.169794	0.0289224	0.0391469	0.0258041	0.0284809
Sample 356	0.233175	0.206619	0.207965	0.089085	0.245838	0.0511257	0.0573233	0.0219005	0.0507948
Sample 357	0.326922	0.296157	0.048459	0.047042	0.191933	0.0093009	0.0627471	0.0090289	0.0568423
Sample 358	0.291453	0.248545	0.166296	0.060443	0.228386	0.0379797	0.0665638	0.0138043	0.0567642
Sample 359	0.229301	0.163655	0.106103	0.242322	0.170371	0.0180769	0.0390662	0.0412846	0.0278821
Sample 360	0.248025	0.150176	0.187791	0.180126	0.180364	0.0338707	0.0447348	0.0324882	0.0270863
Sample 361	0.204654	0.103667	0.142482	0.258507	0.184384	0.0262714	0.0377349	0.0476646	0.0191145
Sample 362	0.262347	0.137797	0.203615	0.166964	0.231123	0.0470601	0.0606344	0.0385892	0.0318481
Sample 363	0.277223	0.122193	0.073525	0.252372	0.193534	0.0142296	0.0536521	0.0488426	0.0236485
Sample 364	0.331855	0.172205	0.094148	0.139138	0.101489	0.009555	0.0336796	0.014121	0.0174769
Sample 365	0.271011	0.181966	0.134494	0.125036	0.174924	0.0235262	0.0474063	0.0218718	0.0318302
Sample 366	0.241116	0.160165	0.192047	0.14573	0.21503	0.0412959	0.0518472	0.0313363	0.0344403
Sample 367	0.276708	0.121632	0.222009	0.152029	0.138838	0.0308233	0.0384176	0.0211074	0.0168871
Sample 368	0.14987	0.189119	0.186898	0.221619	0.196307	0.0366894	0.0294205	0.0435054	0.0371254
Sample 369	0.337361	0.220912	0.104574	0.07549	0.148442	0.0155232	0.0500785	0.0112059	0.0327926
Sample 370	0.414586	0.200156	0.069162	0.052593	0.144219	0.0099745	0.0597912	0.0075849	0.0288663
Sample 371	0.160023	0.252878	0.149232	0.154786	0.147706	0.0220425	0.0236364	0.0228628	0.0373516
Sample 372	0.203478	0.075986	0.289199	0.24838	0.196906	0.056945	0.040066	0.0489075	0.0149621
Sample 373	0.180742	0.169585	0.252908	0.165292	0.139553	0.0352941	0.0252231	0.023067	0.0236661
Sample 374	0.248106	0.192913	0.135684	0.17175	0.258775	0.0351116	0.0642036	0.0444446	0.0499211
Sample 375	0.308725	0.205206	0.017656	0.17159	0.191894	0.0033881	0.0592425	0.0329271	0.0393778
Sample 376	0.233744	0.143063	0.075562	0.266007	0.194346	0.0146852	0.0454272	0.0516974	0.0278037
Sample 377	0.112832	0.26085	0.194235	0.203634	0.253428	0.0492246	0.0285948	0.0516066	0.0661067
Sample 378	0.171826	0.295272	0.143163	0.140405	0.139514	0.0199732	0.0239721	0.0195885	0.0411946
Sample 379	0.275854	0.152451	0.164037	0.1635	0.230482	0.0378076	0.0635794	0.0376838	0.0351372
Sample 380	0.333405	0.17207	0.056953	0.187401	0.214514	0.0122172	0.07152	0.0402001	0.0369114
Sample 381	0.244911	0.146522	0.2288	0.177245	0.180208	0.0412316	0.0441349	0.031941	0.0264044
Sample 382	0.259073	0.21114	0.041429	0.238737	0.157269	0.0065155	0.0407442	0.0375459	0.0332058
Sample 383	0.234548	0.174545	0.145409	0.213202	0.204662	0.0297597	0.0480031	0.0436343	0.0357227
Sample 384	0.339878	0.217074	-0.031105	0.159488	0.234076	-0.007281	0.0795573	0.0373323	0.0508118
Sample 385	0.256511	0.186192	0.163457	0.171127	0.166532	0.0272208	0.0427173	0.0284981	0.0310069
Sample 386	0.293863	0.186065	0.060326	0.226405	0.124774	0.0075271	0.0366665	0.0282495	0.0232161
Sample 387	0.35279	0.209629	0.050331	0.070987	0.146241	0.0073605	0.0515924	0.0103812	0.0306564
Sample 388	0.336554	0.163346	0.028691	0.17381	0.155712	0.0044675	0.0524055	0.0270643	0.0254349
Sample 389	0.251659	0.179424	0.15758	0.189935	0.220936	0.0348151	0.0556005	0.0419635	0.0396412
Sample 390	0.24439	0.185976	0.115418	0.201897	0.156272	0.0180366	0.0381913	0.0315508	0.0290628
Sample 391	0.282169	0.232585	0.057294	0.165404	0.219805	0.0125935	0.0620222	0.0363566	0.0511233
Sample 392	0.268136	0.227805	0.126082	0.166096	0.237865	0.0299905	0.0637802	0.0395084	0.0541868
Sample 393	0.319358	0.131871	0.05904	0.190702	0.175428	0.0103573	0.0560243	0.0334545	0.0231339
Sample 394	0.307875	0.177859	0.185641	0.140998	0.178988	0.0332275	0.0551059	0.025237	0.0318346
Sample 395	0.275606	0.134389	0.235997	0.11049	0.246034	0.0580633	0.0678084	0.0271843	0.0330643
Sample 396	0.234853	0.187767	0.127394	0.215683	0.156649	0.0199561	0.0367895	0.0337865	0.0294135
Sample 397	0.330065	0.191601	0.185838	0.025947	0.147025	0.0273228	0.0485278	0.0038149	0.0281701
Sample 398	0.215467	0.200908	0.086993	0.178744	0.201424	0.0175225	0.0434002	0.0360033	0.0404677

Sample 399	0.289848	0.136721	0.201872	0.133169	0.167037	0.0337201	0.0484153	0.0222442	0.0228375
Sample 400	0.212145	0.148891	0.173681	0.220759	0.193267	0.0335668	0.0410006	0.0426654	0.0287757
Sample 401	0.216658	0.159048	0.30343	0.096536	0.163019	0.0494649	0.0353194	0.0157372	0.0259278
Sample 402	0.289631	0.094871	0.175912	0.176306	0.176012	0.0309626	0.0509785	0.031032	0.0166984
Sample 403	0.293144	0.138295	0.116959	0.223255	0.179752	0.0210236	0.0526932	0.0401305	0.0248588
Sample 404	0.343531	0.220578	0.054202	0.108154	0.168783	0.0091484	0.0579822	0.0182546	0.0372298
Sample 405	0.239611	0.26975	0.122294	0.146145	0.215489	0.026353	0.0516335	0.0314926	0.0581282
Sample 406	0.339404	0.159451	0.105909	0.109275	0.259317	0.027464	0.0880132	0.0283369	0.0413484
Sample 407	0.324918	0.250926	0.104989	0.074085	0.206035	0.0216314	0.0669445	0.0152641	0.0516995
Sample 408	0.376594	0.208584	0.058887	0.104423	0.235343	0.0138586	0.0886288	0.0245752	0.0490888
Sample 409	0.22491	0.130231	0.105493	0.296141	0.251043	0.0264833	0.0564621	0.0743441	0.0326936
Sample 410	0.373973	0.088985	0.19354	0.162011	0.191194	0.0370037	0.0715014	0.0309755	0.0170134
Sample 411	0.320512	0.162319	0.181754	0.128055	0.170421	0.0309747	0.054622	0.0218233	0.0276626
Sample 412	0.352447	0.233085	0.120226	0.102935	0.18082	0.0217393	0.0637295	0.0186127	0.0421464
Sample 413	0.274371	0.095918	0.185547	0.214671	0.22104	0.0410133	0.060647	0.0474509	0.0212017
Sample 414	0.250746	0.171988	0.159243	0.20752	0.178792	0.0284714	0.0448314	0.0371029	0.0307501
Sample 415	0.268392	0.05722	0.220872	0.176812	0.15203	0.0335792	0.0408036	0.0268807	0.0086992
Sample 416	0.176096	0.191661	0.218885	0.216074	0.182407	0.0399262	0.0321211	0.0394134	0.0349603
Sample 417	0.233571	0.118626	0.190004	0.214259	0.124836	0.0237193	0.0291581	0.0267472	0.0148088
Sample 418	0.234091	0.235438	0.058103	0.164109	0.167538	0.0097345	0.0392191	0.0274945	0.0394448
Sample 419	0.196867	0.206371	0.152581	0.152666	0.188764	0.0288018	0.0371614	0.0288178	0.0389554
Sample 420	0.332212	0.172483	0.067914	0.148472	0.132512	0.0089994	0.0440221	0.0196743	0.0228561
Sample 421	0.281154	0.16788	0.13209	0.189027	0.163015	0.0215327	0.0458323	0.0308142	0.027367
Sample 422	0.150192	0.209455	0.212893	0.197578	0.080516	0.0171413	0.0120929	0.0159082	0.0168645
Sample 423	0.181984	0.191022	0.224972	0.160409	0.113896	0.0256234	0.0207272	0.0182699	0.0217566
Sample 424	0.369756	0.131566	0.124692	0.122268	0.235979	0.0294247	0.0872547	0.0288527	0.0310468
Sample 425	0.270921	0.157635	0.153427	0.178664	0.132491	0.0203277	0.0358946	0.0236714	0.0208852
Sample 426	0.261535	0.255429	0.049712	0.199559	0.140659	0.0069924	0.0367873	0.0280698	0.0359284
Sample 427	0.365126	0.116854	0.065831	0.238695	0.233933	0.0154	0.085415	0.0558386	0.027336
Sample 428	0.345039	0.175057	0.00561	0.202421	0.21434	0.0012024	0.0739557	0.0433869	0.0375217
Sample 429	0.315439	0.182371	0.037529	0.170739	0.206336	0.0077436	0.0650864	0.0352296	0.0376297
Sample 430	0.288711	0.194094	0.12275	0.146027	0.138494	0.0170001	0.0399847	0.0202239	0.0268809
Sample 431	0.111438	0.180546	0.289009	0.194588	0.089054	0.0257374	0.009924	0.0173288	0.0160783
Sample 432	0.305514	0.177709	0.061803	0.15893	0.203991	0.0126073	0.0623221	0.0324203	0.036251
Sample 433	0.267817	0.162535	0.100559	0.193593	0.161135	0.0162036	0.0431547	0.0311946	0.0201901
Sample 434	0.29286	0.247151	0.120182	0.052005	0.162474	0.0195265	0.0473821	0.0084493	0.0401330
Sample 435	0.179623	0.277082	0.234428	0.15482	0.113172	0.0265307	0.0203283	0.01/5215	0.0313379
Sample 436	0.240635	0.147612	0.154387	0.140283	0.180482	0.0278041	0.0434303	0.0233180	0.0200413
Sample 437	0.350048	0.232011	-0.017621	0.18213	0.180301	-0.003178	0.0031313	0.0320473	0.0325011
Sample 438	0.352941	0.164468	0.112362	0.160612	0.162209	0.0229489	0.072085	0.0150455	0.0380311
Sample 439	0.361861	0.232894	0.019737	0.102013	0.103298	0.003223	0.0390912	0.0461643	0.0697964
Sample 440	0.131641	0.281199	0.159322	0.10000	0.167022	0.0393433	0.0320740	0.0213317	0.0346781
Sample 441	0.244468	0.200301	0.20025	0.12/020	0.107932	0.0148663	0.0611792	0.0335403	0.0489086
Sample 442	0.293090	0.20479	0.071307	0.101015	0.200300	0.034975	0.0373730	0.0245053	0.0670161
Sample 443	0.183406	0.32887	0.171143	0.120097	0.203777	0.034873	0.0373739	0.02-13933	0.0070101

Sample 444	0.121283	0.206906	0.261727	0.106338	0.158244	0.0414167	0.0191923	0.0168274	0.0327416
Sample 445	0.173253	0.196379	0.171602	0.210496	0.220774	0.0378853	0.0382498	0.046472	0.0433554
Sample 446	0.341628	0.169712	0.149271	0.146239	0.171943	0.0256661	0.0587405	0.0251448	0.0291808
Sample 447	0.294218	0.096644	0.209216	0.144475	0.147198	0.0307962	0.0433083	0.0212664	0.0142258
Sample 448	0.334577	0.18874	0.131054	0.114008	0.180146	0.0236089	0.0602727	0.0205381	0.0340008
Sample 449	0.294731	0.146629	0.163846	0.148958	0.24061	0.039423	0.0709152	0.0358408	0.0352804
Sample 450	0.230729	0.095486	0.141781	0.310036	0.185553	0.0263079	0.0428125	0.0575281	0.0177177
Sample 451	0.417891	0.120105	0.083058	0.111623	0.137443	0.0114157	0.0574362	0.0153418	0.0165076
Sample 452	0.205508	0.272262	0.153678	0.153669	0.248447	0.0381808	0.0510578	0.0381786	0.0676427
Sample 453	0.333298	0.142237	0.085054	0.141678	0.188546	0.0160366	0.062842	0.0267128	0.0268182
Sample 454	0.108168	0.313945	0.111278	0.191392	0.232349	0.0258553	0.0251327	0.0444697	0.0729448
Sample 455	0.196849	0.319838	0.095638	0.164784	0.163066	0.0155953	0.0320994	0.0268707	0.0521547
Sample 456	0.245051	0.161686	0.099993	0.187281	0.205701	0.0205687	0.0504072	0.0385239	0.033259
Sample 457	0.374918	0.188236	-0.081444	0.204632	0.231228	-0.018832	0.0866915	0.0473166	0.0435254
Sample 458	0.25073	0.150291	0.150683	0.250188	0.164625	0.0248062	0.0412764	0.0411872	0.0247417
Sample 459	0.351546	0.178122	0.007479	0.15892	0.216061	0.0016159	0.0759554	0.0343364	0.0384852
Sample 460	0.236298	0.293225	0.182172	0.044074	0.204682	0.0372873	0.0483659	0.0090212	0.0600179
Sample 461	0.203088	0.301108	0.127333	0.126813	0.150408	0.0191519	0.0305461	0.0190737	0.0452891
Sample 462	0.304989	0.188844	0.102072	0.165071	0.15887	0.0162162	0.0484536	0.0262248	0.0300016
Sample 463	0.302458	0.251995	0.161121	0.094613	0.164558	0.0265137	0.0497719	0.0155693	0.0414678
Sample 464	0.2702	0.267448	0.098425	0.067712	0.214549	0.021117	0.0579711	0.0145275	0.0573807
Sample 465	0.341666	0.170733	0.101782	0.160643	0.199545	0.0203101	0.0681777	0.0320555	0.0340689
Sample 466	0.272941	0.236259	0.122709	0.130978	0.11894	0.014595	0.0324636	0.0155785	0.0281006
Sample 467	0.147165	0.263105	0.14763	0.211464	0.172344	0.0254431	0.025363	0.0364446	0.0453446
Sample 468	0.371254	0.251496	0.022375	0.089996	0.212544	0.0047557	0.0789078	0.0191281	0.053454
Sample 469	0.225173	0.227404	0.097786	0.168307	0.234751	0.0229554	0.0528596	0.0395102	0.0533833
Sample 470	0.339647	0.208069	0.120068	0.095957	0.177961	0.0213674	0.0604439	0.0170766	0.0370282
Sample 471	0.265224	0.180604	0.094936	0.232648	0.175406	0.0166523	0.0465219	0.0408079	0.031679
Sample 472	0.289534	0.168234	0.165649	0.120215	0.230896	0.0382477	0.0668522	0.0277572	0.0388446
Sample 473	0.314648	0.16207	0.086088	0.174332	0.126356	0.0108777	0.0397577	0.0220279	0.0204785
Sample 474	0.257221	0.220556	0.111127	0.176791	0.060656	0.0067405	0.015602	0.0107234	0.013378
Sample 475	0.292088	0.254898	0.113365	0.119706	0.171829	0.0194794	0.0501892	0.020569	0.0437989
Sample 476	0.191569	0.157821	0.099544	0.255503	0.143904	0.0143248	0.0275675	0.0367679	0.0227111
Sample 477	0.367198	0.227577	0.038528	0.124679	0.174688	0.0067304	0.0641451	0.0217799	0.039755
Sample 478	0.176405	0.25032	0.019213	0.203778	0.246956	0.0047448	0.0435643	0.0503242	0.061818
Sample 479	0.19558	0.139456	0.19125	0.220604	0.138849	0.0265549	0.0271561	0.0306306	0.0193633
Sample 480	0.349853	0.226108	0.057587	0.135475	0.229996	0.0132448	0.0804648	0.0311587	0.0520039
Sample 481	0.353132	0.241782	0.064307	0.09116	0.155857	0.0100227	0.0550381	0.0142079	0.0376834
Sample 482	0.302917	0.333787	0.029096	0.107136	0.24549	0.0071428	0.0743631	0.0263008	0.0819414
Sample 483	0.337778	0.159201	0.112574	0.195681	0.150991	0.0169977	0.0510014	0.0295461	0.0240379
Sample 484	0.218611	0.224633	0.124078	0.203638	0.244513	0.0303387	0.0534532	0.0497921	0.0549257
Sample 485	0.307692	0.174084	0.130687	0.126099	0.171823	0.022455	0.0528686	0.0216667	0.0299116
Sample 486	0.282901	0.185043	-0.018447	0.21635	0.183694	-0.003389	0.0519672	0.0397422	0.0339913
Sample 487	0.388953	0.208186	0.027618	0.075967	0.179911	0.0049688	0.0699769	0.0136673	0.037455
Sample 488	0.379013	0.094731	0.161911	0.118648	0.227744	0.0368743	0.0863179	0.0270214	0.0215744

Sample 489	0.269061	0.257178	0.091712	0.147383	0.222713	0.0204255	0.0599234	0.0328241	0.0572769
Sample 490	0.248424	0.188695	0.157725	0.151668	0.133976	0.0211314	0.0332829	0.0203199	0.0252806
Sample 491	0.222193	0.214924	0.154617	0.159566	0.179926	0.0278196	0.0399783	0.0287101	0.0386704
Sample 492	0.319725	0.219061	0.068897	0.085729	0.191074	0.0131644	0.0610911	0.0163806	0.0418569
Sample 493	0.260997	0.102973	0.243824	0.133957	0.177674	0.0433212	0.0463724	0.0238007	0.0182956
Sample 494	0.28247	0.135423	0.149863	0.187022	0.160007	0.0239791	0.0451972	0.0299248	0.0216686
Sample 495	0.375515	0.167251	0.12714	0.108535	0.164371	0.0208981	0.0617238	0.01784	0.0274912
Sample 496	0.305007	0.166309	0.020144	0.250941	0.212015	0.0042708	0.0646661	0.0532033	0.03526
Sample 497	0.305038	0.142133	0.170783	0.078105	0.15964	0.0272638	0.0486963	0.0124687	0.0226901
Sample 498	0.256957	0.202763	0.073834	0.17943	0.130483	0.0096341	0.0335285	0.0234126	0.0264571
Sample 499	0.216537	0.1626	0.148975	0.188709	0.150919	0.0224832	0.0326795	0.0284798	0.0245394
Sample 500	0.107304	0.299051	0.167352	0.130422	0.117308	0.0196317	0.0125876	0.0152995	0.0350811
Sample 501	0.364627	0.10342	0.131866	0.19005	0.178396	0.0235244	0.065048	0.0339042	0.0184497
Sample 502	0.337917	0.168909	0.116108	0.107586	0.14863	0.0172571	0.0502246	0.0159905	0.0251049
Sample 503	0.254338	0.257282	0.035276	0.137062	0.213752	0.0075403	0.0543653	0.0292973	0.0549945
Sample 504	0.199245	0.17291	0.186395	0.171467	0.198809	0.037057	0.0396117	0.0340892	0.0343761
Sample 505	0.359352	0.169932	0.090247	0.084018	0.228822	0.0206505	0.0822276	0.0192252	0.0388842
Sample 506	0.23992	0.160136	0.189033	0.185226	0.250968	0.0474412	0.0602122	0.0464858	0.040189
Sample 507	0.320062	0.22441	0.072235	0.151727	0.085189	0.0061536	0.0272658	0.0129255	0.0191173
Sample 508	0.267323	0.13855	0.190034	0.144393	0.1561	0.0296643	0.0417291	0.0225397	0.0216277
Sample 509	0.269689	0.308146	0.014982	0.173263	0.184985	0.0027714	0.0498884	0.0320511	0.0570024
Sample 510	0.324271	0.125722	0.205112	0.099149	0.193769	0.0397443	0.0628337	0.019212	0.024361
Sample 511	0.340299	0.265697	-0.070559	0.093921	0.187422	-0.013224	0.0637795	0.0176029	0.0497975
Sample 512	0.2903	0.107625	0.121449	0.193334	0.1979	0.0240348	0.0574504	0.0382608	0.021299
Sample 513	0.282786	0.217813	0.11388	0.120235	0.214364	0.0244118	0.0606191	0.0257741	0.0466913
Sample 514	0.279159	0.167536	0.157264	0.171686	0.167628	0.0263618	0.0467949	0.0287794	0.0280837
Sample 515	0.187676	0.074904	0.129911	0.222261	0.106449	0.0138289	0.0199779	0.0236595	0.0079735
Sample 516	0.310338	0.237678	0.026068	0.20596	0.230701	0.0060139	0.0715953	0.0475152	0.0548326
Sample 517	0.313118	0.233787	0.0865	0.104845	0.209573	0.0181281	0.0656211	0.0219727	0.0489954
Sample 518	0.299765	0.195924	0.14068	0.099048	0.231519	0.0325701	0.0694013	0.0229315	0.0453601
Sample 519	0.360436	0.101346	0.108104	0.080378	0.178398	0.0192855	0.0643011	0.0143393	0.0180799
Sample 520	0.276369	0.267079	0.163134	0.041572	0.134416	0.0219278	0.0371484	0.0055879	0.0358997
Sample 521	0.207501	0.197193	0.231302	0.147008	0.221172	0.0511575	0.0458934	0.0325141	0.0436136
Sample 522	0.259585	0.136377	0.234471	0.120787	0.194698	0.045651	0.0505407	0.023517	0.0265523
Sample 523	0.330677	0.201253	0.145697	0.105561	0.22046	0.0321204	0.0729011	0.023272	0.0443682
Sample 524	0.314163	0.17483	0.015151	0.212639	0.274125	0.0041533	0.0861199	0.0582897	0.0479253
Sample 525	0.318701	0.123121	0.182913	0.10022	0.202631	0.0370638	0.0645787	0.0203077	0.0249481
Sample 526	0.326531	0.263178	0.114245	0.071445	0.200817	0.0229423	0.065573	0.0143474	0.0528506
Sample 527	0.380675	0.003099	0.05224	0.237805	0.144334	0.00754	0.0549443	0.0343233	0.0004473
Sample 528	0.212104	0.330528	0.00124	0.188991	0.238946	0.0002963	0.0506814	0.0451586	0.0789783
Sample 529	0.274697	0.188744	0.117278	0.177836	0.208382	0.0244386	0.0572419	0.0370578	0.0393309
Sample 530	0.202396	0.139072	0.222004	0.22821	0.195798	0.0434679	0.0396287	0.0446831	0.02723
Sample 531	0.265208	0.231064	0.103535	0.171914	0.194195	0.020106	0.0515021	0.0333848	0.0448715
Sample 532	0.31055	0.24851	0.07416	0.0611	0.250538	0.0185799	0.0778046	0.0153079	0.0622612
Sample 533	0.278766	0.164284	0.200634	0.138581	0.21235	0.0426046	0.059196	0.0294277	0.0348857
Sample 534	0.267232	0.143436	0.165696	0.206245	0.19757	0.0327366	0.052797	0.0407478	0.0283387
------------	----------	----------	----------	----------	----------	-----------	-----------	-----------	-----------
Sample 535	0.190043	0.136641	0.183819	0.235137	0.12479	0.0229388	0.0237155	0.0293427	0.0170514
Sample 536	0.277152	0.341595	0.052648	0.066752	0.164528	0.0086621	0.0455993	0.0109826	0.0562019
Sample 537	0.352391	0.144393	0.044681	0.194436	0.22222	0.009929	0.0783083	0.0432076	0.032087
Sample 538	0.385387	0.118579	0.080452	0.13658	0.143695	0.0115606	0.0553782	0.0196259	0.0170392
Sample 539	0.2477	0.21299	0.15494	0.162392	0.183999	0.0285088	0.0455766	0.02988	0.0391899
Sample 540	0.317639	0.224648	0.130748	0.126173	0.180839	0.0236443	0.0574415	0.022817	0.0406251
Sample 541	0.164099	0.224659	0.14481	0.162257	0.146373	0.0211963	0.0240197	0.02375	0.032884
Sample 542	0.273273	0.270851	0.111736	0.103548	0.251335	0.0280832	0.0686831	0.0260252	0.0680743
Sample 543	0.287061	0.162824	0.074338	0.193535	0.195106	0.0145038	0.0560073	0.0377598	0.0317679
Sample 544	0.267085	0.223966	0.06081	0.233421	0.185154	0.0112592	0.0494519	0.0432188	0.0414682
Sample 545	0.151769	0.177688	0.15989	0.28967	0.261112	0.0417492	0.0396287	0.0756363	0.0463965
Sample 546	0.350337	0.22009	0.072957	0.081196	0.223548	0.0163094	0.0783171	0.0181512	0.0492007
Sample 547	0.260886	0.325296	0.10515	0.100242	0.1822	0.0191583	0.0475334	0.0182641	0.0592689
Sample 548	0.384645	0.163277	0.027669	0.167333	0.196483	0.0054365	0.0755762	0.0328781	0.0320812
Sample 549	0.289285	0.199149	0.197009	0.079737	0.155509	0.0306367	0.0449864	0.0123998	0.0309695
Sample 550	0.435749	0.205841	0.018265	0.065391	0.187458	0.0034239	0.0816846	0.0122581	0.0385865
Sample 551	0.253315	0.210503	0.111675	0.142522	0.19354	0.0216136	0.0490266	0.0275837	0.0407408
Sample 552	0.363392	0.124557	0.120628	0.176043	0.199825	0.0241045	0.0726148	0.0351778	0.0248896
Sample 553	0.252727	0.156946	0.21225	0.093855	0.201115	0.0426867	0.0508272	0.0188756	0.0315642
Sample 554	0.126799	0.355373	0.120018	0.184153	0.17751	0.0213044	0.0225081	0.032689	0.0630823
Sample 555	0.325708	0.086212	0.17486	0.184946	0.141358	0.0247179	0.0460414	0.0261436	0.0121868
Sample 556	0.380843	0.193327	0.099175	0.089764	0.187095	0.0185551	0.0712538	0.0167944	0.0361705
Sample 557	0.423035	0.166266	0.083741	0.108664	0.183036	0.0153276	0.0774306	0.0198894	0.0304327
Sample 558	0.28014	0.272337	0.11632	0.080513	0.218832	0.0254545	0.0613036	0.0176188	0.0595961
Sample 559	0.231303	0.220676	0.24948	0.088529	0.125228	0.0312419	0.0289656	0.0110863	0.0276348
Sample 560	0.29321	0.212467	0.081431	0.157371	0.277494	0.0225966	0.081364	0.0436695	0.0589583
Sample 561	0.375099	0.110721	0.044184	0.225853	0.124544	0.0055029	0.0467163	0.0281286	0.0137896
Sample 562	0.329171	0.180435	0.165717	0.09878	0.20438	0.0338692	0.067276	0.0201887	0.0368773
Sample 563	0.289988	0.160066	-0.01174	0.168612	0.191353	-0.002246	0.0554901	0.0322644	0.0306291
Sample 564	0.154132	0.225316	0.171218	0.17475	0.232199	0.0397566	0.0357893	0.0405768	0.0523181
Sample 565	0.239791	0.122908	0.167554	0.215644	0.14223	0.0238312	0.0341055	0.030671	0.0174812
Sample 566	0.320438	0.164225	0.170149	0.113984	0.184001	0.0313076	0.0589609	0.0209732	0.0302176
Sample 567	0.305501	0.079003	0.134023	0.21359	0.237828	0.0318744	0.0726567	0.0507977	0.0187891
Sample 568	0.267848	0.2316	0.173333	0.118761	0.177444	0.0307569	0.047528	0.0210734	0.041096
Sample 569	0.306165	0.183793	0.09778	0.1708	0.147802	0.0144521	0.0452518	0.0252446	0.027165
Sample 570	0.339698	0.145424	0.122056	0.174494	0.177168	0.0216244	0.0601836	0.0309148	0.0257645
Sample 571	0.298005	0.295943	0.092111	0.060189	0.126419	0.0116446	0.0376735	0.007609	0.0374128
Sample 572	0.335986	0.111816	0.107375	0.129647	0.186307	0.0200047	0.0625965	0.0241541	0.0208321
Sample 573	0.163039	0.201853	0.22335	0.137732	0.176566	0.039436	0.0287871	0.0243188	0.0356404
Sample 574	0.279373	0.13723	0.207415	0.176236	0.170656	0.0407272	0.0348300	0.034005	0.0209439
Sample 575	0.224914	0.10222	0.082144	0.230252	0.179020	0.014/5//	0.0404071	0.0413002	0.0319100
Sample 576	0.341853	0.19332	0.103047	0.155649	0.163823	0.0195204	0.0033248	0.0122070	0.0158129
Sample 577	0.312298	0.102187	0.196520	0.130503	0.109214	0.0307220	0.0212425	0.0194760	0.0196940
Sample 578	0.289362	0.172516	0.186529	0.170583	0.108316	0.0202041	0.0313425	0.0184769	0.0180802

Sample 579	0.282398	0.268295	0.058034	0.165662	0.223404	0.012965	0.0630888	0.0370096	0.0599382
Sample 580	0.278841	0.232669	0.070512	0.165759	0.202113	0.0142514	0.0563574	0.033502	0.0470254
Sample 581	0.25472	0.232775	0.165094	0.096911	0.247167	0.0408058	0.0629584	0.0239532	0.0575343
Sample 582	0.420101	0.126387	0.02779	0.16863	0.13632	0.0037883	0.0572682	0.0229876	0.0172291
Sample 583	0.382377	0.162802	0.156944	0.086861	0.201552	0.0316324	0.0770688	0.017507	0.0328131
Sample 584	0.29449	0.208241	0.061548	0.176186	0.186677	0.0114896	0.0549745	0.0328899	0.0388738
Sample 585	0.298797	0.20034	0.171949	0.088388	0.158449	0.0272451	0.0473441	0.014005	0.0317437
Sample 586	0.278359	0.070884	0.164732	0.175778	0.246489	0.0406046	0.0686124	0.0433273	0.0174721
Sample 587	0.306575	0.101977	0.145955	0.203924	0.201643	0.0294308	0.0618187	0.0411198	0.0205629
Sample 588	0.245189	0.251584	0.133366	0.15514	0.149918	0.019994	0.0367582	0.0232583	0.037717
Sample 589	0.356769	0.18193	0.063799	0.08314	0.175279	0.0111826	0.0625341	0.0145727	0.0318885
Sample 590	0.286541	0.316184	0.094652	0.083353	0.164106	0.015533	0.0470231	0.0136787	0.0518877
Sample 591	0.254666	0.259922	0.065004	0.09629	0.273568	0.017783	0.0696685	0.0263419	0.0711063
Sample 592	0.290082	0.12418	0.152552	0.192	0.148005	0.0225785	0.0429336	0.028417	0.0183793
Sample 593	0.255905	0.086975	0.244238	0.170804	0.198478	0.0484759	0.0507915	0.0339008	0.0172626
Sample 594	0.188018	0.248277	0.089858	0.167009	0.163061	0.0146523	0.0306584	0.0272327	0.0404843
Sample 595	0.318762	0.212988	0.205023	0.037975	0.102304	0.0209747	0.0326106	0.003885	0.0217895
Sample 596	0.326831	0.207564	0.120896	0.110093	0.18233	0.022043	0.0595911	0.0200733	0.0378451
Sample 597	0.345084	0.106059	0.117008	0.180961	0.234261	0.0274104	0.0808397	0.0423921	0.0248455
Sample 598	0.296135	0.221004	0.124101	0.110178	0.15383	0.0190905	0.0455544	0.0169487	0.033997
Sample 599	0.24185	0.214258	0.147998	0.157705	0.201272	0.0297879	0.0486776	0.0317416	0.0431241
Sample 600	0.290061	0.224315	0.146363	0.102982	0.146108	0.0213848	0.0423802	0.0150465	0.0327742
Sample 601	0.249289	0.325313	0.096893	0.110506	0.181485	0.0175846	0.0452422	0.0200552	0.0590394
Sample 602	0.307817	0.169654	0.111785	0.109064	0.189895	0.0212274	0.0584529	0.0207107	0.0322164
Sample 603	0.248983	0.212042	0.116087	0.178277	0.146307	0.0169843	0.036428	0.0260832	0.0310232
Sample 604	0.282325	0.12389	0.194364	0.135293	0.123882	0.0240782	0.034975	0.0167604	0.0153477
Sample 605	0.233061	0.272211	0.099876	0.155807	0.219255	0.0218983	0.0510998	0.0341615	0.0596836
Sample 606	0.381879	0.164246	0.095939	0.067591	0.211021	0.0202451	0.0805845	0.0142631	0.0346594
Sample 607	0.237495	0.223533	0.061034	0.186577	0.181725	0.0110914	0.0431588	0.0339057	0.0406215
Sample 608	0.254825	0.245549	0.049487	0.156396	0.153564	0.0075994	0.0391319	0.0240168	0.0377075
Sample 609	0.285658	0.134338	0.073055	0.19819	0.169453	0.0123794	0.0484056	0.0335839	0.022764
Sample 610	0.224537	0.223854	0.092796	0.25006	0.160199	0.0148658	0.0359706	0.0400594	0.0358612
Sample 611	0.240327	0.234559	0.186006	0.158992	0.168046	0.0312576	0.040386	0.026718	0.0394167
Sample 612	0.264076	0.154689	0.184291	0.11073	0.198418	0.0365667	0.0523974	0.0219708	0.0306931
Sample 613	0.35652	0.152017	0.105117	0.137613	0.243776	0.025625	0.086911	0.0335467	0.0370581
Sample 614	0.271904	0.1493	0.116386	0.150498	0.141213	0.0164352	0.0383964	0.0212523	0.0210831
Sample 615	0.278604	0.182203	0.15067	0.122619	0.151371	0.0228071	0.0421726	0.018561	0.0275803
Sample 616	0.411581	0.119117	0.062965	0.133768	0.188608	0.0118757	0.0776275	0.0252297	0.0224664
Sample 617	0.257956	0.230671	0.11289	0.094256	0.171109	0.0193165	0.0441386	0.016128	0.0394699
Sample 618	0.370299	0.152975	-0.02199	0.204647	0.167238	-0.003678	0.0619281	0.0342248	0.0255832
Sample 619	0.309655	0.190368	0.056195	0.173167	0.127987	0.0071922	0.0396318	0.0221631	0.0243646
Sample 620	0.303323	0.169657	0.111589	0.216791	0.13887	0.0154964	0.0421225	0.0301058	0.0235603
Sample 621	0.319116	0.139706	0.121067	0.171929	0.203366	0.0246209	0.0648973	0.0349645	0.0284115
Sample 622	0.22193	0.181854	0.259602	0.116307	0.213855	0.0555172	0.0474608	0.0248728	0.0388904
Sample 623	0.289794	0.168821	0.148763	0.154214	0.189097	0.0281306	0.0547992	0.0291614	0.0319235

Sample 624	0.26274	0.112579	0.156658	0.235154	0.156568	0.0245276	0.0411367	0.0368176	0.0176263
Sample 625	0.16774	0.271219	0.125109	0.186619	0.145289	0.018177	0.0243708	0.0271137	0.0394051
Sample 626	0.258384	0.232363	0.115071	0.095398	0.149015	0.0171473	0.0385031	0.0142157	0.0346256
Sample 627	0.334902	0.281576	-0.003454	0.083106	0.23241	-0.000803	0.0778346	0.0193147	0.0654411
Sample 628	0.204068	0.220302	0.189296	0.191295	0.295402	0.0559184	0.0602821	0.0565089	0.0650777
Sample 629	0.276373	0.267763	0.033917	0.180416	0.15428	0.0052327	0.0426388	0.0278346	0.0413105
Sample 630	0.334448	0.167281	0.114781	0.10248	0.269235	0.0309031	0.0900451	0.0275912	0.0450379
Sample 631	0.30062	0.134194	0.148698	0.226654	0.104665	0.0155635	0.0314644	0.0237227	0.0140454
Sample 632	0.176555	0.20626	0.121875	0.182795	0.151198	0.0184273	0.0266948	0.0276382	0.0311861
Sample 633	0.348754	0.184507	0.059457	0.155401	0.220956	0.0131374	0.0770593	0.0343368	0.0407679
Sample 634	0.315457	0.185525	0.12948	0.124047	0.171832	0.0222488	0.0542056	0.0213152	0.0318791
Sample 635	0.251522	0.131989	0.205966	0.13537	0.164382	0.0338571	0.0413457	0.0222524	0.0216966
Sample 636	0.327218	0.190115	0.107742	0.174029	0.210509	0.0226807	0.0688823	0.0366347	0.0400209
Sample 637	0.38158	0.084732	0.088954	0.114442	0.173309	0.0154165	0.0661312	0.0198338	0.0146848
Sample 638	0.191255	0.152994	0.198714	0.182504	0.208231	0.0413784	0.0398252	0.038003	0.0318581
Sample 639	0.366416	0.173786	0.128651	0.091244	0.214286	0.0275681	0.0785178	0.0195523	0.0372399
Sample 640	0.280153	0.221837	0.130689	0.118144	0.209188	0.0273386	0.0586046	0.0247143	0.0464056
Sample 641	0.166756	0.227971	0.259278	0.153437	0.17324	0.0449173	0.0288888	0.0265814	0.0394937
Sample 642	0.285881	0.130944	0.173435	0.13974	0.173455	0.0300832	0.0495875	0.0242386	0.0227129
Sample 643	0.262291	0.135326	0.152342	0.200444	0.204347	0.0311306	0.0535984	0.0409601	0.0276535
Sample 644	0.346583	0.172526	0.172509	0.107691	0.146563	0.0252834	0.0507962	0.0157835	0.0252859
Sample 645	0.264004	0.096915	0.255475	0.123079	0.27072	0.0691622	0.0714712	0.0333199	0.0262368
Sample 646	0.210469	0.321069	0.130679	0.158624	0.224541	0.0293428	0.0472589	0.0356176	0.0720932
Sample 647	0.305795	0.181142	0.124662	0.143734	0.196425	0.0244867	0.0600658	0.028233	0.0355808
Sample 648	0.263499	0.048796	0.170013	0.25675	0.187969	0.0319572	0.0495296	0.048261	0.0091721
Sample 649	0.311945	0.220503	0.101075	0.105154	0.184288	0.0186269	0.0574877	0.0193786	0.0406361
Sample 650	0.395262	0.170823	0.040277	0.130869	0.220908	0.0088975	0.0873165	0.02891	0.0377362
Sample 651	0.290711	0.195352	0.088641	0.152532	0.17858	0.0158295	0.0519152	0.0272392	0.034886
Sample 652	0.205095	0.157914	0.106388	0.228972	0.1137	0.0120963	0.0233193	0.0260341	0.0179548
Sample 653	0.255229	0.140903	0.17165	0.181363	0.207517	0.0356203	0.0529644	0.0376359	0.0292398
Sample 654	0.202918	0.13535	0.221199	0.134606	0.229817	0.0508353	0.046634	0.0309347	0.0311057
Sample 655	0.270357	0.16969	0.116793	0.172461	0.144782	0.0169095	0.0391428	0.0249692	0.0245681
Sample 656	0.148185	0.294238	0.202863	0.1357	0.144389	0.0292912	0.0213963	0.0195936	0.0424847
Sample 657	0.165634	0.162776	0.170665	0.278861	0.165017	0.0281626	0.0273324	0.0460168	0.0268608
Sample 658	0.388953	0.117966	0.108307	0.069144	0.153995	0.0166787	0.0598968	0.0106478	0.0181662
Sample 659	0.28914	0.179518	0.091042	0.201106	0.236875	0.0215656	0.06849	0.047637	0.0425233
Sample 660	0.283355	0.18808	0.080118	0.152701	0.134192	0.0107512	0.038024	0.0204913	0.0252388
Sample 661	0.266829	0.216319	0.128574	0.137916	0.203787	0.0262017	0.0543763	0.0281055	0.044083
Sample 662	0.29257	0.135694	0.12638	0.140918	0.193106	0.0244047	0.056497	0.0272121	0.0262033
Sample 663	0.210644	0.251801	0.086466	0.229401	0.236632	0.0204606	0.0498451	0.0542836	0.0595842
Sample 664	0.326384	0.23176	0.112741	0.067222	0.121952	0.013749	0.0398032	0.0081979	0.0282636
Sample 665	0.288737	0.220389	0.030648	0.168141	0.253948	0.007783	0.0733242	0.0426991	0.0559673
Sample 666	0.303122	0.196375	0.133068	0.152653	0.137352	0.0182772	0.0416344	0.0209672	0.0269725
Sample 667	0.163781	0.288156	0.089334	0.171383	0.187322	0.0167342	0.0306798	0.0321038	0.053978
Sample 668	0.22611	0.159539	0.160841	0.259027	0.226836	0.0364845	0.0512899	0.0587566	0.0361892

Sample 669	0.265132	0.242062	0.145869	0.048798	0.176418	0.0257339	0.0467741	0.0086088	0.0427041
Sample 670	0.369784	0.17265	0.043616	0.157411	0.164451	0.0071727	0.0608113	0.0258864	0.0283925
Sample 671	0.33441	0.104298	0.159467	0.212852	0.141275	0.0225287	0.0472438	0.0300707	0.0147347
Sample 672	0.242531	0.128119	0.236908	0.149283	0.12448	0.0294903	0.0301903	0.0185827	0.0159483
Sample 673	0.217499	0.271802	0.125087	0.114775	0.152704	0.0191013	0.033213	0.0175266	0.0415053
Sample 674	0.256843	0.065551	0.165031	0.286696	0.191055	0.03153	0.0490711	0.0547747	0.0125238
Sample 675	0.284723	0.13414	0.152944	0.159776	0.236422	0.0361593	0.0673148	0.0377746	0.0317136
Sample 676	0.301242	0.153886	0.167159	0.154404	0.107783	0.0180169	0.0324688	0.0166421	0.0165863
Sample 677	0.278917	0.241669	0.042837	0.15636	0.179626	0.0076946	0.0501007	0.0280863	0.04341
Sample 678	0.333069	0.201845	0.106116	0.173874	0.264588	0.028077	0.0881261	0.046005	0.0534058
Sample 679	0.277658	0.20758	0.126237	0.094147	0.17921	0.0226229	0.0497591	0.0168721	0.0372004
Sample 680	0.346017	0.26899	0.169217	-0.025866	0.165462	0.027999	0.0572527	-0.00428	0.0445076
Sample 681	0.257917	0.23868	0.168945	0.093846	0.185741	0.03138	0.0479058	0.017431	0.0443327
Sample 682	0.170883	0.296863	0.15343	0.121021	0.164408	0.0252251	0.0280945	0.0198968	0.0488067
Sample 683	0.289392	0.210697	0.164492	0.02696	0.20324	0.0334314	0.058816	0.0054794	0.0428221
Sample 684	0.304293	0.153466	0.089545	0.196885	0.196106	0.0175603	0.0596737	0.0386103	0.0300956
Sample 685	0.180613	0.232906	0.169534	0.178247	0.118605	0.0201076	0.0214216	0.021141	0.0276238
Sample 686	0.351516	0.201479	0.134781	0.049746	0.192325	0.0259218	0.0676053	0.0095674	0.0387494
Sample 687	0.387185	0.143134	0.093886	0.053389	0.171798	0.0161294	0.0665176	0.0091721	0.0245901
Sample 688	0.259164	0.121531	0.131818	0.205714	0.230742	0.0304159	0.0598	0.0474669	0.0280423
Sample 689	0.138558	0.267996	0.091694	0.254344	0.171289	0.0157062	0.0237335	0.0435663	0.0459048
Sample 690	0.245734	0.160734	0.082598	0.196678	0.187594	0.0154949	0.0460982	0.0368956	0.0301527
Sample 691	0.325717	0.101435	0.15932	0.084923	0.210192	0.0334878	0.0684631	0.0178501	0.0213208
Sample 692	0.324405	0.151328	0.119296	0.177534	0.167912	0.0200312	0.0544715	0.0298101	0.0254098
Sample 693	0.228282	0.172103	0.15363	0.222538	0.179094	0.0275142	0.0408839	0.0398552	0.0308226
Sample 694	0.236537	0.150341	0.241051	0.143969	0.265787	0.0640682	0.0628685	0.0382651	0.0399587
Sample 695	0.354915	0.208722	0.036807	0.114302	0.186887	0.0068787	0.066329	0.0213616	0.0390074
Sample 696	0.191853	0.312199	0.12797	0.138437	0.14762	0.0188909	0.0283213	0.0204361	0.0460868
Sample 697	0.240071	0.343463	0.143106	0.071878	0.14949	0.0213929	0.0358882	0.010745	0.0513443
Sample 698	0.291612	0.156779	0.178708	0.121155	0.162124	0.0289729	0.0472773	0.0196421	0.0254176
Sample 699	0.300866	0.185801	0.089393	0.122426	0.165676	0.0148103	0.0498463	0.020283	0.0307828
Sample 700	0.394754	0.165341	0.083281	0.076341	0.211808	0.0176396	0.0836121	0.0161696	0.0350205
Sample 701	0.383084	0.148499	0.138578	0.051189	0.159471	0.0220992	0.0610908	0.0081632	0.0236813
Sample 702	0.196418	0.229719	0.231258	0.105444	0.184654	0.0427027	0.0362694	0.0194707	0.0424185
Sample 703	0.297687	0.203012	0.097425	0.11079	0.154059	0.0150092	0.0458614	0.0170682	0.0312758
Sample 704	0.309138	0.190934	0.110389	0.125828	0.137059	0.0151298	0.0423701	0.0172459	0.0261692
Sample 705	0.145566	0.26187	0.182131	0.173039	0.152133	0.0277081	0.0221454	0.0263249	0.0398391
Sample 706	0.427138	-0.039763	0.080694	0.204819	0.1925	0.0155336	0.0822241	0.0394277	-0.007654
Sample 707	0.390711	0.136362	0.121385	0.097596	0.173322	0.0210387	0.0677188	0.0169155	0.0236345
Sample 708	0.155739	0.284847	0.20917	0.109657	0.199247	0.0416765	0.0310305	0.0218488	0.0567549
Sample 709	0.375073	0.144973	0.113986	0.137078	0.180961	0.020627	0.0678736	0.0248058	0.0262345
Sample 710	0.300943	0.179604	0.037168	0.166814	0.183175	0.0068082	0.0551252	0.0305562	0.032899
Sample 711	0.322081	0.165022	0.079096	0.14444	0.214703	0.0169821	0.0691518	0.0310117	0.0354307
Sample 712	0.200022	0.209769	0.100185	0.218122	0.189824	0.0190175	0.037969	0.0414048	0.0398192
Sample 713	0.298963	0.077775	0.125942	0.171191	0.170809	0.021512	0.0510656	0.029241	0.0132847

Sample 714	0.198171	0.168459	0.179389	0.25346	0.147582	0.0264746	0.0292465	0.0374061	0.0248615
Sample 715	0.414744	0.174726	0.066434	0.11598	0.131306	0.0087232	0.0544584	0.0152289	0.0229426
Sample 716	0.364681	0.205876	0.084154	0.170158	0.154612	0.0130112	0.0563841	0.0263085	0.0318309
Sample 717	0.328543	0.184622	0.038071	0.155889	0.176916	0.0067354	0.0581245	0.0275793	0.0326626
Sample 718	0.311393	0.221409	0.060527	0.076978	0.239467	0.0144942	0.0745683	0.0184337	0.0530201
Sample 719	0.298754	0.14908	0.157568	0.144039	0.18246	0.0287499	0.0545107	0.0262814	0.0272011
Sample 720	0.254894	0.152147	0.189266	0.133487	0.196796	0.0372468	0.0501621	0.0262697	0.0299419
Sample 721	0.331386	0.161317	0.071658	0.117071	0.192204	0.013773	0.0636937	0.0225015	0.0310058
Sample 722	0.208024	0.376632	0.03506	0.135815	0.160648	0.0056323	0.0334186	0.0218184	0.0605052
Sample 723	0.258143	0.181952	0.156148	0.218218	0.140708	0.0219713	0.0363228	0.030705	0.0256021
Sample 724	0.272338	0.207449	0.12753	0.053976	0.094411	0.0120402	0.0257117	0.0050959	0.0195855
Sample 725	0.284244	0.115976	0.248558	0.147571	0.183986	0.0457312	0.0522969	0.027151	0.021338
Sample 726	0.370258	0.117609	0.089223	0.193192	0.148708	0.0132682	0.0550603	0.0287292	0.0174894
Sample 727	0.22912	0.218508	0.195165	0.107253	0.215284	0.0420159	0.0493259	0.0230899	0.0470413
Sample 728	0.302458	0.182006	0.085834	0.122012	0.21052	0.0180698	0.0636735	0.025686	0.0383159
Sample 729	0.170741	0.19159	0.16784	0.211811	0.172251	0.0289106	0.0294103	0.0364847	0.0330016
Sample 730	0.351459	0.163432	0.081242	0.106282	0.179476	0.014581	0.0630785	0.0190751	0.0293321
Sample 731	0.234959	0.183118	0.221826	0.152436	0.21616	0.0479499	0.0507887	0.0329506	0.0395828
Sample 732	0.200676	0.220294	0.139108	0.138637	0.155275	0.0216	0.03116	0.0215269	0.0342062
Sample 733	0.330343	0.155832	0.117407	0.063078	0.174469	0.0204839	0.0576346	0.0110052	0.0271879
Sample 734	0.329482	0.140057	0.035346	0.202751	0.189758	0.0067072	0.0625218	0.0384736	0.0265769
Sample 735	0.314119	0.134824	0.182592	0.20027	0.20915	0.0381891	0.065698	0.0418865	0.0281984
Sample 736	0.256017	0.273461	0.13945	0.085436	0.172127	0.0240031	0.0440674	0.0147058	0.04707
Sample 737	0.274061	0.149769	0.201952	0.174132	0.17436	0.0352124	0.0477853	0.0303617	0.0261137
Sample 738	0.289284	0.208921	0.095366	0.154572	0.275737	0.0262959	0.0797663	0.0426212	0.0576072
Sample 739	0.289886	0.337882	0.006326	0.121253	0.169506	0.0010723	0.0491374	0.0205531	0.057273
Sample 740	0.214991	0.166554	0.211481	0.139628	0.186972	0.039541	0.0401973	0.0261065	0.0311409
Sample 741	0.399355	0.16068	0.126245	0.039085	0.10869	0.0137216	0.0434059	0.0042481	0.0174643
Sample 742	0.253635	0.251559	0.101801	0.130948	0.251606	0.0256137	0.0638161	0.0329473	0.0632938
Sample 743	0.185721	0.23828	0.23899	0.140043	0.147186	0.035176	0.0273355	0.0206124	0.0350715
Sample 744	0.473456	0.220854	-0.067865	0.077965	0.205638	-0.013956	0.0973605	0.0160326	0.045416
Sample 745	0.313116	0.151128	0.170103	0.06758	0.217349	0.0369717	0.0680554	0.0146884	0.0328475
Sample 746	0.197131	0.258165	0.162122	0.132661	0.203186	0.0329409	0.0400543	0.0269549	0.0524555
Sample 747	0.263921	0.20932	0.148644	0.132049	0.203806	0.0302945	0.0537887	0.0269124	0.0426607
Sample 748	0.177164	0.164225	0.273437	0.113333	0.17614	0.0481632	0.0312057	0.0199625	0.0289266
Sample 749	0.301995	0.159233	0.135137	0.13416	0.175219	0.0236786	0.0529153	0.0235074	0.0279006
Sample 750	0.242198	0.207356	0.115941	0.164924	0.215449	0.0249794	0.0521813	0.0355327	0.0446746
Sample 751	0.397286	0.183821	0.024758	0.07221	0.166009	0.0041101	0.0659531	0.0119875	0.0305159
Sample 752	0.275933	0.197049	0.112703	0.203684	0.201255	0.022682	0.0555329	0.0409924	0.0396571
Sample 753	0.239662	0.273327	0.146963	0.099827	0.127058	0.0186728	0.030451	0.0126838	0.0347284
Sample 754	0.258735	0.253787	0.115763	0.155813	0.153054	0.017718	0.0396004	0.0238478	0.0388431
Sample 755	0.181622	0.320295	0.105287	0.067957	0.203033	0.0213767	0.0368753	0.0137975	0.0650305
Sample 756	0.319521	0.173261	0.149645	0.083533	0.210429	0.0314896	0.0672365	0.0175778	0.0364591
Sample 757	0.186083	0.315806	0.12694	0.120089	0.182215	0.0231304	0.0339071	0.021882	0.0575446
Sample 758	0.322366	0.145989	0.191602	0.06645	0.184767	0.0354017	0.0595626	0.0122778	0.0269739

Sample 759	0.405585	0.11061	0.084537	0.104356	0.133389	0.0112763	0.0541006	0.0139199	0.0147542
Sample 760	0.232817	0.218391	0.121567	0.188375	0.151085	0.018367	0.0351752	0.0284606	0.0329956
Sample 761	0.318101	0.089208	0.225278	0.093563	0.16264	0.0366392	0.0517359	0.0152171	0.0145088
Sample 762	0.314753	0.181527	0.166858	0.05115	0.183947	0.030693	0.0578979	0.0094089	0.0333913
Sample 763	0.316434	0.078522	0.188924	0.184064	0.211128	0.0398871	0.0668081	0.0388611	0.0165782
Sample 764	0.20696	0.211681	0.150498	0.20591	0.162135	0.024401	0.0335555	0.0333852	0.0343209
Sample 765	0.234167	0.245597	0.176368	0.070406	0.222934	0.0393184	0.0522038	0.0156959	0.0547519
Sample 766	0.274624	0.271787	0.086474	0.141972	0.152049	0.0131483	0.0417563	0.0215867	0.0413249
Sample 767	0.395701	0.169386	0.016952	0.11597	0.228892	0.0038802	0.0905728	0.0265446	0.0387711
Sample 768	0.267187	0.118967	0.20751	0.200763	0.138591	0.028759	0.0370297	0.0278239	0.0164878
Sample 769	0.321929	0.166546	0.123857	0.156619	0.140461	0.0173971	0.0452185	0.0219989	0.0233932
Sample 770	0.246688	0.096014	0.201954	0.194454	0.141843	0.0286458	0.034991	0.0275819	0.0136189
Sample 771	0.290921	0.193994	0.097604	0.143117	0.225896	0.0220484	0.0657179	0.0323296	0.0438225
Sample 772	0.36525	0.1045	0.062157	0.174469	0.213468	0.0132685	0.0779692	0.0372435	0.0223074
Sample 773	0.301858	0.128855	0.179779	0.102888	0.251418	0.0451997	0.0758925	0.0258679	0.0323965
Sample 774	0.282345	0.189598	0.183228	0.127759	0.228607	0.0418872	0.064546	0.0292066	0.0433434
Sample 775	0.252056	0.163693	0.250343	0.16425	0.16989	0.0425308	0.0428218	0.0279044	0.0278098
Sample 776	0.286235	0.167872	0.180355	0.115763	0.173461	0.0312846	0.0496506	0.0200804	0.0291192
Sample 777	0.342393	0.158706	0.102145	0.081799	0.270755	0.0276563	0.0927046	0.0221475	0.0429704
Sample 778	0.123385	0.235023	0.225885	0.17385	0.189111	0.0427173	0.0233335	0.0328769	0.0444454
Sample 779	0.229054	0.217744	0.155149	0.170554	0.113871	0.017667	0.0260826	0.0194212	0.0247947
Sample 780	0.385825	0.143282	0.036928	0.175049	0.218546	0.0080705	0.0843205	0.0382563	0.0313137
Sample 781	0.315634	0.287207	0.07612	0.003217	0.197703	0.0150492	0.0624018	0.000636	0.0567817
Sample 782	0.407108	0.166479	0.064844	0.152954	0.189645	0.0122973	0.077206	0.029007	0.0315719
Sample 783	0.265511	0.190666	0.029721	0.226282	0.200705	0.0059652	0.0532894	0.0454159	0.0382676
Sample 784	0.338257	0.215901	0.082141	0.161895	0.202075	0.0165986	0.0683533	0.0327149	0.0436282
Sample 785	0.277156	0.167171	0.163883	0.105244	0.187405	0.0307125	0.0519404	0.0197233	0.0313287
Sample 786	0.362538	0.145467	0.058316	0.163982	0.166336	0.0097001	0.0603031	0.0272761	0.0241964
Sample 787	0.259862	0.103356	0.101313	0.251406	0.175519	0.0177824	0.0456107	0.0441265	0.0181409
Sample 788	0.265901	0.16566	0.159623	0.127831	0.162432	0.0259279	0.0431908	0.0207638	0.0269085
Sample 789	0.231057	0.308283	0.194336	0.09471	0.20775	0.0403733	0.0480021	0.019676	0.0640458
Sample 790	0.282274	0.198544	0.120166	0.071028	0.167025	0.0200707	0.0471468	0.0118635	0.0331618
Sample 791	0.227068	0.130769	0.224248	0.200993	0.117324	0.0263097	0.0266405	0.0235813	0.0153423
Sample 792	0.31482	0.23599	0.097984	0.097537	0.17284	0.0169356	0.0544135	0.0168583	0.0407885
Sample 793	0.198038	0.300676	0.101791	0.141365	0.228018	0.0232102	0.0451562	0.0322338	0.0685595
Sample 794	0.355369	0.297401	0.033574	0.040265	0.241347	0.008103	0.0857672	0.0097178	0.0717768
Sample 795	0.219191	0.168731	0.197002	0.17361	0.170727	0.0336336	0.0374218	0.0296399	0.0288069
Sample 796	0.326198	0.190628	0.081505	0.11666	0.191722	0.0156263	0.0625393	0.0223663	0.0365476
Sample 797	0.342136	0.095573	-0.002027	0.276203	0.177078	-0.000359	0.0605848	0.0489095	0.0169239
Sample 798	0.257447	0.197629	0.154891	0.186548	0.243211	0.0376712	0.0626139	0.0453705	0.0480655
Sample 799	0.303993	0.179282	0.070225	0.19708	0.146748	0.0103054	0.0446104	0.0289211	0.0263093
Sample 800	0.356035	0.150907	0.123525	0.099974	0.156414	0.019321	0.0556889	0.0150373	0.023004
Sample 801	0.2545	0.18911	0.081529	0.164192	0.122321	0.0099727	0.0311307	0.0200841	0.0231321
Sample 802	0.29055	0.175101	0.156295	0.153194	0.222576	0.0347875	0.0646695	0.0340973	0.0309/33
Sample 803	0.249463	0.17397	0.15535	0.19379	0.167647	0.026044	0.0418217	0.0324883	0.0291655

Sample 804	0.239071	0.172891	0.127458	0.159829	0.235097	0.029965	0.0562049	0.0375753	0.0406462
Sample 805	0.243377	0.214939	0.189998	0.131824	0.119512	0.022707	0.0290865	0.0157545	0.0256878
Sample 806	0.24011	0.07888	0.214398	0.201692	0.181741	0.0389649	0.0436378	0.0366557	0.0143357
Sample 807	0.191823	0.24388	0.155182	0.17037	0.173021	0.0268497	0.0331894	0.0294776	0.0421964
Sample 808	0.301615	0.142023	0.017955	0.269451	0.276582	0.004966	0.0834213	0.0745253	0.0392805
Sample 809	0.168532	0.238946	0.284647	0.109396	0.182236	0.0518729	0.0307126	0.0199359	0.0435446
Sample 810	0.312593	0.168971	0.133696	0.129386	0.168686	0.0225526	0.0527301	0.0218256	0.028503
Sample 811	0.31541	0.255115	-0.004041	0.116253	0.188409	-0.000761	0.0594261	0.0219031	0.048066
Sample 812	0.149368	0.222121	0.229294	0.117582	0.229799	0.0526915	0.0343246	0.0270202	0.0510432
Sample 813	0.221051	0.156359	0.167036	0.12414	0.193644	0.0323455	0.0428052	0.024039	0.030278
Sample 814	0.381002	0.13038	0.041797	0.137552	0.201167	0.0084082	0.076645	0.0276709	0.0262282
Sample 815	0.275162	0.144545	0.106096	0.154617	0.131387	0.0139396	0.0361527	0.0203147	0.0189913
Sample 816	0.188651	0.386307	0.136979	0.041122	0.113575	0.0155574	0.021426	0.0046704	0.0438748
Sample 817	0.205432	0.16466	0.193792	0.159853	0.148867	0.0288492	0.030582	0.0237968	0.0245124
Sample 818	0.159331	0.265369	0.167742	0.136635	0.196828	0.0330163	0.0313608	0.0268936	0.052232
Sample 819	0.174125	0.209985	0.090993	0.256872	0.232145	0.0211236	0.0404222	0.0596316	0.048747
Sample 820	0.264662	0.165857	0.134096	0.106915	0.209054	0.0280333	0.0553286	0.022351	0.0346731
Sample 821	0.306593	0.088203	0.130005	0.165114	0.204035	0.0265256	0.0625557	0.033689	0.0179965
Sample 822	0.128416	0.219415	0.216252	0.19545	0.198211	0.0428635	0.0254535	0.0387403	0.0434905
Sample 823	0.301738	0.22929	0.090683	0.090717	0.17034	0.0154469	0.0513981	0.0154527	0.0390573
Sample 824	0.29681	0.290265	0.062633	0.12089	0.179813	0.0112622	0.0533703	0.0217376	0.0521934
Sample 825	0.289931	0.221137	0.115476	0.117753	0.207731	0.0239879	0.0602277	0.0244609	0.045937
Sample 826	0.233502	0.175442	0.09494	0.225696	0.144468	0.0137158	0.0337336	0.0326058	0.0253458
Sample 827	0.321268	0.241189	0.148086	0.02736	0.184041	0.0272539	0.0591265	0.0050354	0.0443887
Sample 828	0.344671	0.217531	0.088308	0.105449	0.167912	0.014828	0.0578744	0.0177062	0.0365261
Sample 829	0.331677	0.294809	0.083954	0.01386	0.198725	0.0166838	0.0659125	0.0027543	0.0585859
Sample 830	0.26568	0.236765	0.12524	0.102419	0.227967	0.0285506	0.0605663	0.0233482	0.0539746
Sample 831	0.224939	0.256218	0.15391	0.134228	0.171955	0.0264656	0.0386794	0.0230812	0.044058
Sample 832	0.247257	0.179708	0.140061	0.164797	0.218193	0.0305603	0.0539497	0.0359576	0.039211
Sample 833	0.352224	0.151397	0.125491	0.086842	0.15508	0.0194611	0.0546229	0.0134675	0.0234786
Sample 834	0.365988	0.193676	0.020361	0.154868	0.169476	0.0034507	0.0620262	0.0262464	0.0328234
Sample 835	0.27646	0.222651	0.139431	0.153589	0.141373	0.0197118	0.039084	0.0217133	0.0314768
Sample 836	0.232584	0.234456	0.10802	0.196861	0.168938	0.0182487	0.0392923	0.0332573	0.0396085
Sample 837	0.319793	0.336191	0.050255	0.064659	0.247225	0.0124243	0.0790608	0.0159853	0.0831148
Sample 838	0.233811	0.267752	0.1117	0.137006	0.14269	0.0159385	0.0333625	0.0195494	0.0382055
Sample 839	0.274964	0.184458	0.075673	0.179133	0.20146	0.0152451	0.0553942	0.0360881	0.0371609
Sample 840	0.164504	0.22415	0.15079	0.174474	0.14488	0.0218465	0.0238333	0.0252778	0.0324749
Sample 841	0.276671	0.229335	0.141536	0.043479	0.19002	0.0268947	0.052573	0.0082619	0.0435782
Sample 842	0.303807	0.160444	0.153129	0.105459	0.118588	0.0181593	0.0360279	0.0125062	0.0190267
Sample 843	0.341497	0.108977	0.164929	0.149273	0.160299	0.026438	0.0547416	0.0239283	0.0174689
Sample 844	0.14609	0.296879	0.204826	0.116692	0.113057	0.023157	0.0165165	0.0131928	0.0335642
Sample 845	0.302937	0.177449	0.128266	0.145211	0.164581	0.0211101	0.0498577	0.023899	0.0292047
Sample 846	0.250509	0.081506	0.212316	0.236362	0.191192	0.0405931	0.0478953	0.0451905	0.0155833
Sample 847	0.241683	0.212338	0.225521	0.144774	0.134569	0.0303481	0.032523	0.0194821	0.0285741
Sample 848	0.413857	0.125096	0.029833	0.193181	0.120405	0.003592	0.0498305	0.02326	0.0150622

Sample 849	0.223401	0.197918	0.247404	0.072469	0.264784	0.0655086	0.059153	0.0191886	0.0524055
Sample 850	0.341375	0.150993	0.19005	0.072286	0.214407	0.0407481	0.0731932	0.0154986	0.032374
Sample 851	0.340549	0.193782	0.102103	0.143597	0.165543	0.0169024	0.0563755	0.0237715	0.0320793
Sample 852	0.31437	0.074756	0.060291	0.284772	0.161856	0.0097585	0.0508827	0.0460921	0.0120997
Sample 853	0.331748	0.125786	0.101913	0.155989	0.196596	0.0200357	0.0652203	0.0306668	0.024729
Sample 854	0.238579	0.243028	0.01606	0.189117	0.193961	0.003115	0.046275	0.0366813	0.047138
Sample 855	0.264308	0.245969	0.12814	0.135818	0.200851	0.025737	0.0530865	0.0272792	0.0494031
Sample 856	0.199474	0.27643	0.202638	0.128221	0.157488	0.0319131	0.0314148	0.0201933	0.0435344
Sample 857	0.337743	0.12527	0.106014	0.131695	0.238955	0.0253326	0.0807054	0.0314692	0.0299339
Sample 858	0.297188	0.147729	0.159374	0.12552	0.149068	0.0237576	0.0443012	0.018711	0.0220217
Sample 859	0.428731	0.090547	0.131798	0.083018	0.241608	0.0318435	0.1035848	0.0200578	0.0218769
Sample 860	0.34068	0.163116	0.020052	0.190216	0.226237	0.0045365	0.0770744	0.0430339	0.0369029
Sample 861	0.370438	0.285248	0.011488	0.048922	0.21234	0.0024394	0.0786588	0.0103881	0.0605696
Sample 862	0.263266	0.283575	0.078964	0.102461	0.20609	0.0162737	0.0542565	0.0211162	0.058442
Sample 863	0.269302	0.312234	0.127077	0.109029	0.154312	0.0196095	0.0415565	0.0168245	0.0481815
Sample 864	0.275543	0.183861	0.117642	0.179072	0.182857	0.0215117	0.050385	0.0327446	0.0336203
Sample 865	0.233925	0.201346	0.171515	0.078529	0.173489	0.029756	0.0405834	0.0136239	0.0349313
Sample 866	0.443496	0.106234	0.069478	0.138747	0.19084	0.0132592	0.0846368	0.0264785	0.0202737
Sample 867	0.244879	0.118535	0.219427	0.191957	0.200826	0.0440666	0.0491781	0.03855	0.0238049
Sample 868	0.373958	0.216341	-0.0515	0.135001	0.167568	-0.00863	0.0626634	0.0226218	0.0362518
Sample 869	0.185667	0.138043	0.219702	0.179103	0.223045	0.0490034	0.0414121	0.039948	0.0307898
Sample 870	0.166478	0.292423	0.141397	0.125441	0.25496	0.0360506	0.0424452	0.0319824	0.0745562
Sample 871	0.425496	0.147322	0.117116	0.045069	0.190561	0.0223177	0.0810829	0.0085884	0.0280738
Sample 872	0.294307	0.149868	0.113763	0.20303	0.188854	0.0214846	0.0555811	0.038343	0.0283032
Sample 873	0.29904	0.121477	0.202985	0.190393	0.138265	0.0280657	0.0413468	0.0263247	0.016796
Sample 874	0.270833	0.264768	0.039847	0.0986	0.196369	0.0078247	0.0531832	0.019362	0.0519922
Sample 875	0.168589	0.163675	0.228008	0.114785	0.171856	0.0391845	0.028973	0.0197265	0.0281285
Sample 876	0.233974	0.243307	0.058353	0.154511	0.233611	0.0136319	0.0546589	0.0360955	0.0568392
Sample 877	0.290666	0.211801	0.080801	0.129951	0.1588	0.0128312	0.0461578	0.0206362	0.033634
Sample 878	0.276448	0.238998	0.14292	0.101442	0.161951	0.023146	0.044771	0.0164286	0.038706
Sample 879	0.309518	0.25381	0.100929	0.130726	0.241414	0.0243657	0.074722	0.0315591	0.0612733
Sample 880	0.300039	0.173191	0.11576	0.155998	0.168349	0.0194881	0.0505113	0.0262621	0.0291565
Sample 881	0.372082	0.124407	0.04558	0.203972	0.170273	0.007761	0.0633555	0.0347309	0.0211832
Sample 882	0.257676	0.204395	0.038965	0.190012	0.122655	0.0047793	0.0316052	0.0233059	0.0250701
Sample 883	0.322186	0.129905	0.139882	0.151017	0.136005	0.0190247	0.0438189	0.0205391	0.0176677
Sample 884	0.206467	0.17354	0.166827	0.212996	0.258882	0.0431885	0.0534506	0.0551408	0.0449264
Sample 885	0.319243	0.267334	0.004249	0.101656	0.151086	0.000642	0.0482331	0.0153588	0.0403904
Sample 886	0.221704	0.187568	0.170402	0.143712	0.152783	0.0260345	0.0338726	0.0219568	0.0286572
Sample 887	0.148159	0.205686	0.189339	0.213351	0.255566	0.0483886	0.0378644	0.0545253	0.0525663
Sample 888	0.299565	0.13586	0.160201	0.137476	0.158671	0.0254193	0.0475323	0.0218135	0.021557
Sample 889	0.277207	0.14693	0.112326	0.198744	0.180211	0.0202424	0.0499558	0.0358159	0.0264784
Sample 890	0.129977	0.235277	0.144297	0.231097	0.203002	0.0292926	0.0263856	0.0469132	0.0477617
Sample 891	0.348369	0.289532	0.023455	0.063378	0.270507	0.0063447	0.0942363	0.0171442	0.0783204
Sample 892	0.298265	0.118512	0.090626	0.198201	0.210552	0.0190815	0.0628003	0.0417316	0.0249529
Sample 893	0.178296	0.158096	0.239027	0.138086	0.154305	0.0368831	0.027512	0.0213074	0.024395

Sample 894	0.183838	0.276699	0.154779	0.180684	0.273991	0.0424081	0.05037	0.0495058	0.075813
Sample 895	0.186495	0.284528	0.154203	0.173641	0.233862	0.0360622	0.0436141	0.040608	0.0665403
Sample 896	0.1918	0.267781	0.136155	0.123131	0.249418	0.0339595	0.0478384	0.0307111	0.0667894
Sample 897	0.215981	0.207725	0.131091	0.226844	0.138072	0.0181	0.0298209	0.0313208	0.028681
Sample 898	0.24231	0.251001	0.107848	0.095194	0.216888	0.0233909	0.0525541	0.0206464	0.0544391
Sample 899	0.215158	0.26596	0.050601	0.195092	0.148051	0.0074915	0.0318544	0.0288836	0.0393756
Sample 900	0.332314	0.164273	0.151627	0.080313	0.163367	0.0247708	0.0542891	0.0131205	0.0268368
Sample 901	0.27999	0.242763	0.084335	0.088521	0.149281	0.0125896	0.0417972	0.0132145	0.0362399
Sample 902	0.367678	0.192144	0.09575	0.088408	0.185801	0.0177904	0.0683149	0.0164263	0.0357005
Sample 903	0.244556	0.12317	0.154034	0.232007	0.228709	0.035229	0.0559322	0.0530621	0.0281701
Sample 904	0.388953	0.13821	0.035881	0.133371	0.222225	0.0079737	0.0864351	0.0296384	0.0307137
Sample 905	0.316393	0.104995	0.084952	0.258421	0.206926	0.0175788	0.0654699	0.053474	0.0217262
Sample 906	0.35615	0.17271	0.07604	0.146815	0.240407	0.0182805	0.085621	0.0352954	0.0415207
Sample 907	0.21305	0.267757	0.157008	0.073075	0.124489	0.0195458	0.0265224	0.009097	0.0333328
Sample 908	0.207163	0.195994	0.209823	0.160288	0.158888	0.0333384	0.0329157	0.0254678	0.0311411
Sample 909	0.268563	0.230725	0.094775	0.1285	0.202935	0.0192332	0.0545008	0.0260771	0.0468222
Sample 910	0.257288	0.270234	0.05822	0.120564	0.149942	0.0087296	0.0385783	0.0180776	0.0405194
Sample 911	0.339906	0.241117	0.135496	0.078802	0.169827	0.0230109	0.0577252	0.0133827	0.0409482
Sample 912	0.264027	0.199485	0.142966	0.140209	0.184906	0.0264353	0.0488202	0.0259255	0.036886
Sample 913	0.333933	0.198033	0.052279	0.142601	0.164493	0.0085995	0.0549296	0.0234569	0.032575
Sample 914	0.262793	0.204297	0.120379	0.170614	0.228474	0.0275035	0.0600414	0.0389809	0.0466766
Sample 915	0.374216	0.109649	0.032758	0.204343	0.279341	0.0091507	0.1045339	0.0570814	0.0306295
Sample 916	0.247326	0.155524	0.170176	0.132758	0.136615	0.0232486	0.0337884	0.0181367	0.0212469
Sample 917	0.388149	0.128259	0.000751	0.182344	0.196812	0.0001478	0.0763924	0.0358875	0.0252429
Sample 918	0.327059	0.076613	0.108748	0.229643	0.232665	0.0253019	0.0760952	0.0534299	0.0178252
Sample 919	0.44452	0.145156	0.042904	0.108055	0.133224	0.0057158	0.0592207	0.0143955	0.0193383
Sample 920	0.415104	0.15302	0.071087	0.089641	0.190172	0.0135188	0.0789412	0.0170472	0.0291001
Sample 921	0.175423	0.132244	0.248224	0.170899	0.163	0.0404605	0.0285939	0.0278565	0.0215558
Sample 922	0.22484	0.173531	0.177089	0.18192	0.265134	0.0469523	0.0596127	0.0482332	0.046009
Sample 923	0.390017	0.163235	-0.0415	0.137936	0.138129	-0.005732	0.0538727	0.019053	0.0225475
Sample 924	0.310998	0.102325	0.197989	0.142715	0.113386	0.0224492	0.0352628	0.0161819	0.0116022
Sample 925	0.260062	0.253368	0.02935	0.221662	0.209057	0.0061358	0.0543678	0.04634	0.0529684
Sample 926	0.197268	0.187411	0.164265	0.183562	0.191511	0.0314586	0.037779	0.0351541	0.0358913
Sample 927	0.265275	0.170179	0.143398	0.169752	0.182226	0.0261308	0.04834	0.0309332	0.031011
Sample 928	0.351517	0.098263	0.074875	0.221324	0.189012	0.0141523	0.0664409	0.0418329	0.0185729
Sample 929	0.192424	0.203107	0.234804	0.114077	0.206438	0.0484725	0.0397236	0.0235498	0.041929
Sample 930	0.278698	0.158244	0.111788	0.129128	0.184358	0.020609	0.0513802	0.0238058	0.0291735
Sample 931	0.210295	0.118034	0.164423	0.262397	0.237234	0.0390067	0.0498891	0.0622495	0.0280017
Sample 932	0.301842	0.130738	0.084231	0.246269	0.191829	0.0161579	0.057902	0.0472415	0.0250793
Sample 933	0.280745	0.137473	0.138353	0.093901	0.184984	0.0255931	0.0519333	0.0173702	0.0254303
Sample 934	0.286848	0.230796	0.087979	0.113878	0.157436	0.0138511	0.0451602	0.0179285	0.0363356
Sample 935	0.206772	0.258935	0.133916	0.15429	0.155518	0.0208263	0.0321568	0.0239949	0.0402691
Sample 936	0.257791	0.215144	0.040621	0.226948	0.230927	0.0093805	0.0595309	0.0524084	0.0496826
Sample 937	0.242679	0.332771	0.091108	0.053945	0.178391	0.0162528	0.0432917	0.0096233	0.0593634
Sample 938	0.419727	0.187981	0.01109	0.092698	0.180819	0.0020053	0.0758946	0.0167616	0.0339905

Sample 939	0.281177	0.1703	0.179404	0.151849	0.154102	0.0276465	0.0433299	0.0234002	0.0262436
Sample 940	0.126659	0.244786	0.186718	0.208218	0.138624	0.0258836	0.017558	0.028864	0.0339332
Sample 941	0.337426	0.094813	0.172732	0.159204	0.215018	0.0371405	0.0725527	0.0342317	0.0203865
Sample 942	0.26808	0.196574	0.097279	0.153069	0.185066	0.018003	0.0496125	0.0283279	0.0363792
Sample 943	0.296481	0.230241	0.052977	0.128131	0.174502	0.0092446	0.0517365	0.0223591	0.0401775
Sample 944	0.244345	0.107087	0.181718	0.216479	0.241349	0.0438575	0.0589724	0.052247	0.0258453
Sample 945	0.320326	0.065906	0.116972	0.169792	0.13248	0.0154965	0.0424368	0.022494	0.0087312
Sample 946	0.277168	0.206347	0.047615	0.23778	0.151721	0.0072242	0.0420522	0.0360762	0.0313072
Sample 947	0.320442	0.130766	0.098246	0.119472	0.197357	0.0193895	0.0632415	0.0235786	0.0258076
Sample 948	0.320837	0.186687	0.110751	0.143319	0.173562	0.0192222	0.0556851	0.0248747	0.0324018
Sample 949	0.321267	0.240919	0.057595	0.158676	0.212219	0.0122228	0.068179	0.0336741	0.0511276
Sample 950	0.244658	0.282858	0.161025	0.090304	0.254771	0.0410245	0.0623318	0.0230068	0.072064
Sample 951	0.229756	0.250329	0.175864	0.10531	0.207469	0.0364863	0.0476672	0.0218486	0.0519355
Sample 952	0.369333	0.05421	0.106803	0.197776	0.200023	0.0213631	0.0738751	0.0395597	0.0108432
Sample 953	0.19012	0.157351	0.20258	0.234505	0.134709	0.0272893	0.0256109	0.0315899	0.0211966
Sample 954	0.277733	0.125847	0.21367	0.129614	0.1733	0.037029	0.0481311	0.0224621	0.0218093
Sample 955	0.182139	0.261334	0.217624	0.12074	0.224726	0.0489058	0.0409314	0.0271334	0.0587285
Sample 956	0.298622	0.173567	0.126453	0.209428	0.159867	0.0202157	0.0477398	0.0334806	0.0277476
Sample 957	0.293964	0.159277	0.02239	0.2295	0.216412	0.0048455	0.0636173	0.0496666	0.0344695
Sample 958	0.291357	0.296556	0.006978	0.1771	0.212691	0.0014842	0.061969	0.0376676	0.0630748
Sample 959	0.275104	0.173352	0.199578	0.09145	0.159337	0.0318002	0.0438342	0.0145714	0.0276214
Sample 960	0.232954	0.21742	0.050964	0.258541	0.231132	0.0117794	0.0538431	0.0597571	0.0502527
Sample 961	0.382509	0.029847	0.1698	0.180326	0.162209	0.0275431	0.0620464	0.0292505	0.0048415
Sample 962	0.316643	0.203952	0.047489	0.191568	0.232121	0.0110232	0.0734995	0.044467	0.0473415
Sample 963	0.328317	0.149022	0.079235	0.160818	0.164212	0.0130113	0.0539136	0.0264082	0.0244712
Sample 964	0.313977	0.10432	0.168108	0.185115	0.152912	0.0257057	0.0480109	0.0283063	0.0159518
Sample 965	0.221811	0.285848	0.108454	0.048238	0.179254	0.0194408	0.0397605	0.0086469	0.0512394
Sample 966	0.30549	0.19774	0.204815	0.052907	0.209911	0.0429929	0.0641257	0.0111058	0.0415078
Sample 967	0.36588	0.143087	-0.017889	0.233028	0.145675	-0.002606	0.0532996	0.0339464	0.0208442
Sample 968	0.352841	0.135903	0.150873	0.147237	0.156998	0.0236868	0.0553953	0.0231159	0.0213365
Sample 969	0.206457	0.145154	0.102319	0.229739	0.206232	0.0211015	0.042578	0.0473795	0.0299354
Sample 970	0.330721	0.137553	0.173032	0.043584	0.138347	0.0239385	0.0457543	0.0060297	0.01903
Sample 971	0.409117	0.15283	0.017347	0.158836	0.18765	0.0032552	0.0767708	0.0298056	0.0286785
Sample 972	0.327564	0.164613	0.166283	0.098246	0.158233	0.0263115	0.0518314	0.0155458	0.0260472
Sample 973	0.269497	0.255719	0.171977	0.069718	0.142228	0.0244599	0.03833	0.0099159	0.0363704
Sample 974	0.258352	0.10656	0.18415	0.201395	0.150248	0.0276682	0.0388169	0.0302592	0.0160104
Sample 975	0.303615	0.045552	0.175717	0.231214	0.132959	0.0233632	0.0403683	0.030742	0.0060565
Sample 976	0.280111	0.219543	0.144421	0.028103	0.310302	0.0448141	0.086919	0.0087204	0.0681246
Sample 977	0.138914	0.308603	0.180169	0.170718	0.125056	0.0225312	0.017372	0.0213493	0.0385927
Sample 978	0.196413	0.245775	0.120708	0.174175	0.243734	0.0294206	0.0478725	0.0424524	0.0599037
Sample 979	0.192677	0.308814	0.116774	0.132978	0.133417	0.0155796	0.0257064	0.0177415	0.041201
Sample 980	0.185256	0.226067	0.079901	0.184947	0.149285	0.011928	0.0276559	0.0276098	0.0337484
Sample 981	0.266238	0.18729	0.132826	0.170172	0.164005	0.0217841	0.0436644	0.0279091	0.0307165
Sample 982	0.231504	0.197337	0.157031	0.151154	0.167369	0.0262821	0.0387466	0.0252985	0.0330281
Sample 983	0.363277	0.245338	0.040949	0.141112	0.137777	0.0056418	0.0500512	0.019442	0.0338019

Sample 984	0.162219	0.298209	0.246086	0.05993	0.195862	0.0481989	0.0317725	0.011738	0.0584078
Sample 985	0.334811	0.26436	0.061835	0.009259	0.175491	0.0108515	0.0587563	0.0016249	0.0463928
Sample 986	0.390035	0.098836	0.082315	0.174837	0.219998	0.0181091	0.0858069	0.0384638	0.0217437
Sample 987	0.235334	0.142806	0.272394	0.118722	0.132715	0.0361508	0.0312324	0.0157562	0.0189525
Sample 988	0.312185	0.112719	0.19955	0.138675	0.217187	0.0433397	0.0678025	0.0301184	0.0244811
Sample 989	0.169969	0.273132	0.101969	0.244459	0.168897	0.0172223	0.0287073	0.0412884	0.0461312
Sample 990	0.116503	0.296248	0.147714	0.159886	0.182963	0.0270262	0.0213157	0.0292532	0.0542024
Sample 991	0.202152	0.219164	0.138686	0.117628	0.261984	0.0363335	0.0529606	0.0308167	0.0574175
Sample 992	0.300633	0.188529	0.167272	0.137515	0.161845	0.0270721	0.0486559	0.0222561	0.0305125
Sample 993	0.194701	0.200697	0.182759	0.16529	0.204831	0.0374347	0.0398808	0.0338565	0.041109
Sample 994	0.357419	0.105554	0.075069	0.196587	0.185278	0.0139086	0.0662219	0.0364232	0.0195568
Sample 995	0.174117	0.199263	0.220881	0.155745	0.154761	0.0341838	0.0269465	0.0241033	0.0308381
Sample 996	0.336055	0.14885	0.055413	0.202635	0.096238	0.0053328	0.0323413	0.0195012	0.014325
Sample 997	0.157834	0.10733	0.324609	0.125619	0.183478	0.0595586	0.0289591	0.0230483	0.0196927
Sample 998	0.225799	0.11398	0.170491	0.207862	0.181328	0.0309148	0.0409437	0.0376912	0.0206678
Sample 999	0.405557	0.02757	0.100847	0.126375	0.174414	0.0175891	0.0707348	0.0220416	0.0048086
					STDEV	0.012	0.017	0.012	0.014

Path Coefficients

Universiti Utara Malaysia

Average T Value

p value

0.023

1.859

0.032

0.051

3.094

0.001

0.027

2.333

0.010

0.035

2.523

0.006