
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

MONITORING ORIENTED AGILE BASED WEB APPLICATIONS

DEVELOPMENT METHODOLOGY FOR SMALL SOFTWARE FIRMS

IN JORDAN

MOATH HUSNI AHMAD ALTARAWNEH

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2016

 ii

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 iii

Abstrak

Firma perisian bersaiz kecil (SSF) penting kepada industri perisian di kebanyakan

negara kerana ia memberi sumbangan besar kepada pertumbuhan ekonomi. Di Jordan,

kebanyakan syarikat perisian yang terlibat dengan pembangunan aplikasi Web adalah

firma bersaiz kecil. Walau bagaimanapun, tahap penggunaan amalan terbaik bagi

pembangunan dan pengurusan aplikasi Web dalam firma-firma ini adalah terhad.

Selain itu, kaedah pembangunan perisian yang sedia ada masih kurang pemantauan

terhadap proses dan produk. Hasilnya, aplikasi web yang dibangunkan gagal

disiapkan dalam tempoh dan bajet yang ditetapkan serta tidak memenuhi keperluan

pengguna. Oleh itu, kajian ini bertujuan untuk membina satu metodologi baru dikenali

sebagai Metodologi Pembangunan Aplikasi Web Berasaskan Agil yang

Berorientasikan Pemantauan (MOGWD) bagi SSF. Kajian ini telah memperkenalkan

satu Kaedah Agil Lanjutan melalui penambahbaikan elemen bagi kaedah Scrum

dengan Extreme Programming (XP). Seterusnya, kaedah Agil Lanjutan tersebut telah

ditambah baik dengan menggabungkan langkah-langkah utama kaedah reka bentuk

Web dan Kaedah Pemantauan Berorientasikan Matlamat (GOMM). GOMM telah

mendefinisikan dua puluh matlamat. Setiap matlamat mempunyai satu atau lebih

soalan. Setiap soalan dijawab melalui metrik yang telah ditakrifkan. Terdapat 101

metrik kualitatif untuk memantau kualiti proses, dan 37 metrik kuantitatif untuk

memantau kualiti proses dan produk. Selain itu, metodologi MOGWD yang

dicadangkan mentakrifkan empat fasa: Perancangan, Pelaksanaan, Penyemakan dan

Tindakan. Metodologi MOGWD telah dinilai menggunakan semakan pakar dan

kajian kes. Hasil penilaian menunjukkan bahawa metodologi MOGWD telah

mencapai kepuasan pengamal SSF dan didapati boleh dipraktikkan dalam

persekitaran yang sebenar. Kajian ini memberi sumbangan kepada bidang

pembangunan berasaskan Agil dan pengukuran aplikasi Web. Ia juga menyediakan

kepada pengamal SSF satu metodologi pembangunan yang dapat memantau kualiti

proses dan produk bagi pembangunan Web.

Kata kunci: Syarikat perisian kecil, kaedah Plan-Do-Check-Act, kaedah Agil,

Pemantauan berorientasikan matlamat, Pembangunan Web.

 iv

Abstract

Small software firms (SSF) is vital to the software industry in many countries as they

provide substantial growth to their economy. In Jordan, most software companies that

are involved with developing Web applications are small firms. However, the extent

of applying best Web applications development and management practices in these

firms is limited. Besides, the existing software development methods are still lack of

monitoring the quality of process and product. As a result, the Web application being

developed exceeds deadlines and budget, and not meeting user requirements.

Therefore, this research aims to construct a new methodology referred as Monitoring

Oriented Agile Based Web Applications Development (MOGWD) Methodology for

SSF. This study introduced an Extended Agile Method by extending the Scrum

method with Extreme Programming (XP) elements. The Extended Agile Method was

improved by combining common steps of Web design method and incorporating the

Goal Oriented Monitoring Method (GOMM). The GOMM has defined twenty goals.

Each goal has one or more questions. The questions are answered through the defined

metrics. There are 101 qualitative metrics for monitoring the process quality, and 37

quantitative metrics for monitoring the process and product quality. Moreover, the

proposed MOGWD methodology defines four phases: Plan, Do, Check and Act. The

MOGWD methodology was evaluated using expert review and case study. The

evaluation results show that the MOGWD methodology has gained SSF practitioners’

satisfaction and found to be practical for the real environment. This study contributes

to the field of Agile based development and Web applications measurement. It also

provides SSF practitioners a development methodology that monitors the quality of

the process and product for Web development.

Keywords: Small software firms, Plan-Do-Check-Act method, Agile method, Goal

oriented monitoring, Web development.

 v

Acknowledgement

By the name of ALLAH, I would like to convey my appreciation to everyone who

provided me with exceptional support, encouragement and wisdom in completing this

thesis. First and foremost, I am deeply grateful to my two supervisors Assoc. Prof. Dr.

Fauziah Baharom and Assoc. Prof. Dr. Fudziah Ahmad for all their efforts in

providing me fervent support, intelligent guidance and invaluable suggestions during

this work.

On a more personal level, I want to thank my family for their unconditional love,

understanding and support. My late Father and Mother raised me to believe that I

could achieve anything I set my mind to. My brothers, Hatem, Dirar and Dergam and

My sisters Khawla and Tamador, have been an endless source of great joy, love and

assistance. I want to thank them all for their interest and assurance that the journey

does have an end at times when it seems like no end was insight.

Many thanks go to my wonderful friends for their consistent support, encouragement,

and real friendship that I needed in UUM and who were there for me all the time.

Special thanks to Ahmad, Ibrahim, Marwan, Mejhem and Omar Tarawneh, Ali and

Wa’el Naimat, Hamza Alba’ol, Ibraheem Al shamayleh, and many others. I will never

forget the great times I spent with.

Thank You All Very Much

 vi

Table of Contents

Permission to Use .. ii

Abstrak ... iii

Abstract ... iv

Acknowledgement ... v

Table of Contents .. vi

List of Tables .. xi

List of Figures ... xiv

List of Appendices ... xv

List of Abbreviations .. xvi

CHAPTER ONE INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Background study .. 1

1.3 Problem Statement ... 4

1.4 Research Questions .. 8

1.5 Research Objectives ... 9

1.6 Research Scope .. 9

1.7 Research Contribution ... 10

1.8 Significance of this Research ... 12

1.9 Organization of Chapters ... 13

CHAPTER TWO LITERATURE REVIEW .. 15

2.1 Introduction .. 15

2.2 Related studies on SSF .. 15

2.2.1 SSF characteristics and problems .. 16

2.2.2 Studies on the practices in SSF .. 18

2.3 Existing development methods .. 24

2.3.1 XP and Scrum analysis .. 28

2.3.1.1 The Development Process ... 29

2.3.1.2 Project Management .. 31

2.3.1.3 Requirements ... 31

 vii

2.3.1.4 Testing ... 32

2.3.1.5 Design .. 32

2.3.1.6 Team Structure .. 33

2.3.1.7 Comparison Results ... 33

2.3.2 Web Design Methods... 45

2.3.2.1 Web application Common Design Steps 49

2.4 Software Measurements ... 51

2.4.1 Measurement Methods ... 52

2.4.1.1 Measurement Methods Evaluation .. 56

2.4.2 Measurement Mechanism Purposes... 58

2.4.2.1 Benefits of Using Monitoring ... 58

2.4.2.2 Measurement mechanism critical success factors 59

2.4.2.3 Development process quality factors .. 61

2.5 Criteria of a good methodology for Web applications in SSF 66

2.6 Validation methods .. 69

2.6.1 Validation factors ... 72

2.7 Summary .. 74

CHAPTER THREE RESEARCH METHODOLOGY .. 77

3.1 Introduction .. 77

3.2 Research Design Approach .. 77

3.3 Research Methodology .. 79

3.3.1 Theoretical study.. 79

3.3.2 Survey .. 83

3.3.3 Methodology Construction .. 86

3.3.4 Methodology Evaluation.. 93

3.4 Summary .. 102

CHAPTER FOUR SURVEY .. 103

4.1 Introduction .. 103

4.2 Questionnaire Structure ... 103

4.3 Respondent’s Background ... 103

4.3.1 Organization Background .. 104

 viii

4.3.2 Software Development and Measurement Practices 104

4.3.3 Web application development and measurement practices 104

4.4 Questionnaire Validation ... 105

4.4.1 Construct Validity .. 105

4.4.2 Content Validity ... 106

4.5 Identify Respondents and Sampling Type ... 106

4.6 Questionnaire Distribution and Data Collection .. 107

4.7 Analysis and Results .. 108

4.7.1 Demographic Data ... 108

4.7.1.1 Respondents Background .. 108

4.7.1.2 Organization background .. 110

4.7.2 Current Software Development and Measurement Practices 111

4.7.2.1 Software Development Practices... 111

4.7.2.2 Software Measurement Practices .. 119

4.7.3 Web Application Development and Measurement Practices 126

4.7.4 Discussion of Findings... 132

4.7.5 Summary .. 135

CHAPTER FIVE METHODOLOGY CONSTRUCTION 136

5.1 Introduction .. 136

5.2 The Extended Agile Method .. 136

5.3 The overview of MOGWD methodology .. 140

5.4 MOGWD Methodology ... 144

5.4.1 Plan Phase .. 144

5.4.1.1 Management Planning ... 144

5.4.1.2 Development planning .. 147

5.4.1.3 Monitoring planning .. 153

5.4.2 Do (iteration).. 175

5.4.3 Check ... 179

5.4.4 Act .. 185

5.5 Summary .. 187

CHAPTER SIX METHODOLOGY EVALUATION .. 188

 ix

6.1 Introduction .. 188

6.2 Verification based on the experts review ... 188

6.2.1 Results of Round one ... 188

6.2.1.1 Answers and suggestions related comprehensive criterion 189

6.2.1.2 Answers and suggestions related understandability criterion 190

6.2.1.3 Answers and suggestions related feasibility criterion 193

6.2.1.4 Answers and suggestions related to the general overview part. .. 194

6.2.2 Results of round two .. 195

6.2.2.1 Process and Methods Modifications.. 196

6.2.2.2 Tools Modification .. 204

6.2.2.3 Team structure Modifications ... 204

6.2.2.4 General overview modifications ... 204

6.2.3 Results of Round Three ... 205

6.3 Validation based on case study and yardstick method 205

6.3.1 Validation based on the case study method ... 205

6.3.1.1 Case Study: Developing the CMS web application by Firm “A” 207

6.3.1.1.1 Plan ... 209

6.3.1.1.2 Do phase ... 213

6.3.1.1.3 Check phase .. 215

6.3.1.1.4 Act phase .. 215

6.3.1.2 Validation results ... 224

6.3.2 Validation based on the yardstick method ... 227

6.4 Summary .. 233

CHAPTER SEVEN CONCLUSION.. 234

7.1 Introduction .. 234

7.2 Overview of Results ... 234

7.2.1 Theoretical study.. 234

7.2.2 Survey .. 235

7.2.2.1 SSF Characteristics.. 235

7.2.2.2 Development issues ... 236

7.2.2.3 Measurement issues ... 236

 x

7.2.2.4 The current Web applications development and measurement

practices ... 237

7.2.3 Methodology Construction .. 237

7.2.4 Methodology Evaluation.. 238

7.2.4.1 Verification .. 238

7.2.4.2 Validation .. 238

7.3 Research contributions ... 239

7.3.1 MOGWD methodology ... 239

7.3.2 Extended Agile method with Web design method 240

7.3.3 GOMM... 241

7.3.4 Survey results ... 242

7.4 Limitations of the Research ... 242

7.4.1 Lack of the Related Researches ... 242

7.4.2 Limited Scope in the Evaluation Processes ... 243

7.5 Future Work ... 243

7.5.1 Add more quality factors for the process ... 243

7.5.2 Using other Agile Practices or methods for the Extended Agile method 244

7.5.3 Extend the MOGWD to include other Key process areas 244

7.6 Summary .. 245

REFERENCES ... 246

 xi

List of Tables

Table 2.1 Problems Faced by SSF ... 16
Table 2.2 Previous Studies in Web and Software Development Practices 20
Table 2.3 Web Applications Development Best Practices for SSF 21
Table 2.4 Agile Development Methods ... 25
Table 2.5 Software Development Methods Comparison ... 27
Table 2.6 Development Process Criteria .. 29
Table 2.7 XP and Scrum Comparison Table .. 30
Table 2.8 Agile Principles Symbols ... 34
Table 2.9 XP, Scrum practices and Agile principles mapping 35
Table 2.10 XP and Scrum Combination from Previous Studies comparison. 41
Table 2.11 Type of Practices and Reason of Adoption .. 44
Table 2.12 Advantages and disadvantages of the Web design methods 47
Table 2.13 Common Activities of Web Design Methods. ... 50
Table 2.14 Goal Format ... 54
Table 2.15 Light weight GQM against original GQM adopted from Wangenheim et

al. (2003). ... 55
Table 2.16 Measurement Methods Evaluation... 57
Table 2.17 Measurement Mechanism Success Factors .. 60
Table 2.18 Process Quality Factors .. 63
Table 2.19 Criteria of Good Development Methodology .. 67
Table 2.20 Validation method comparison .. 71
Table 2.21 Kunda’s validation factors adopted from Kunda (2001) 73
Table 2.22 Literature Review Analysis .. 75
Table 3.1 The Activities of the Web Design Methods ... 82
Table 3.2 Experts Profile.. 96
Table 3.3 Factors for validating the Effectiveness of the Proposed MOGWD

Methodology .. 100
Table 4.1 Questionnaire Response Rate .. 107
Table 4.2 Current Position Activities ... 110
Table 4.3 Numbers of Employees .. 110
Table 4.4 Methods that Respondents are Familiar with ... 113
Table 4.5 Requirements Collection Method .. 113
Table 4.6 Requirements Specification Notation .. 114
Table 4.7 Programming Languages ... 115
Table 4.8 Test Types .. 115
Table 4.9 Testing Process Stages ... 116
Table 4.10 Reasons of Not Using the Current Methods .. 117
Table 4.11 Reuse Types ... 117
Table 4.12 Quality Assurance Activities ... 118
Table 4.13 Performing QA Activities .. 119
Table 4.14 Measurements stages and size of company.. 121
Table 4.15 Metrics Type and Development Methods Type 124
Table 4.16 Development method and Measurement Methods................................. 125
Table 4.17 Why Organization Does Not Use Measurements 126

 xii

Table 4.18 Practices and SPSS Variable Name ... 126
Table 4.19 Internal Representations for the Degree of Acceptance 130
Table 4.20 Current Web Applications Development Practices 130
Table 5.1 The elements of the Extended Agile method ... 137
Table 5.2 Management Planning Sub Activities .. 145
Table 5.3 The MOGWD Methodology Team Structure .. 145
Table 5.4 Development Planning ... 148
Table 5.5 Monitoring Planning .. 153
Table 5.6 Goal Definition .. 154
Table 5.7 Requirements Questions and Metrics .. 158
Table 5.8 Designed Questions and Metrics.. 158
Table 5.9 Testing Questions and Metrics ... 159
Table 5.10 Practices Questions and Metrics .. 160
Table 5.11 Productivity Questions and Metrics ... 161
Table 5.12 Completeness Questions and Metrics .. 162
Table 5.13 Consistency Questions and Metrics ... 165
Table 5.14 Accuracy Questions and Metrics ... 167
Table 5.15 Tailorability Questions and Metrics ... 168
Table 5.16 Flexibility Questions and Metrics .. 168
Table 5.17 Compatibility Goal, Questions and Metrics ... 169
Table 5.18 Accessibility Questions and Metrics .. 169
Table 5.19 Applicability Question and Metrics ... 170
Table 5.20 Changeability Questions and Metrics .. 171
Table 5.21 Supportability Questions and Metrics .. 171
Table 5.22 Cost Questions and Metrics ... 172
Table 5.23 Quality Questions and Metrics ... 173
Table 5.24 Time Questions and Metrics .. 174
Table 5.25 Do phase ... 175
Table 5.26 Check Phase ... 179
Table 5.27 Development Process and Quantitative Metrics 181
Table 5.28 Data Collection for the Process Factors ... 184
Table 5.29 Act Phase.. 185
Table 6.1 Experts Answers related to comprehensiveness 189
Table 6.2 Experts Answers related to understandability .. 191
Table 6.3 Experts Answers related to feasibility ... 193
Table 6.4 Experts Answers related to the general overview Part. 194
Table 6.5 Required Modifications.. 195
Table 6.6 New list for quantitative metrics .. 199
Table 6.7 List of product backlog items... 210
Table 6.8 The Main Outputs of Web Design Method .. 211
Table 6.9 The Outputs of the Do Planning Meeting .. 212
Table 6.10 Construction Action, Results ... 212
Table 6.11 Quantitative results .. 220
Table 6.12 Qaulitative results .. 223
Table 6.13 Representations of the achievement levels .. 225
Table 6.14 Validation results ... 225
Table 6.15 Baseline Models and Comparison Criteria. ... 228

 xiii

Table 6.16 Yardstick validation ... 230

 xiv

List of Figures

Figure 2.1. Lean, Scrum and XP Combination Levels adopted from Temprado and

Bendito (2010). .. 40
Figure 2.2. The evolution of the Web application methods adopted from Lang (2002)

 .. 45
Figure 2.3. GQM Method. ... 54
Figure 3.1. The extension process .. 89
Figure 3.2. The Delphi technique steps .. 95
Figure 4.1. Respondents Position and Experience ... 109
Figure 4.2. Software Philosophy .. 112
Figure 4.3.Measurements Stage and Application Domain....................................... 120
Figure 4.4. Measurement Stage and Development Method Type 123
Figure 4.5. Dendrogram ... 129
Figure 5.1. The improvements of Extended Agile Method 140
Figure 5.2. The MOGWD methodology .. 143
Figure 5.3. Web Design method .. 150
Figure 6.1. MO-PT structure .. 206
Figure 6.2. CMS layers .. 208
Figure 6.3. View report .. 217
Figure 6.4. Quantitative and Qualitative Results ... 218
Figure 6.5. Action message .. 219

 xv

List of Appendices

Appendix A Questionnaire ... 271
Appendix B Questionnaire Face Validity Cover Letter ... 280
Appendix C Expert cover letter.. 281
Appendix D Knowledge expert questionnaire ... 282
Appendix E Domain expert questionnaire ... 301
Appendix F Questions Objective, Content and Source .. 316
Appendix G Practices ... 319
Appendix H Tools .. 322
Appendix I Quantitative metric check list ... 323
Appendix J Qualitative metrics .. 328
Appendix K Validation form ... 333
Appendix L MO-PT ... 335

 xvi

List of Abbreviations

AM Agile Modeling

ASD Adaptive Software Development

AUP Agile Unified Process

CFM Crystal Family Methodologies

DSDM Dynamic Systems Development Method

DT Development Team

FDD Feature-Driven Development

GOMM Goal Oriented Monitoring Mechanism

GQM Goal Question Metric Method

HDM Hypermedia Design Model

LSD Lean Software Development

MOGWD Monitoring Oriented Agile Based Web Applications development

Methodology

MT Monitoring Team

MO-PT Monitoring prototype tool

OOA Object Oriented Analysis

OOHDM Object-Oriented Hypermedia Design Methodology

PDCA Plan, DO, Check and Act

PSM Practical Software and Systems Measurement

QA Quality Assurance

QAA Quality Assurance Activities

RMM Relationship Management Methodology

RUP Rational Unified Process

SAD Structure Analysis and Design

SOHDM Scenario-based Object-Oriented Hypermedia Design Methodology

SPSS Statistical Package for Social Science

SSADM Structured System Analysis and Design Method

SSF Small Software Firms

TDD Test Driven Development

 xvii

UWE UML-based Web Engineering

WebML Web Modeling Language

WSDM Web Site Design Method

XP Extreme Programming (XP)

 1

CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter provides an overview about this research. It describes the background

and the problem statement of this research. Research questions, research objectives,

and research scope are also presented in this chapter. Chapter One also presents the

significance of the study, followed by the expected contributions of the research. This

chapter ends with the chapters’ organization of the thesis.

1.2 Background study

Over years, Web applications have been used by millions of organizations and

companies to facilitate communication and information exchange with their customer

in an economical manner. Hence, the development of such applications should be

guaranteed in terms of the quality of the final product to prevent from failures. Based

on the initial study, 80% of the small software firms are involved in the Web

application development. A small software firm (SSF) is defined as an organization or

company that has approximately 10 to 50 employees (Al-Tarawneh, 2013; Fayad et

al., 2000; Hofer, 2002; Laporte et al., 2005; Richardson & Wangenheim, 2007).

Web applications in any SSF should be developed by following a systematic

approach, taking into account Web application characteristics and the SSF limitations

(Haung et al., 2008; Howcroft & Carroll, 2000). The systematic development can be

achieved through the use of appropriate methodology.

2

Currently, there are several conventional development methods being introduced for

developing Web applications in SSF such as waterfall, spiral and incremental.

However, these development methods were found to be inadequate for developing the

Web application in SSF as the unique characteristics of Web applications are poorly

addressed (Altarawneh & El Shiekh, 2008; Haung et al., 2008; Okoli & Carillo,

2012). Moreover, these methods are too complex for small organizations (Al-

Tarawneh, 2013); cannot deal with high requirements changes (Moniruzzaman &

Hossain, 2013; Okoli & Carillo, 2012); involve less customer collaboration

(Moniruzzaman & Hossain, 2013; Okoli and Carillo, 2012); and not meant for

building Web applications as they require a large number of resources such as skills

and staff (Altarawneh & Shiekh, 2008; Okoli and Carillo, 2012).

To overcome the problems and limitations of the conventional development methods,

the Agile methods have been introduced. The new methods concentrate on faster

development life cycle, involve limited resources and engage more customer

collaboration (Marinelarena, 2014). The most popular Agile methods that are suitable

for SSF are Extreme Programming (XP) and Scrum (Spasibenko & Alite, 2009).

However, these two methods are not mainly built for developing Web applications as

these applications development required more emphasis on design and quality.

Besides, the XP and Scrum are lacking in terms management and development

practices respectively (Jyothi and Rao, 2011; Qureshi, 2011). Therefore, these

methods need to be analyzed and enhanced for further improvements of their

practices.

3

High quality Web application is a reliable, usable and well-designed product that

delivered to the market within time, budget and shorter life cycle (Eldai et al., 2008;

Haung et al., 2008). Furthermore, these characteristics are influenced by the quality of

the process (Guceglioglu & Demirors, 2011; Kroeger et al., 2014; and Tyrrell, 2000).

In order to fulfill these characteristics, the Web application development needs a

systematic, well-managed, incremental and measurable development process (Eldai et

al., 2008; Deshpande et al., 2002).

Therefore, to ensure that the Web applications have been developed using a

systematic methodology, the management activities should be performed in parallel

with the development activities (Abran et al, 2004). Greenfield and Short (2003)

highlighted that one of the important management activities besides planning and

controlling activities is the measurement. Performing a measurement mechanism

during the development process has many purposes and one of them is monitoring

(Abran et al., 2004).

Monitoring helps organizations to gain many benefits such as tracking the progress of

the development process by giving feedback to the management and development

team; finding and correcting errors during the development process and reducing risks

of project failure (Ardimento et al., 2004; Briand et al., 1996; Esaki et al., 2012;

Morasca, 1999; Solingen & Berghout, 2001; Tsai & Cheung, 1999; Tu et al., 2009).

Therefore, the SSF that are involved in Web application development need to apply a

new methodology to guide them during the development process, monitor the quality

of the process and the final product, save resources and reduce the development time

4

and cost (Alesky et al., 2004; Baskerville & Pries-Heje, 2002; Costagliola et al., 2002;

Murugesan et al., 2001; El-Sheikh & Tarawneh, 2007; Haung et al., 2008). Thus, this

study aims to construct a monitoring oriented Agile based Web application

development methodology for SSF.

1.3 Problem Statement

Web application development in SSF is currently facing various problems such as

failure to deploy a proper development and measurement practices, complex design

and unable to monitor the quality of the process and the product. These problems are

discussed as follows:

i. Need to investigate the current Web application development and

measurement practices in SSF. Many researchers such as McDonald and

Welland (2001), Cater-Steel (2004), Kirk and Tempero (2012) and El-Sheikh

and Tarawneh (2007) highlighted the need of following best practices in

developing Web applications in SSF to improve the productivity, reduce cost,

minimize time and increase quality. The results of a survey conducted in UK

by McDonald and Welland (2001) conveyed that there is a need to deploy the

best practices in Web application development as the majority of the targeted

organizations still used ad-hoc development process. In addition, the survey

also pointed out there is a little attention paid to the measurement of the

product quality. Similar work also done by Cater-Steel (2004) where the study

found that most of the SSF in Australia failed to apply any standard software

5

development practices. However, the study only investigated the development

and management practices instead of the measurement practices. Another

study conducted by Kirk and Tempero (2012) also indicated that the majority

of the SFF in New Zealand did not follow any standard development methods

or development practices. Unfortunately, the study only focused on the

organization and participant practices rather than the measurement practices.

Another related study on the development and management practices

conducted by El-Sheikh and Tarawneh (2007) indicated that the degree of

applying these practices in the Jordanian SSF was very low. Again, this study

only discussed on the development and management practices. Therefore,

findings from these studies clearly shown that there is a need to investigate the

current Web applications development and measurement practices in SSF.

ii. The importance of improving the design phase in Web application

development. The quality of Web application development depends on the

deployment of the management and development practices. In addition, design

is a very important phase in Web application development as it describes the

content, navigation and interface and usability of the Web applications (Ginige

& Murugesan, 2001; Tarafdar & Zhang, 2008). The key issue that may cause

failure in the Web application development is poor design (Ginige &

Murugesan, 2001; Haung et al., 2008; Mccarthy & Aronson, 2001; Tarafdar &

Zhang, 2008). Unfortunately, XP and Scrum cannot meet the Web application

design complexity as Scrum does not define any specific software

6

development techniques for design (Clutterbuck et al., 2009; Fernandes &

Almeida, 2010; Jyothi and Rao, 2011; Moniruzzaman & Hossain, 2013;

Qureshi, 2011) and XP only provides a simple design phase (Kumar & Bhatia,

2012; Pressman, 2009; Whiston, 2006). In order to overcome the drawbacks of

the development practices in Scrum and the drawbacks of management

practices in XP, many studies had combined XP and Scrum methods such as

Mar and Schwaber (2002), Fitzgerald et al., (2006), Clutterbuck et al., (2009),

Jyothi and Rao (2011) and Qureshi, (2011). These studies combined the

Scrum with specific XP development practices. However, the combination

process was not mainly built for developing Web application in SSF.

Additionally, all of these studies still using XP design practices which were

considered very simple in fulfilling the Web application design complexity.

Therefore, there is a need for analyzing the development and management

practices of XP and Scrum and enhancing the design phase with the Web

design practices.

iii. Need of monitoring the quality of the process and the product during the

development.

In order to get high quality Web applications in SSF, the process and product

quality should be monitored. This can be accomplished by adopting a

monitoring mechanism that incorporates the quantitative and qualitative

measures. Unfortunately, XP and Scrum failed to provide any measurement

mechanism that able to monitor the process and product quality (Berardi &

7

Santillo, 2010; Fritzsche & Keil, 2007; Javdani et al., 2012; Jiang & Eberlein,

2008; McCurley et al. 2008; Turk et al., 2002; Turk et al., 2005; Qumer &

Henderson-Sellers, 2008). Furthermore, very limited studies were conducted

to measure the Agile development process. For example, Kroeger et al.,

(2014) only determined the qualitative measurement of process characteristics

without using a specific measurement method. Another study conducted by

Kettelerij (2006) focused on the designing of a quantitative measurement

program for software development, while Kulas (2012) used some metrics

such as size, defects, requirement and design for measuring the quality of

product in XP. Kunwar (2013) conducted a study that uses quantitative metrics

to evaluate three XP practices which are Test Driven Development (TDD),

pair programming and on-site customer. Most of the metrics mentioned in the

previous studies were performed at the end of the iteration instead of covering

the whole process. In order to have a successful measurement mechanism, the

metrics should monitor the process and product quality. Apart from that, a

successful measurement should use both the quantitative and qualitative goal

oriented mechanism (Calero et al., 2005; Wangenheim et al., 2003; Murphy

and Cormican, 2012). Consequently, none of the above studies achieved all

these factors. Therefore, there is a need to enhance the XP and Scrum methods

by integrating a measurement mechanism for monitoring the quality of the

process and the final product.

SSF projects may fail by using poor methodologies (Alite & Spasibenko,2008;

Fritzsche & Keil, 2007; Esaki et al., 2012; Jyothi & Rao, 2011; Moniruzzaman &

8

Hossain; 2013; Whitson, 2006) because they cannot deal with the existing issued that

faced by SSF such as limited resources (human, financial and experience), high

changing requirements, tight deadlines, lack of customer collaboration, ineffective

project management, lack of unique processes and methods, and lack of specific

software process and quality monitoring measurement mechanism (Al-Tarawneh,

2013; Huang et al., 2008; Kirk & Tempero 2012; Pusatli & Misra, 2011; Tarawneh &

Allahawiah, 2009).

Based on the above discussion, it is clear that the SSF need a new methodology for

developing Web applications. The new methodology should consider these three

important elements: the characteristics of the Web applications, the SSF and the

limitations of the existing methods. This methodology will also consider the Scrum

management practices, XP development practices, and improves the design phase.

Finally, the methodology will provide a suitable measurement mechanism for

monitoring the quality of the development process and the final product.

1.4 Research Questions

 What are the current Web applications development and measurement

practices in SSF?

 How to enhance the design phase of the Extended Agile method?

 How to perform monitoring during the Web application development process?

9

 How to ensure that the proposed methodology can be effectively implemented

in SSF?

1.5 Research Objectives

The main objective of this study is to develop a Monitoring Oriented Agile Based

Web Applications Development Methodology for SSF.

 In order to achieve the main objective, the following specific objectives are proposed:

 To investigate the current Web applications development and measurement

practices in SSF.

 To enhance the design phase of the Extend Agile method.

 To construct quantitative and qualitative measurement metrics for monitoring

the quality of the process and product.

 To evaluate the proposed methodology.

1.6 Research Scope

SSF play an important role that provides substantial growth to their countries

economy. In Jordan, most of the software firms are small (El Sheikh & Tarawneh,

2007). The study was conducted in Jordan because of the following reasons; (i) most

of SSF in Jordan involved in Web application development; (ii) high percentage of

the SSF in Jordan are still using ad hoc development process; and (iii) high percentage

10

of the SSF in Jordan are not aware of applying the best Web application development

practices (El Sheikh & Tarawneh, 2007).

A survey conducted in Jordanian small software firms to investigate the current

practices items of using methods, practices and the issues that faced by these firms.

The findings of the survey were used to construct a new monitoring oriented Agile

based Web application development methodology for SSF. This methodology covers

the development, management and monitoring process. The development process was

performed by referring to the extended Agile method that was enhanced by

incorporating a Web design method. The monitoring process was constructed by

performing qualitative and quantitative metrics during the development process to

ensure the quality of the final product. This study adapts Plan, Do, Check and Act

method (PDCA) to perform the development and monitoring process together.

The new methodology verified was based on the comprehensiveness,

understandability, and feasibility by the knowledge and domain experts. In the

validation, one case study has been performed in Jordan validate the effectiveness of

the new methodology in SSF.

1.7 Research Contribution

The contributions of this study are: Monitoring Oriented Agile Based Web

Applications Development Methodology for SSF, Extended Agile method with Web

design method, GOMM, and the survey results.

11

 Monitoring Oriented Agile Based Web Applications Development

Methodology for SSF: The methodology provides descriptions of the

activities, methods, practices, tools and team structure that should be

considered when developing Web applications in SSF. In addition, the

methodology adapts the phase of PDCA method to construct the development

and monitoring processes and organize the methodology components.

 Extended Agile method with Web design method: The Extended Agile

method was constructed by extending the Scrum methods with important XP

elements. The design phase in this method is enhanced by adding the Web

design method that uses design steps generated from the existing Web design

methods. The resultant method will be used to guide the development process

by the development team.

 The measurement mechanism uses the light weight goal question method to

achieve the quality characteristics, and ensure the quality of the product and

process. This method will be used to guide the monitoring process by the

monitoring team.

 In addition, the study had conducted a survey on the current practices of Web

application development and management in SSF. The survey contributes a

collection of development and management practices that are recommended to

be used by SSF practitioners. Moreover, the instrument used this survey can

be adopted or adapted by the researcher in the field.

12

1.8 Significance of this Research

This research contributes towards the field of software engineering, Web application

development, Agile based development and Web application measurement by

providing a set of components: activity, methods, practices, tools, and team structure

to deal with Web application characteristics and SSF limitations.

This study aims to benefit four stakeholders:

 Small software firm's developers and managers

This study will help this branch of companies to develop high quality Web

applications using a systematic way, considering the time and budget limitations.

This methodology will encourage SSF’s Developers to gain high quality process

and product. On the other hand, the new methodology gives an opportunity for

managers to monitor the quality of the product in terms of its progress, cost, and

quality characteristics. In addition, the process activities, practices, productivity

and process quality factors can also be monitored. The monitoring process will

be performed using the GOMM. Finally, the GOMM member would be able to

produce a final report that describes all of the above goals.

 Software engineer

 This study will provide the software engineers with a new methodology to

develop Web applications in SSF using the GOMM method for monitoring the

process and product quality. Furthermore, it gives a full set of current practices of

13

Web application development in SSF which are useful for any software engineer

to adopt or adapt in different countries or study areas.

 Evaluators

This study will construct a quality metrics to verify and validate the new

methodology. These quality metrics will be very useful for the evaluators of the

same area or other software areas to ensure the acceptance of their new

methodologies or frameworks.

 Researchers

This study will contribute a set of research publications that are useful to be

adopted or enhanced by the researchers in the field of Web application

development, Agile based development and Web applications measurement.

1.9 Organization of Chapters

Chapter Two: This chapter provides a description of the SSF characteristics and

problems faced by the SSF as well as the development practices that must be followed

by the SSF. In addition, the chapter gives an overview of the methods used for

developing the Web applications such as conventional, Agile and Web design

methods. It also includes the advantages and disadvantages of each method.

Measurement methods were also discussed and analyzed in this chapter. The last

section of Chapter Two presents the process quality factors that should be monitored

during the development process.

14

Chapter Three: This chapter describes the research methodology used to achieve the

research objectives. It provides explanations of the four stages that are used to

construct a new methodology for developing the Web applications in SSF.

Chapter Four: This chapter firstly illustrates on how the survey approach was

conducted. Secondly, it defines the data collection method (questionnaire) and

describes its construction. Thirdly, this chapter presents the results of the survey

conducted on the Jordanian SSF.

Chapter Five: This chapter presents the new methodology. In addition, this chapter

defines the components of the new methodology in term of activities, methods,

practices, tools and team structure.

Chapter Six: This chapter shows the evaluation process results using the expert

review method and yardstick validation. The expert review was performed by

verifying the completeness, understandability and feasibility of the proposed

methodology using the Delphi technique rounds. The validation process was

performed by two approaches case study and yardstick. The aim of conducting the

case study is validate the effectiveness of the MOGWD methodology. The yardsticks

validation was conducted to determine the strengths and weaknesses of the proposed

methodology by comparing it with the baseline methods in the field.

Chapter Seven: This chapter concludes the finding of the research. It also highlights

the research contributions and future work.

15

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The aim of this chapter is to identify the best Web applications development and

measurement practices for SSF. The chapter continues with the descriptions of the

existing methods that are currently used by SSF for Web application development. A

discussion of the investigation relating to the problem associated with each method is

also included. In addition, the Web design and software measurement methods are

also analyzed. This chapter ends by providing good methodology criteria of for SSF

followed by a summary of the chapter.

2.2 Related studies on SSF

SSF represent a high percentage of firms in most countries around the world

(Richardson & Wangenheim, 2007). The definition of these firms depends on the size

of the firm. Thus, there is no one fixed size to distinguish the SSF among different

countries. Nevertheless, there are some studies referred to the number of employees in

SSF as less than 50 (Carter-Steel, 2001; Fayad et al., 2000; Rocha et al., 2007;

Sulayman & Mendez, 2010; Wangenheim et al., 2003). On the other hand, Laporte et

al. (2005) determined the size of SSF to be less than 60 employees. Furthermore, an

empirical study conducted in Australia by Hofer (2002) concluded that the size of

SSF is between 10 to 50 employees. Therefore, it can be concluded that the size of

16

SSF ranges from 10 to 50 employees. This range is used in this study to refer a small

firm.

2.2.1 SSF characteristics and problems

SSF have many characteristics. These characteristics differ from a country to another.

Even though there are no specific criteria in the world to categorize SSF, a number of

literatures had pointed out some common characteristics of these firms. Alexandre et

al. (2006) and Hofers (2002) stated that SSF comprised of the following important

characteristics: frequent project meetings, quality management and teamwork, direct

interaction with customers in the development process work, newest technology

utilization, dynamic and flexible company and customer feedback deliberation.

On the other hand, SSF faced many problems in the software development and

management. Table 2.1 described several studies that conducted in SSF and

highlighted the problem that they faced.

Table 2.1

Problems Faced by SSF

Study Description Problems Country

Fayad et al.

(2000)

The paper discusses the

major software engineering

issues that face SSF.

- Limited staff.

- High changing requirements.

- No effective measurement of

time and cost.

Not

determined

Hofer (2002) The primary goals of this

paper is to find out the

characteristics of SSF, and

identify the Software

development and

management issues

- Customer collaboration.

- Project management.

- Changing requirements.

- Limited resources.

- Lack of unique processes and

methods.

Australia

Wangenheim

et al. (2003)

This paper discussed SSF

issues that related to

software measurement.

- Lack of experience.

- Lack of employees.

- No specific measurement

Brazil

17

mechanism for monitoring the

process quality.

Dangle et al.

(2005)

The paper identified the

role of process

improvement in the context

of a small organization

- Limited resources (human and

financial).

USA

El Sheikh and

Tarawneh

(2007)

This study shows the level

of Web engineering best

practices adoption in the

Jordanian small firms

- Lack skills and experience.

- Lack of staff.

- Limited budget.

- Project management issues.

Jordan

Huang et al.

 (2008)

This paper discussed the

issues of Web application

development in SMEs.

- Lack of software processes.

- Limited resources.

- High changing requirements.

- Small budget.

- Tight deadlines.

UK

Dı´az-Ley et

al. (2008)

This discussed the SMEs

limitations in performing

measurement program.

- Limited human resources.

- No specific software

measurement mechanism.

Not

determined

Tarawneh and

Allahawiah

(2009)

This study determined the

current practices of industry

participants, and in

devising improvement

initiatives which are

feasible for small firms.

- Use an ad hoc process.

- Use an ad hoc metrics.

Jordan

Ribeiro and

Fernandes

(2010).

This paper presented a

model to prioritize

available management

systems to help SMEs

address the challenge of

today’s market competition.

- Lack of technical skills.

- Shortage of finance.

Not

determined

Pusatli and

Misra (2011)

This study aims to evaluate

the appropriate

implementation of

measurement programs in

SMEs.

- Use ad hoc measurement

program.

- Limited number of employees.

Turkey

 Kirk and

Tempero

(2012)

 This paper aims to

Understand the practices

used by SSF.

- Ineffectiveness in requirements

practices.

- Lack of applying development

practices.

- No standard development

method.

New

Zealand

Al-Tarawneh

(2013)

This study presents the

problems faced by the SSF

through constructing a

software development

process improvement

framework for SSF.

- No specific software process

model.

- Changing project requirements.

- Limited resources.

- Customer collaboration

problem.

- Project management problems.

Jordan

18

As concluded from Table 2.1, most of the problems that face SSF include: limited

resources (human, financial and experience), high changing requirements, tight

deadlines, lack of customer collaboration, ineffective project management, lack of

unique processes and methods, and lack of specific software process and quality

monitoring measurement mechanism. Therefore, for any firm that has limited

resources, it is recommended to use an easier development process that is suitable for

smaller teams. For those facing high changing requirements issue can opt an iterative

style process. To tackle the customer collaboration and project management issues,

SSF may use a process that emphasizes on customer involvement and management

respectively. As for the tight deadlines and no specific measurement mechanism can

be managed by applying certain measurement mechanisms to monitor the product and

process quality.

2.2.2 Studies on the practices in SSF

A best practice is defined as “a management or technical practices that has

consistently demonstrated and should be deployed to improve one or more of

productivity, cost, schedule, quality user satisfaction and predictability of cost and

schedule” (Withers, 2000).

Software engineering best practices were produced by the software council sponsored

by the Department of Defense (DOD) to improve the success of large software

projects (Brown, 1999). These practices had been categorized by Software Program

Managers Network (SPMN, 1999) into three categories, namely project management,

design and development, and quality of product.

19

SSF is considered as a special case representing the software industry, which differs

from other large companies, especially in the application of development approaches.

El Sheikh & Tarawneh (2007) and Bucci et al. (2001) stated that a high percentage of

SSF are not aware of performing the software best practices. Furthermore, there is a

lack of well-defined development process for SSF (Alexandre et al., 2006; Hofers,

2002; Knauber et al., 2000; Tarawneh & Allahawiah, 2009).

There are a number of recent empirical studies that has recommended a set of

practices to be performed by the SSF while developing their software towards

achieving a high quality product within the time and budget constraints. A survey

conducted by Azuma and Mole (1994) highlighted the differences between the

development practices used by the European firms compared to the Japanese

companies, whilst Blackburn et al. (1996) concluded that the companies in the United

State, Japan and Western Europe are using the same practices. Other researchers

focused on a specific location, for example, a survey on software process adoption in

Singapore (Tan & Yap 1995).

The most widely reported and well known survey of best practice in Europe was that

conducted by the European Software Institute (ESI) (Dutta et al., 1998). This survey

(ESI, 1997) defined best practice as “a management practice that is commonly

recommended as excellent and suggested by most practitioners and experts in the

field”. In addition, the survey categorized the development best practices into five

categories: organizational issues, standards and processes, metrics, development

process control as well as tools and technology.

20

Nevertheless, the most recent studies that focused on the development of Web

applications and software are shown in Table 2.2

Table 2.2

Previous Studies in Web and Software Development Practices

Study Name
Respondent/data

collection method
Goal Outcomes

A survey of Web

engineering in practice

(McDonald & Welland,

2001b)

Web

developers/interview.

To identify the major

issues relating to the

development of Web

based systems.

There is an indication of the

importance of deploying

certain development practices

as the majority of the targeted

organization still used ad-hoc

development process.

An evaluation of

software development

practice and

assessment-based

process improvement in

small software

development firms

(Cater-Steel, 2004).

Software developer and

managers/questionnaires.

To provide a much

better understanding of

practices used by small

software development

firms.

 Most of the practices have not

been applied by the targeted

organizations.

Northern Ireland (NI)

software industry

survey (McCaffery et

al., 2004)

Mangers, technical

directors and quality

managers/interview.

To achieve an accurate

understanding of the

quality of the software

development

organizations in NI.

General awareness of various

standards that can be applied to

software process is still

limited.

A survey of Web

engineering practice in

small Jordanian Web

development firms (El

Sheikh & Tarawneh,

2007).

Web

developer/questionnaires.

To show the level of

Web engineering best

practices adoption in the

Jordanian small firms.

The degree of applying these

practices was very low.

Software development

practices in New

Zealand (Kirk &

Tempero, 2012)

Developers/online

questionnaire.

Understanding the

practices used by the

New Zealand software

organizations in

developing software.

The majority of the

organizations did not follow

any standard development

methods or set of development

practices.

A survey on the current

practices of software

development process in

Malaysia (Baharom et

al., 2006)

Mangers, technical

directors and

developers/questionnaire.

To determine the

current practices of

software development

process in Malaysia.

Most of the targeted

organizations were not aware

of deploying good software

development practices and

standard that cause low quality

product.

21

Referring to Table 2.2, it is obvious that three out of the six studies were conducted on

small sized organizations. These studies are those of Cater-Steel (2004), Kirk and

Tempero (2012) and El Sheikh & Tarawneh (2007). The common result from all these

studied showed that SSF failed to apply specific best or recommended practices.

Therefore, there is a need to conduct a study to investigate the current Web

application development and measurement practices in SSF. Before conducting this

study, the best practices for developing Web application in SSF should be identified.

The Web application development practices were identified by referring to: El Sheikh

and Tarawneh (2007) and McDonald and Welland (2001a). The rest of the practices

related to the project and quality management were determined from various authors

such as Deshpande et al. (2002), Haung et al. (2008), Redouane (2002) and Wu and

Offutt (2002). These practices are shown in Table 2.3.

Table 2.3

 Web Applications Development Best Practices for SSF

Practice Description

1- Short development

life-cycle times

The Web application development process should deal with time pressure

because the average time of Web application development life cycle is less

than three months (McDonald & Welland, 2001a).

2- Delivery of bespoke

solutions

The development process of Web applications should not only deal with

software components, however, it should cope with data interdependencies

(McDonald & Welland, 2001a).

3- Multidisciplinary

development teams

The web application development process should clarify team member’s roles

and responsibilities. This team should know that the process is semi-formal

with little documentation (McDonald & Welland, 2001a; Haung et al., 2008;

El Sheikh & Tarawneh , 2007).

4- Analysis and

Evaluation

Web application development process answers these questions:

a.) Why are we going to develop a Web application?

b.) What problems or goals will the Web application address?

c.) How will we know if the solution addresses these problems or goals?

d.) How will we measure and validate the deliverables?

22

(McDonald & Welland, 2001a).

5- Requirements

management

1- Requirements should be collected from the user or/and manager. There will

be no intermediate person between the source of requirement and the

developer (Haung et al., 2008; Redouane, 2002).

2- Translate informal requirements to a formal or semi-formal specifications

using any formal notation which both of the teams are familiar with

(Redouane, 2002; Withers, 2000).

3- Web application development requires an iterative process to cope with

change requirement (Haung et al., 2008).

6- Testing 1- Generate test cases based on the requirement specification performed for

every component (Redouane, 2002).

2- All components of the Web applications such as page, code, site,

navigation, must be tested by testing cases generated according to the

requirements specifications. Services such as HTML and XHTML must be

tested to ensure all of the Web application components are tested (Redouane,

2002; Deshpande et al., 2002).

3- In order to avoid biases; testing process must be carried out by people who

are not involved in the development process (Redouane, 2002).

7- Maintenance To ensure proper maintenance and deliverables update, it is very necessary for

a developer to build a well-documented system that able to determine how

content maintenance should be carried out and which policies will be used for

that (McDonald & Welland, 2001a; Deshpande et al., 2002).

8- Project management 1- Project management practices such as risk management and software

measurements is important to avoid failure and any negative impact on the

final product (El Sheikh & Tarawneh, 2007; Brown, 1999).

2-A proper project plan that include budget and time estimation (McDonald &

Welland, 2001a).

9-Quality management 1-Developers should pay more attention to the quality management and

standards such as usability and user interface design as it is important to

influence the maintenance and improve final product and organizational issues

(Haung et al., 2008; El Sheikh & Tarawneh, 2007; Wu & Offutt, 2002).

Based on Table 2.3, SSF should pay more attention to certain practices during Web

applications development in order to gain high quality product within the available

resources. The practices should relate to the development process as well as the team,

and quality management. Having a systematic and disciplined development process,

23

helped in clarifying the practices related to requirement, test, design and maintenance

that will ensure the quality of the final product (McDonald & Welland, 2001b).

Therefore, these relevant practices should be deployed to ensure the quality of the

Web application product.

Requirement practices are about gathering requirement from those who requested for

software development and it’s related to the way of collecting them. Testing practices

relate to individuals responsible for carrying out the testing process, identifying the

components that have been tested and designing a simple approach during the

iteration without ignoring the complexity design of Web applications.

Regarding the team structure, all the development team members should have a clear

understanding of their roles and responsibilities.

The project management activities are very important to be used in parallel with the

software development. Using such activities as planning, coordinating, measuring,

monitoring, controlling, and reporting will not only activate the development process,

but also make everything inside the process activities, roles and deliverables clear and

manageable (Abran et al., 2004).

The quality management involves many factors depending on the development

environment. For example, as the environment of a Web application is different than

that of the traditional software development, the factors that influence the quality of

Web application varies. Therefore, the main factors that influence the quality of Web

24

applications are security, product reliability, usability and maintainability (Wu &

Offutt, 2002; Lilburne et al., 2004).

The above mentioned practices will be taken as a baseline to construct a questionnaire

to investigate the current development and measurement practices in SSF. Beside the

practices, the SSF should also follow a particular discipline method to guide their

development process. These methods are discussed in the next section.

2.3 Existing development methods

Many methods for developing Web application in SSF have been proposed such as

the conventional, Agile and Web design methods.

The conventional methods are popular software development methods that have been

developed long before the Agile method. Among the examples of the conventional

methods are waterfall (Royce, 1970), incremental (Basili & Turner, 1975), v-model

(appeared in the Hughes Aircraft circa 1982), prototyping (Floyd, 1984) and spiral

(Boehm, 1988). These conventional methods are considered as a heavy weight,

planned, driven, heavy testing and strict control methods (Imreh & Raisinghani,

2011).

The Agile development methods are proposed to overcome the limitations of the

conventional methods. Pressman (2009) concluded that Agile methods include: XP,

Scrum, Crystal Family Methodologies (CFM), Dynamic Systems Development

Method (DSDM), Adaptive Software Development (ASD), Feature-Driven

25

Development (FDD), Lean Software Development (LSD), Agile Modeling (AM) and

Rational Unified Process (RUP) or Agile Unified Process (AUP). Table 2.4 describes

the Agile development methods advantages and disadvantages.

Table 2.4

 Agile Development Methods

Method Advantages Disadvantages Source

XP

- The most common method in

Agile software development.

- It is considered as a collection of

development practices.

- Lack of management

practices.

- Simple design phase.

(Beck, 1999; Boehm,

2006; Stojanovic et al.,

2003; Qureshi,

2011;Väänänen, 2008)

Scrum

- One of the popular Agile software

development methods that focus

on management

- Lack of development

practices.

(Boehm, 2006; Larman,

2003; Schwaber &

Beedle, 2001; Qureshi,

2011; Väänänen, 2008).

CFM

- Allows adoption of other Agile

methods.

- No specific process activities, but

selected methodologies based on

the project demands.

- Suitable for one team in one

room.

- Lack of validation.

- Not suitable for life critical

system.

(Abrahamsson et al.,

2002; Stojanovic et al.,

2003; Väänänen, 2008).

 AM

- Used for modeling and

documentation of software-based

systems.

- AM has no specific process

activities because it focuses on

practices and cultural principles.

- It is not sufficient by itself,

as it should be supported by

other models such as UML

models.

(Abrahamsson et al.,

2002; Stojanovic et al.,

2003).

 ASD

- Provides a framework as guidance

for projects in preventing from

falling into chaos.

- ASD is more about

concepts and culture than

the software practice.

(Abrahamsson et al.,

2002; Awad, 2005;
Stojanovic et al., 2003)

DSDM

- Updates the product functionality

rapidly.

- Conforms product to meet the time

and resource constraints.

- More easily applied to

business system than

engineering or scientific

applications.

(Abrahamsson et al.,

2002; Stojanovic et al.,

2003; Väänänen, 2008)

FDD

- Focuses on the designing and

building phases iteratively.

- It did not cover the other

software development

phases.

(Abrahamsson et al.,

2002).

 RUP

- An iterative approach to object

oriented.

- Use cases for modeling the

requirements.

- Fail to provide any clear

implementation guidelines.

(Abrahamsson et al.,

2002; Väänänen, 2008).

26

 LSD

- LSD has adapted the principles of

lean manufacturing to the world of

software engineering

- More Flexibility will quickly

lead to a development that

loses sight of its objectives

and which never finishes.

(Pressman, 2009).

The development of Web applications in SSF is not an easy task because of the

characteristics of Web applications and the limitations of SSF. Therefore,

conventional and Agile development methods were compared in this study based on

specific criteria collected from the SSF’ limitations and Web application

characteristics. Five criteria were selected for the comparison: fit to 10-50 size,

complexity, flexible to change, customer collaboration and quality assurance

measurement mechanism (QAMM). The results of comparing the conventional

methods were extracted from Awad (2005), Imreh and Raisinghani (2011), Koblenz

(2003), Naqvi (2007), Munassar and Govardhan (2010), Okoli and Carillo (2012),

Pressman (2009) and Spasibenko and Alite (2009). In addition, the results of

comparing the agile development methods were extracted from Abrahamsson et

al.(2002), Beck (1999), Larman (2003), Lindstrom and Jeffries (2004), Pressman

(2009), Salo (2006), Schwaber and Beedle (2001), Stojanovic et al. (2003) and

Väänänen (2008). Table 2.5 shows the comparison between the conventional and

Agile development methods.

27

Table 2.5

 Software Development Methods Comparison

 Criteria

Method

Fit to

10-50

size

Complexity

Flexible

to

change

Customer

collaboration
QAMM

C
o

n
v

en
ti

o
n

a
l

m
et

h
o

d
s

Waterfall × × × × ×

Incremental × √ < < ×

V- model × √ × × ×

Prototyping × √ < < ×

Spiral × √ < < ×

A
g
il

e
D

ev
el

o
p

m
en

t

M
et

h
o
d

s

XP √ < √ √ ×

Scrum √ < √ √ ×

CFM × < √ √ ×

AM × √ √ √ ×

ASD × √ √ √ ×

DSDM × < √ √ ×

FDD × √ √ √ ×

RUP × √ √ √ ×

LSD × < √ √ ×

(√) means satisfy the criterion, (×) means not satisfied the criterion and (<) means

partially satisfy the criterion

Results in Table 2.5 convey that all conventional methods are considered not suitable

for the SSF’ size. The waterfall and V model cannot meet requirement changes as the

methods used linear development style and lack of customer collaboration.The V

model and incremental method are considered as complex development methods.

The prototyping and spiral methods are not suitable for the size of SSF as they are

complex, less flexible to change, less customer collaboration and do not use any

measurement mechanism to ensure the quality of the process and product. This

clarifies that conventional method is not suitable for developing Web applications in

SSF.

28

Table 2.5 illustrates that all Agile development methods concentrate on customer

collaboration and requirement changes. However, these methods have not used any

measurement mechanism to ensure the quality of the process and product.

Consequently, regarding the size criterion, XP and Scrum are the only methods that

satisfy and fit the size of SSF. In addition, four out of nine Agile development

methods are found to be too complex to be used in real life. These methods are the

AM, ASD, RUP and FDD. The XP, Scrum, CFM, LSD and DSDM methods are

found to be less complex. These results confirm that the most Agile development

methods that can be used for developing Web application in SSF are XP and Scrum.

This is relevant to the findings of Spasibenko and Alite (2009); Theunissen et al.

(2005) and Väänänen (2008). Thus, this study will focus on these two development

methods.

2.3.1 XP and Scrum analysis

This section aims to analyze the XP and Scrum based on on their similarities and

differences. The XP and Scrum are similar in using iterative development style which

is recommended for small teams. Both methods also do not have any design method

and measurement mechanism. However, XP and Scrum have certain differences in

terms of the development process, project management, requirements, testing, design

and team structure (McDonald and Welland, 2001b; Deshpande et al., 2002;

Redouane, 2004; Abran et al., 2004; Haung et al., 2008; Qumer & Henderson-Sellers,

2008). These differences are used as criteria for comparing the XP and Scrum in the

next sections.

29

2.3.1.1 The Development Process

In order to ensure the quality of the Web application, the development process should

be performed by using a systematic and disciplined methodology which clarifies the

roles and responsibilities for each team member (McDonald & Welland, 2001b). The

comparison between the Scrum and XP in terms of the development process is done

using sub-criteria which are considered as the common Agile development practices

(Abrahamsson et al., 2002; Abrantes & Travassos, 2011; Fernandes & Almeida, 2010;

Qumer and Henderson-Sellers, 2008). This study uses these sub-criteria to confirm

whether both methods performed the common Agile development practices. The sub-

criteria are shown in Table 2.6.

Table 2.6

Development Process Criteria

Sub criteria XP Scrum

Iterative and rapid development style. Yes Yes

Short releases (after the first iteration, new versions are

released even daily, and at least monthly).

Yes No

Metaphor (guides all the development by describing how

the system works).

Yes No

Simple design (unnecessarily complexity and extra code

are removed immediately).

Yes No

Refactoring (removing duplication and adding

flexibility).

Yes No

Pair programming (two programmers + one monitor) Yes No

Collective ownership (anyone can change the code at any

time)

Yes No

On-site customer (customer has to be available full time

for the team).

Yes No

Coding standard (coding rules must be followed by the

programmers).

Yes No

Every day meeting. No Yes

30

Every iteration meeting No Yes

Table 2.6 illustrates that XP satisfies the development process sub-criteria compared

to Scrum. However, both are recommended to be used by SSF. The development style

for both methods is iterative and rapid. Table 2.7 shows the results of the other

comparison criteria such as project management, requirement, testing, design and

team structure. Table 2.7 is extracted from Abrahamsson et al. (2002), Berardi &

Santillo (2010), Fernandes & Almeida (2010), Fritzsche & Keil (2007), Jiang &

Eberlein (2008) and Qumer and Henderson-Sellers (2008).

Table 2.7

 XP and Scrum Comparison Table

Criteria Sub-Criteria
Methods

XP Scrum

Development

Process

From Table 5.1
More satisfying Less satisfying

Project

Management

Management Practices Planning Game

Scrum Master

Sprint meeting

Daily meeting

Measurement Mechanism No No

Requirement

Requirement gathering

practices
User stories Product backlog

Requirement repository for

trace and reuse
No No

Customer involvement
On-site customer

practices

By the product

owner

Testing Testing technique TDD No

Design

Design approach Code centered No

Code style Clean and simple No

Design prototype No No

Team structure
Team Size 3- 20 5- 9

No. of teams 1 team Multiple teams

31

2.3.1.2 Project Management

Project management is defined as the “activities that must be performed during the

development process are planning, coordinating, measuring, monitoring, controlling,

and reporting which activates the development process on one hand and clarify the

need of measurement on the other hand“ (Abran et al., 2004).

Based on the project management criteria, it is obvious that Scrum satisfies the project

management criteria better than XP due to the use of the management practices

namely, scrum master, sprint meeting and daily meeting during the development

process as shown in Table 2.7. However, both methods do not have a specific

measurement mechanism to ensure the quality of the product and process. The use of

measurement during the development process is important to reduce defects,

minimize time and rework of the development life cycle (Kettelerij, 2006; McCurley

et al., 2008).

2.3.1.3 Requirements

 The way of collecting requirements and from whom the developers collect it affects

the speed of the development. In addition, the collection method should deal with

continuous changed Web application requirements (Haung et al., 2008; Redouane,

2002).

Both the XP and Scrum are good on the requirement gathering techniques as they use

user stories and product backlog that can ensure faster development process. In

32

addition, XP and Scrum differ in terms of the customer involvement practice where

XP insists to have the customer onsite and Scrum uses a product owner who acts as

the customer since it is difficult to have that customer onsite all the time. However,

both methods do not have the requirements reuse and traceability.

2.3.1.4 Testing

The testing process is very important to ensure the product quality. Therefore, it is

necessary to deploy testing practices during the development by a separated testing

team (Redouane, 2002; Deshpande et al., 2002).

Referring to Table 2.8, XP is better than Scrum on performing the testing practices by

using the TDD technique which ensures that all implemented features must be

covered by unit tests. However, nothing is mentioned about the testing practices in

Scrum.

2.3.1.5 Design

The design phase of the Web application development should be simple in terms of its

iteration process and use a quick prototype to cope with time pressure and high

maintenance (McDonald & Welland, 2001b; Qumer & Henderson-Sellers, 2008).

Table 2.7 illustrates that the design approach used in the XP and Scrum is code and

design centric respectively. The XP coding style is cleaner and simpler because it is

using pair programming and simple design practices. Unfortunately, there is nothing

mentioned about the Scrum coding style because it is considered as management

33

framework. However, both methods do not have a design prototype to meet the

complexity of the Web application design.

2.3.1.6 Team Structure

The results attained from Table 2.7 show that the XP is created to serve one team on a

project ranging from 3 to 20 team members, whereas Scrum can be used by multiple

teams ranging from 5 to 9 team members.

2.3.1.7 Comparison Results

The results attained from Table 2.6 and Table 2.7 illustrate that the XP only

concentrates on the development and fail to apply any management practices. Scrum,

on the other hand, concentrates on the management practices and fail to include any

development practices such as testing, designing and coding.

Both the XP and Scrum do not have a measurable mechanism to ensure the quality of

product and process. At the same time, both methods do not use the requirements

reuse and traceability and do not have any design method in dealing with the design

complexity of Web applications. However, the XP is still performing the testing using

the TDD whilst the Scrum has not applied any testing method.

Many authors suggested and recommended to combine the XP and Scrum in order to

fulfill the management and development practices. The next section clarifies the

number of these studies and implies the limitation and differences.

34

- Previous Studies on Combining XP and Scrum

Many authors recommended combining the XP and Scrum to cover the development

and management sides (Abrahamsson et al., 2002; Beck, 1999). Furthermore, XP and

Scrum focus on the same organization brands (small and medium enterprise). This

makes the combination fruitful for developers and manager in the industry. These

previous studies integrated between the two methods in terms of practices. However,

these studies did not highlight the relationship between the practices and Agile

principles.

Agile principle is defined as “Basic truths and laws that are derived from assumptions

(values) and provide a foundation upon which assumptions (values) are based” (Turk

et al., 2005). Twelve principles were generated based on these values. Table 2.8

shows each principle and its symbols used in this study.

Table 2.8

 Agile Principles Symbols

Agile principles

Principle Principle symbol

“Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software”

P1

“Welcome changing requirements, even at the later stage of

the development. Agile processes harness change for the customer's

competitive advantage”.

P2

“Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale”.

P3

“Business people and developers must work together daily throughout

the project”.

P4

“Build projects around motivated individuals.

Give them the environment and support their needs, and trust them to

get the job done”.

P5

35

“The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation”.

P6

“Working software is a primary measure of progress”. P7

“Agile processes promote sustainable development.

The sponsors, developers, and users should be able to maintain a

constant pace indefinitely”.

P8

“Continuous attention to technical excellence and good design

enhances agility”.

P9

“Simplicity--the art of maximizing the amount of work not done--is

essential”.

P10

“The best architecture requirements and design emerge from self-

organizing team“.

P11

“Team reflects how to become more effective, then tunes and adjust

its behavior accordingly”.

P12

The twelve principles are considered as a set of policies and rules that should be

supported by processes that claimed to be “Agile” (Turk et al., 2005). Therefore, any

Agile development method should support these principles.

Turk et al. (2005) describe the relation between the twelve principles by mentioning

that principles should be supported by practices and both practices and principles

were built based on the Agile values. Table 2.9, which were extracted from Visconti

and Cook (2004), relates and maps the important practices of the XP and Scrum and

Agile principles.

Table 2.9

XP, Scrum practices and Agile principles mapping

Practices Principles related

Scrum practices Iteration planning meeting P6, P10

Daily meeting P6, P10

Iteration review meeting P1, P2,P3,P5, P7,P8, P12

XP practices Pair programming. P5 , P6, P9 , P10

TDD. P1 , P9, P12

Simple design. P9

 Refactoring. P9

36

Collective ownership. P5

 Coding standard P9

Continuous integration. P1, P2,P3,P7,P8,P12

Metaphor P4

Small release P1, P2,P3,P7,P8,P12

 Table 2.9 points out that the most important Scrum practices is the iteration review

meeting, which influences the application of seven principles (P1, P2, P3, P5, P7, P8

and P12) followed by the iteration planning meeting and daily meeting which

influence the application of two principles (P6 and P10). The most important XP

practices are small release and continuous integration, which influence six principles

(P1, P2, P3, P7, P8 and P12), followed by pair programming which influences four

principles (P5, P6, P9 and P10). The test driven development (TDD) practices affect

three principles (P1, P9 and P12), whilst simple design, refactoring, and coding

standard influences the same principles (P9). However, metaphor influences (P4) and

collective ownership influences the application of (P5).

The importance of the XP and Scrum practices will be determined based on Table 2.9

and from the previous studies conducted to discuss the combination between XP and

Scrum (Mar & Schwaber, 2002; Fitzgerald et al., 2006; Clutterbuck et al., 2009;

Qureshi, 2011; Jyothi & Rao, 2011; Temprado & Bendito, 2010).

Mar and Schwaber (2002) merged the XP practices with the Scrum process. The

combination process is performed following these steps:

 Determine the similarities of both methods.

37

 Use the Scrum process activities (planning, development and post-game),

roles (Scrum master, product owner and development team) and meeting

(daily Scrum, Sprint planning meetings and others).

 Use product and sprint backlogs to represent whole system requirements and

the iteration requirements respectively.

 Use seven XP practices, namely: simple design, TDD, continuous integration,

refactoring, pair programming, collective ownership and coding standards.

Fitzgerald et al., (2006): this study was conducted to investigate the tailoring of the

XP and Scrum according to more than three years of developers experience inside the

Intel Shannon company. The process of tailoring the two methods was done through

the following:

 Use the Scrum process as a baseline and give justifications.

 Divide the project into two levels; organizational level (Scrum) and project

level (XP).

 Use the same Scrum activities (planning, development and post-game phase).

 Map between the used and unused activities or practices of both Scrum and

XP development methods.

 Based on the usage of the XP practices in the company, six XP practices were

selected.

 The six selected practices were pair programming, TDD, collective

ownership, refactoring, coding standard and simple design.

38

The tailoring process was conducted according to the method engineering theory that

discussed in Brinkkemper (1996).

 Clutterbuck et al. (2009): this study examined the application of the Agile

development methods by small and medium enterprise developers. The tailoring

process was done according to the Agile development practices that have been

assessed and evaluated by the developers. The assessment process was conducted by:

 Interviewing the project members (managers and developers).

 Assessing the activities and practices of the two methods based on five ordinal

levels (strongly helpful, helpful, improvable, difficult and not workable).

 Indicating that the results shown by all the Scrum practices are strongly

helpful. Therefore, the Scrum method will be used as a baseline for the

combination.

 Adding the seven XP practices to the combination method, namely: simple

design, TDD, refactoring, pair programming, collective ownership, continuous

integration and coding standard.

Qureshi (2011): this study indicated that the XP and Scrum have various drawbacks

and limitations. Therefore, the integration of the two methods is very useful for the

developers and managers to get high quality product and use mature process that

covers both sides of management and development.

The integration was done in this study through the following steps:

 Compare XP and Scrum to determine their shortcomings.

39

 Take the Scrum process as a baseline.

 Select the suitable XP practices such as the simple design, collective

ownership, pair programming, coding standards, TDD, continuous integration

and refactoring.

 Integrate the Scrum process with the selected XP development practices.

Jyothi and Rao (2011). The study concluded that the most common Agile

development methods to be combined together are the XP and Scrum. The process of

combining the two methods was performed in the following steps:

 The process created based on the Scrum process.

 The Scrum sprint used iteration to produce a new increment.

 The Sprint included a traditional phase of software development such as

requirement, analysis, design and evolution.

 The XP practices that had been added to the Scrum sprint are refactoring, pair

programming, collective ownership and continuous integration.

 The functional testing was performed by the customer at the end of each

iteration.

Temprado and Bendito (2010), The aim of this study is to construct a new framework

that implements Lean practices in combination with Scrum and XP. The process of

combining the three methods was performed by the following steps:

 Use the XP on the developmental level for fast development and high quality

coding.

40

 Scrum on the project level is to increase the communication and reduce risk by

dealing with requirements changes, splitting system into tasks and conducting

Scrum meetings.

 Lean is a concept that must be applied to a higher level of the organizational

level. The lean is used for removing waste, adding value and learning

continuously in every process. By applying the lean principles the

organization is able to change its thinking and development practice. The three

levels of the combination are shown in Figure 2.1.

Figure 2.1. Lean, Scrum and XP Combination Levels adopted from Temprado and

Bendito (2010).

Table 2.10 shows the integration of the XP and Scrum methods that had been done in

previous.

 41

Table 2.10

 XP and Scrum Combination from Previous Studies comparison.

 Study name

Criteria

Study one

Mar and Schwaber

(2002)

Study two

Fitzgerald et al.

(2006)

Study three

Clutterbuck et al.

(2009)

Study four

 Qureshi (2011)

Study five

Jyothi and Rao

(2011)

Study six

Temprado and Bendito

(2010)

Methods Scrum and XP Scrum and XP Scrum and XP Scrum and XP Scrum and XP Lean + Scrum +XP

Practices

Scrum

Product backlog,

sprint backlog,

sprint, effort

estimation, sprint

planning meeting,

daily Scrum meeting

and sprint review

meeting.

Product backlog,

sprint backlog,

sprint, effort

estimation, sprint

planning meeting,

daily Scrum meeting

and sprint review

meeting.

Product backlog,

sprint backlog,

sprint, effort

estimation, sprint

planning meeting,

daily Scrum

meeting and sprint

review meeting.

Product backlog,

sprint backlog,

sprint, effort

estimation, sprint

planning meeting,

daily Scrum

meeting and sprint

review meeting.

Product backlog,

sprint backlog, sprint,

effort estimation,

sprint planning

meeting, daily Scrum

meeting and sprint

review meeting.

Product backlog,

sprint backlog,

sprint, effort

estimation, sprint

planning meeting,

daily Scrum

meeting and sprint

review meeting.

XP

Simple design,

collective

ownership, pair

programming,

coding standards,

TDD, continuous

integration and

refactoring.

Pair programming,

TDD, collective

ownership,

refactoring, coding

standards and simple

design.

Simple design,

collective

ownership, pair

programming,

coding standards,

TDD, continuous

integration and

refactoring.

Simple design,

collective

ownership, pair

programming,

coding standards,

TDD, continuous

integration and

refactoring.

Refactoring, pair

programming,

collective ownership

and continuous

integration.

Pair Programming,

TDD, onsite

customer, coding

standards and

refactoring.

Team structure Scrum team

(Master, product

owner, customer and

development team).

Scrum team

(Master, product

owner, customer and

development team).

Scrum team

(Master, product

owner, customer

and development

team).

Scrum team

(Master, product

owner, customer

and development

team).

Scrum team (Master,

product owner,

customer and

development team).

Scrum team

(Master, product

owner, customer

and development

team).

42

Process Similar Scrum

activities process

integrated with the

selected XP

practices inside the

sprint.

Similar Scrum

activities process

integrated with the

selected XP

practices inside the

sprint.

Similar Scrum

activities process

integrated with the

selected XP

practices inside the

sprint.

Similar Scrum

activities process

integrated with the

selected XP

practices inside the

sprint.

Similar Scrum

activities process

integrated with the

selected XP practices

inside the sprint.

Similar Scrum

activities process

integrated with the

selected XP

practices inside the

sprint to fulfill the

Lean principles.

Theory No method Engineering No No No No

Principles that are

not achieved

P4 (no metaphor),

P1,P2, P3, P7, P8,

p12 will not be

achieved unless the

small release is

applied.

P1,P2, P3, P7,P8,

P12 (no continuous

integration and

small release) P4

(no metaphor),

P1 will not be

achieved unless the

TDD practice is

applied.

P4 (no metaphor),

P1, P2, P3, P7, P8,

P12 will not be

achieved unless the

small release is

applied.

P4 (no metaphor),

P1,P2, P3, P7, P8,

P12 will not be

achieved unless

the small release is

applied.

P4 (no metaphor),

P1,P2, P3, P7,

P8,P9, P12 will not

be achieved unless

the small release,

simple design,

coding standards,

and TDD are

applied.

P4 (no metaphor),

P1,P2, P3, P7,

P8,P9, P12 will not

be achieved unless

the small release,

simple design,

coding standards,

and refactoring are

applied.

 43

Based on Table 2.10, all of the studies took the Scrum as the baseline and integrate

the XP practices into the Scrum sprint. The studies also used all the Scrum practices.

Three studies (Study one, Study three and Study four) added seven XP practices to

the Scrum sprint which are simple design, collective ownership, pair programming,

coding standards, TDD, continuous integration and refactoring.

Study two added six practices to the Scrum sprint namely the pair programming,

TDD, collective ownership, refactoring, coding standards and simple design without

applying any of the continuous integration practices.

Study six added five practices to the Scrum sprint namely the pair programming,

TDD, on-site customer, coding standards and refactoring. On the other hand, only

four of the XP practices were added to the Scrum sprint by Study five. Those were

refactoring, pair programming, collective ownership and continuous integration.

As for the theory, only study two used engineering method as a basis theory for

conducting the integration.

 Based on the results obtained from Table 2.9 and Table 2.10 respectively, it can be

concluded that the most common (core) practices used by all of the previous studies

are the Scrum iteration review, daily and iteration planning meetings. In addition,

these studies also used the pair programming, TDD, refactoring, and coding

standards. However, there are other important practices need to be added to the

integration between the XP and Scrum as they are very important to fulfill the

application of Agile principles as shown in Table 2.10. These XP practices include

small release, continuous integration, metaphor, simple design and collective

ownership. Small release and continuous integration influence the applications of six

44

principles (P1, P2, P3, P7, P8, P12) whereas the application of metaphor, simple

design and collective ownership practice influences the application of principles

(P4), (P9) and (P5) respectively. Consequently, this study will use the two categories

of practices. Table 2.11 illustrates the types of practices and the reason for adopting

those practices.

Table 2.11

 Type of Practices and Reason of Adoption

Practices category Practices name Reason of adoption

 Common Scrum

practices (core)

Iteration planning meeting Used by all previous studies

Daily meeting

Iteration review meeting

Common XP

practices (core)

Pair programming Used by all previous studies

 TDD

Refactoring

Coding standards

Supported XP

practices

Small release Influence the application of

 (P1, P2, P3, P7, P8, P12).

Continuous integration Influence the application of

 (P1, P2, P3, P7, P8, P12).

Metaphor Influence the application of (P4).

Simple design Influence the application of (P9).

Collective ownership Influence the application of (P5).

All of the combination methods between the XP and Scrum are still having a lack of

quantitative and qualitative measurements to monitor the development process and

the product. Furthermore, requirements traceability issue with the XP and Scrum is

still need to be solved. Even though the combination methods still using the XP

design practice which is very simple, it can still fulfill the Web application

complexity. Therefore, the design phase needs to be improved as well. As a result,

45

four enhancements are needed to overcome the limitations of the XP and Scrum.

This will be discussed thoroughly in chapter five.

2.3.2 Web Design Methods

There are many design methods that were proposed for designing Web applications

(Wills et al., 2007). These methods are: Hypermedia Design Model (HDM)

(Garzotto, Paolini & Schwabe, 1991), Relationship Management Methodology

(RMM) (Isakowitz et al., 1995), and Object-Oriented Hypermedia Design

Methodology (OOHDM) (Schwabe & Rossi, 1995). The methods were derived from

the E-R modeling or Object Modeling Techniques (OMT) or UML extensions.

Figure 2.2 shows the evolution of the Web application design methods.

Figure 2.2. The evolution of the Web application methods adopted from Lang

(2002)

Based on the evolution in Figure 2.2, the following sections will discuss these

methods: HDM, RMM, OOHDM, WSDM, SODHM and WebML.

46

HDM is the first model that was developed to define the structure of hypermedia

application based on the Entity Relationship model by Garzotto, Paolini and

Schwabe (1991). These designers stated that the basic features of HDM are the

representation of hypermedia application through several or different design

primitives. Table 2.12 describes the advantages and disadvantages of this model.

The OOHDM is a model based approach for designing large hypermedia

applications; the model was constructed by Schwabe and Rossi (1995). This model

consists of four activities, namely, conceptual, navigational, and abstract interface

designs as well as implementation. This model is performed with the mixture of

incremental, iterative and prototyping based styles. Table 2.12 describes the

advantages and disadvantages of this model.

The RMM, created by Isakowitz et al. (1995), consists of seven steps that include E-

R, slice, navigation, user interface, and protocol conversion designs as well as run-

time behavior, construction and testing. Table 2.12 describes the advantages and

disadvantages of this methodology.

The WSDM, proposed by Troyer and Leune (1998), is about “user centered” rather

than “data driven”. In a data driven method, the starting point refers to the available

data. In the WSDM approach, the starting point is the set of the Web site users.

Table 2.12 describes the advantages and disadvantages of this method.

47

The Scenario-Based Object-Oriented Methodology is an object-oriented

methodology for developing hypermedia information systems, it was proposed by

Lee et al. (1998). This methodology consists of six phases: domain analysis, object

modeling as well as view, navigation, construction and implementation designs.

Table 2.12 describes the advantages and disadvantages of this methodology.

The WebML, a modeling language for designing Web sites, was developed by Ceri

et al. (2000). This language is considered as annotation for specifying complex

Website at the conceptual level. Table 2.12 describes the advantages and

disadvantages of this method.

The UWE approach was presented by Koch (2001). It is an object-oriented, iterative

and incremental approach based on the Unified Modeling Language. This approach

consists of several activities for designing Web applications. The activities are

requirements analysis, conceptual, navigation and presentation design supplemented

with task and deployment modeling and visualization of Web scenarios. Table 2.12

describes the advantages and disadvantages of this method.

Table 2.12

 Advantages and disadvantages of the Web design methods

Method Advantages Disadvantages

 HDM - HDM is a top-down hypertext

structured design model for

designing hypertext applications

(Garzotto, Paolini & Schwabe,

1991).

- Small applications are not covered in the

HDM scope (Garzotto, Paolini &

Schwabe, 1991).

- HDM is a design model rather than a

process model (Gaedke & Graf, 2001).

- This model is not suitable for developing

48

Web applications (Redouane, 2004).

OOHDM

- It treats the conceptual, navigational

and interface designs as separate

activities (Schwabe & Rossi, 1998).

- - By using the OOHDM, more

modular and reusable designs can

be obtained (Schwabe & Rossi,

1998).

- This method is used for large hypermedia

designs such as Web sites (Schwabe &

Rossi, 1998).

- - A very complex and difficult method to

understand which requires a lot of training

(Lang, 2002; Eldai et al., 2008).

 RMM

- RMM is applicable for the highly

structured and high information

volatility such as hypermedia front-

ends of databases or legacy

applications (Isakowitz et al.,

1995).

- This methodology is not suitable for low

structure and low volatility applications

such as a literary work (Isakowitz et al.,

1995).

- This methodology is complex and hard to

understand (Russo & Graham, 1998; Eldai

et al., 2008).

- - This methodology needs specialized

training (Eldai et al., 2008)

 WSDM

- This method is user centric, which

means that the developer Web site

has high usability as it is built by

considering users’ viewpoints

(Troyer & Leune, 1998).

- WSDM is a method for designing a

complex website structure such as kiosk

Web sites. It is not suitable for Web-based

applications (Troyer & Leune, 1998).

SOHDM

- Use scenarios to capture the user

requirements starting from the

earliest opportunity to ensure

flexibility and improve the quality

of the delivered application (Lee et

al., 1998).

- The methodology is effective for

integrating WWW hypermedia

system with enterprise databases

(Lee et al., 1998).

- This methodology does not offer any tool

in the development process (Koch, 1999).

- It does not cover all the development

process phases (Koch, 1999).

 WebML - It is an annotation for modeling

complex Web sites and gives a

high-level description for designing

the data intensive Website (Ceri et

al., 2000).

- WebML process primitives are

expressive and rich (Distante et al.,

2007)

- WebML lacks all of the multimedia,

synchronization and interaction aspects

(Preciado et al., 2005).

UWE - Modeling elements are fully and

widely described in the UML

documentation (Koch & Kraus,

2002).

- This approach does not have user

modeling and does not support the

bottom up design (Montero et al., 2003).

- Lack of a complete integration of the

different modeling techniques (Koch &

Kraus, 2002).

49

Based on Table 2.12, most of the Web design methods are too complex, which

require specialized training. Moreover, most of these methods concentrated on the

design part of the Web application development.

Many researchers such as Eldai et al. (2008), Lang (2002), Wills et al. (2007) and

Zelenka (2006) pointed out that these methods are not suitable for building Web

application in SSF because of the following reasons:

• These methods are too complex and need specialized training

• Quite a few of these methods have been applied outside of academic

contexts, or adequately tested in real life situations.

• These methods concentrate on the design part of the Web application

development.

• Web design methods are too robust and the development process is time

consuming.

2.3.2.1 Web application Common Design Steps

After discussing the advantages and disadvantages of these design methods, it can be

concluded that those methods cannot be used as a full methodology for building Web

applications. The main reason is that the methods concentrate more on the design

phase. Thus, these methods should be taken into account to improve the design phase

of the new methodology in this study. The activities of these design methods should

be analyzed to come up with common activity that covers the whole design methods.

Table 2.13 illustrates each method activity and the common activities for all

methods.

50

Table 2.13

 Common Activities of Web Design Methods.

Design method Activities Common activities

HDM 1. Entity definition.

2. Object design.

3. Link design.

4. Interface design.

1. Requirements

analysis.

2. Conceptual design

(object design).

3. Navigational design.

4. Implementation

design (interface).

5. Construction.

OOHDM 1. Conceptual design.

2. Navigational design.

3. Interface design.

4. Implementation.

RMM 1. Requirement analysis.

2. Entity and navigational design.

3. Interface design.

4. Construction.

WSDM 1. User modeling (requirements).

2. Object design.

3. Navigational design.

4. Implementation look and feel

(interface).

5. Actual implementation.

SOHDM 1. Domain analysis (requirements).

2. Navigational design.

3. Implementation (interface).

4. Construction.

Web ML 1. Requirement collection.

2. Data design.

3. Hypertext in large (object design

for the whole system).

4. Hypertext in small (navigational+

interface) for each page.

5. Presentation design

(implementation until requirement

stable).

UWE 1. Requirement analysis.

2. Conceptual design.

3. Navigational design.

4. Presentation design (interface).

5. Deployment (construction).

Table 2.13 indicates that any prototype design should follow the common

activities that have been extracted from the design development methods

analysis. These activities are:

51

 Requirements analysis: collect the whole system requirements directly from

the user. These requirements include Web application objectives, targeted

audiences, content, style guidelines, and constraint development.

 Conceptual design (object design): determine the objects, classes, subclasses,

relationships, attributes and perspectives on the Web application using any

object oriented constructs (classes, relationships or use cases).

 Navigational design: this phase describes how users can navigate through a

Web application as well as specify the link of pages and content units to the

whole application. This will be done by determining the nodes, links, as well

as the access and navigational structures.

 Implementation design (interface): the aim of this phase is to design the look

and feel of the Web application by generating the required page structure,

page flow, user interface and logical database schema.

 Construction: developers run the Web application output in the target or real

environment.

This study uses these activities as a baseline to build a simple design method to

improve the design of the Web application in SSF.

2.4 Software Measurements

According to Kettelerij (2006), software measurement is defined as “an effective

means to understand, control, predict and improve software development projects”.

Measurement of both the product and development processes has been considered a

long time ago as an important activity for successful software development. The

52

analysis of the appropriate measures of software artifacts such as requirements,

designs, and source code, problems can be recognized and solutions can be

determined during the project execution. This may reduce defects, rework (effort,

resources, etc.), and cycle time (Graf, 2005; McCurley et al., 2008).

Kettelerij (2006) Morasca (1999), Solingen and Berghout (2001) and Wangenheim

et al. (2003) pointed out that the implementation of software measurement during the

development process provides many benefits such as:

 Increase understanding and controlling of software development processes;

 Increase capacity to improve the software development process;

 More accurate estimates of software project costs and schedule;

 More objective evaluations of changes in technique, tool, or methods;

 More accurate estimates of the changes effects on project cost and schedule;

 Decreased development project cycle time and costs due to increased

productivity and efficiency;

 Improve customer satisfaction and confidence due to higher product quality.

2.4.1 Measurement Methods

Measurement method is “a systematic way or procedure to implement a software

measurement mechanism in development organization that can give a general

guidance about measuring, analyzing, and recording information that can be used for

monitoring performance of the process” (Kettelerij, 2006). A set of measurement

methods is discussed in this section, which include Practical Software and Systems

53

Measurement (PSM), Quality Function Deployment (QFD) and Goal Question

Method (GQM).

The PSM is “information driven” measurement mechanism that includes select,

collect, define, analyze and report specific software issues. These issues are risks,

problems, progress, cost, product size and stability, product quality, process

performance, technology effectiveness and customer satisfaction (Jones, 2003).

The QFD is “a top down customer oriented approach to product innovation that

guides the product managers and design teams through conceptualization, creation

and realization process of new products” (Govers, 1996). The QFP is also considered

as a product quality measurement method that consists of four phases: product

concept, product design, process design and manufacturing operations (Govers,

1996).

The GQM is “a method to collect software engineering data, whereby measurement

goals are established, questions are linked to the goals and metrics are derived to

satisfy the questions” (Kettelerij, 2006; Morasca, 1999; Solingen, 1999; Solingen,

2002). This method requires organizations to define their measurement mechanism

based on specific goals. As shown in Figure 2.3, goals are transformed into questions

that consecutively converted to metrics.

54

Figure 2.3. GQM Method.

The result of applying the GQM approach is the specification of a measurement

mechanism or system which targeting a set of issues and rules. The resulting

measurement mechanism using the GQM methods has three levels to be performed:

1- Conceptual level (GOAL): The goal specifies the purpose of measurement,

object to be measured, issue to be measured, and the viewpoints from which

the measure is taken. Goals identification format in Table 2.14 was extracted

from Basili et al. (1994), who mentioned that the measurement goal should

be built in an understandable and a clear structure. This structure should

clearly define the purpose (what object and why), perspective (what aspect

and who) and context characteristics.

Table 2.14

 Goal Format

Analyze The object to be measured
For the purpose of Understanding, monitoring or improving.

With respect to Quality focus of the object that the

measurement focuses on.

From the viewpoint of People that measure the object.

55

2- Operational level (QUESTION): A set of questions is used to describe the

way to achieve a specific goal. Questions try to demonstrate the object of

measurement (product, process, resource) with respect to a selected quality

issue and to determine its quality from a specified viewpoint.

3- Quantitative level (METRIC): A set of data collected using several

quantitative and qualitative metrics in order to answer each question.

The GQM is considered as the most popular measurement method that represents top

down goal oriented method (Ardimento et al., 2004; Caldiera & Rombach, 1996;

Kettelerij, 2006; Solingen, 2002; Weiss, 1994). However, the GQM cannot deal with

SSF because it performs the measurement mechanism by separating the GQM team.

This separated team cannot be established due to the small number of the SSF and

organization structure. The light weight GQM approach proposed by Wangenheim et

al., (2003) uses the same phases of the GQM. However, the measurement

mechanism is performed by one member and some activities of the GQM are

excluded to fit the small software firm’s employee size and minimize efforts by

reducing measurement activities. Table 2.15 describes the activities of the light

weight GQM compared to the original GQM.

Table 2.15

 Light weight GQM against original GQM adopted from Wangenheim et al. (2003).

Phases GQM method Light weight GQM

Planning Establish team, project plan, and

training.

Introduce measurement

mechanism.

Select improvement area and

application project.

Definition Define a measurement goal,

conduct interview, and review

Define measurement goals and

format the goals.

56

software process models.

Define question, hypothesis and

review.

Define questions.

Produce an analysis plan.

Define metrics and review Define metrics

Produce the GQM and

measurement plans.

Produce a measurement plan, data

collection procedures, and data

collection instruments.

Trial period, hold a kick off the

session.

Produce a data collection plan and

create a metric base.

Data collection Create a metric base. Collect and validate data.

Collect and check data collection

form, store measurement data in

metric base.

Store the collected data.

Interpretation Define analysis sheet and

presentation slide

Prepare, organize and hold

feedback session, report metrics

result.

Data analysis.

 Feedback session.

Packaging Packaging the results.

As on the above Table, it's clearly shown that lightweight GQM required minimum

number of team members for conducting the measurement mechanism, less process

steps and fewer efforts.

2.4.1.1 Measurement Methods Evaluation

To perform a successful measurement mechanism in SSF, many aspects should be

considered. For example, Ardimento et al. (2004), Caldiera & Rombach (1996),

Kettelerij (2006), Rombach and Basil (1991), Solingen (2002) and Weiss (1994)

insisted that the measurement applied should be top down goal oriented methods. In

addition, Scholtz and Steves (2004) stated that the measurement methods should be

used for process and product quality. As for Wangenheim et al. (2003), the

57

measurement mechanism should take into account the limitations of SSF such as the

experience and lack of staff.

Based on the above discussion, it can be concluded that many criteria were used to

evaluate the measurement methods; PSM, QFD, GQM and light weight GQM. These

criteria are top down, goal oriented, process and product oriented, simplicity and

small team size. The results of the measurement methods, evaluation were extracted

from Kettelerij (2006), Rombach and Basili (1991), Scholtz and Steves (2004),

Solingen (2002) and Wangenheim et al. (2003). Table 2.16 shows the results.

Table 2.16

 Measurement Methods Evaluation

 Criteria

Method
Top

down

Goal

Oriented

Process and

Product Oriented
Simplicity

Fit to 10-

50 size

PSM × × × × ×

QFD √ × × × ×

GQM √ √ √ × ×

Light weight

GQM

√ √ √ √ √

(√) means satisfy the criterion, (×) means not satisfied the criterion

As conclude from Table 2.16, the most suitable measurement method to be used by

the SSF is the light weight GQM because it satisfies all the evaluation criteria

compared to the other methods. Therefore, this method is used as the baseline to

create a measurement mechanism for developing Web application in SSF.

58

2.4.2 Measurement Mechanism Purposes

 Measurement mechanism is the process of achieving the measurable goals by

clearly defining the questions, measures (metrics), stakeholders and the information

required by the stakeholders (Kettelerij, 2006).

The application of measurement mechanism during the development process aims to

meet the following purposes: planning, coordinating, monitoring, controlling, and

reporting to ensure that the development and maintenance of the software are

systematic, disciplined and quantified (Abran et al., 2004; Braind et al., 2002;

Solingen & Berghout, 1999). This study focuses on the monitoring purpose.

2.4.2.1 Benefits of Using Monitoring

Monitoring refers to the review of the development process in order to follow the

activities and the product performance evolution starting from the early-stage of the

project. The aim is to find the latent project risks and other related problems (Briand

et al., 1996; Esaki et al., 2012). Monitoring provides many benefits such as the

ability of tracking the progress of the development process, giving feedbacks to the

team members for improvement, continuously fulfill the quality goals, and

accelerating the development process of finding and correcting errors. In addition,

performing monitoring helps to reduce risks, ease maintenance, and pursue the

project management efficiently, which will then lead a project to success (Ardimento

et al., 2004; Briand et al., 1996; Esaki et al., 2012; Morasca, 1999; Solingen &

Berghout, 2001; Tsai & Cheung, 1999; Tu et al., 2009).

59

2.4.2.2 Measurement mechanism critical success factors

It is evidenced in many studies that measurement mechanism has its critical success

factors. Therefore, performing a measurement mechanism needs to consider various

related factors. Among the critical success factors as compiled by Kettelerij (2006)

are to begin small with goals and extend the mechanism as you go, provide training

to people affected by the mechanism, involve developers, test and manage the

mechanism implementation, provide regular feedback to those involved in using the

mechanism, and automate the measurement if possible. Murphy and Cormican

(2012) categorized the best practices of the measurement mechanism into five

categories: organization, management practices, people, information communication

and technology. Unfortunately, the technology had the lowest scoring category in

this study. Other issues that should be taken into consideration are SSF limitations

and Web application characteristics. Wangenheim et al. (2003) pointed out that the

measurement mechanism used by the SSF should be simple to match the small size

of the firms and less effort to deal with less experience team. On the other hand,

Calero et al., (2005) stated that the Web application measurement metrics

mechanism should concentrate on the quality characteristics and life cycle process.

Based on the discussion, this study focuses on the first four categories to form as the

baseline in determining the success factors of performing a measurement mechanism

and to harmonize them in the Web application development in SSF. Table 2.17

shows the critical success factors of performing measurement mechanism in SSF.

This table was extracted from Calero et al. (2005), Wangenheim et al. (2003),

Murphy and Cormican (2012) and Kettelerij (2006).

60

Table 2.17

 Measurement Mechanism Success Factors

Category Critical factor Specification

Organization Simple goal oriented

approach.

The measurement mechanism takes the

improvement goals and converts them into

metrics using the light weight GQM

method.

A measurement mechanism

should be qualitative and

quantitative.

The mechanism should use direct

(quantitative) metrics such as the LOC and

indirect (qualitative) metrics such as the

quality characteristics.

The measurement mechanism

should concentrate on the

Web application and process

quality.

Web application quality measured by the

Web application characteristics

(functionality, usability… etc.) and quality

of the process measured by development

activities, maintenance, effort, and reuse.

Management Incremental approach. The measurement mechanism is tied to the

development process which used the

combined XP and Scrum so that the

collection of the data will be incrementally

over time.

Use standard method. Using a well-known method to perform the

measurement mechanism will reduce the

effort and ensure clarity.

People Stakeholder participation. Developer, tester and manger will be the

data owner for the measurement

mechanism.

Measurement member

training.

One developer will act as a measurement

member to collect data and the other for

data analysis. The monitoring team should

attend training session to know how to

perform the measurement activities.

Monitoring stakeholders. The people were monitored during the

development process by monitoring their

development practices and measuring their

productivity.

Information

communication

Transparency. The nature of data collection and data

collection purpose should be clear in the

planning phase of the development.

Usefulness. The stakeholder (data owner) should

understand the reason of collecting data.

Feedback. Feedback assured that the data being

analyzed, processed and put to use.

61

 The measurement mechanism should be done quantitatively and qualitatively

because it involves measuring the product and process quality. The product should

be measured by several metrics in terms of time, cost and other related features

(Basili, 1992; Daskalantonakis, 1992; Dumke et al., 1998; Kettelerij, 2006). On the

other hand, the process can be measured using a set of metrics related to the process

activities, practices, productivity, process quality characteristics (factors) (Basili,

1992; Dumke et al., 1998; Kroeger et al., 2014). In this study, the monitoring

mechanism will be involved with measuring the quality of the product and the

process. The product quality will be measured quantitatively using time, cost and

Web application quality attributes. The process quality will be measured using the

quantitative and qualitative metrics. The quantitative metrics involved with process

activities, development and management practices and process productivity as

discussed in section 2.4.2.3. Whereas, the process can be measured qualitatively by

monitoring the process quality factors that are discussed section 2.4.2.4.

2.4.2.3 Development process quality factors

There are many quality factors were proposed for measuring the quality of a product.

However, there is no much study of the measurement of the quality of a development

process (Kroeger et al., 2014). Only a few studies mentioned or defined some of the

factors that should be considered in measuring the development process quality. For

instance, Sørumgård and Sindre (1995) proposed an approach containing product

quality factors that can be applied to measure the development process. These factors

include correctness, efficiency, expandability, flexibility, integrity, interoperability,

62

maintainability, manageability, portability, reliability, reusability safety,

survivability, verifiability and usability.

Feiler and Humphrey (1993) divided the process quality factors into two categories;

static and dynamic. The static factors are accuracy, fidelity, fitness, precision,

redundancy, scalability and maintainability, whilst the dynamic factors include

lifeness, robustness, fault tolerance, autonomy and responsiveness.

Guceglioglu and Demirors (2011) created a measurement model for software process

improvement that consists of various quality factors such as suitability, IT-based

functionality, accuracy, interoperability, security, maturity, recoverability,

understandability, operability, attractiveness and analyzability.

In their study, Kroeger et al. (2014) and Kroeger (2011) were able to identify four

most important process quality factors based on the interview conducted with 17

software developers. The factors are effectiveness adaptability, compatibility and

applicability. When the same model was applied for the Agile environment (Scrum),

the following five factors were determined; effectiveness, accessibility, adaptability,

changeability and supportability. Therefore, in this study, all the seven factors were

considered. This is depicted in Table 2.18.

63

Table 2.18

 Process Quality Factors

Factor Definition Measured by

Effectiveness

An effective process must help us

produce the right product. This

shows the capability of a software

engineering process to transform

a set of inputs into a desired set of

out-puts (Kroeger et al., 2014).

Consistency: the use of procedure and

standard.

Accuracy: the use of tools, methods and

procedure.

Completeness: the correctness in performing

process and the production of appropriate

outcome (Baharom et al., 2011).

Adaptability The ability of process users to

adapt to a software engineering

process applied in different

situations (Kroeger et al., 2014;

Sorumgard and Sindre, 1995).

Tailorability: The ability of a standard

process to be adapted to form a more specific

process (Kroeger et al., 2014).

Flexibility of a process refers to the ability of

a practitioner to adapt to the performance of

process activities to meet a specific need,

without requiring a change to the process

itself (Kroeger et al., 2014).

Compatibility The capability of a software

engineering process to interact

with one or more specified

process (Kroeger et al., 2014;

Guceglioglu & Demirors, 2005),

This factor is required, especially when the

organization used multiple processes.

Therefore, it is important that the interfaces

between these processes are considered

(Kroeger et al., 2014).

Accessibility The ability of a process user to

find information about a software

engineering process (Kroeger et

al., 2014).

The medium of a process is widely considered

by practitioners to have a significant influence

on the perceived accessibility of the process.

The electronic process descriptions are highly

favored compared to the hard-copy

documentation. The extent to which the

process is described using graphical, rather

than textual, notations were found to

positively influence stakeholders’ perceptions

of process accessibility (Kroeger et al., 2014).

(Organization training in CMMI)

Applicability Applicability is defined as the

extent to which a software

engineering process describes

activities that are required to be

performed to complete a piece of

work in a specified context

(Guceglioglu & Demirors, 2005;

Kroeger et al., 2014).

Process applicability is often an issue where

highly standardized processes are used across

a wide range of problem situations. If such

processes are not tailored correctly to the

specific context, then practitioners may be

required to perform activities that do not

directly relate to the task at hand and as a

result the effort may be wasted (Integrated

project management practices CMMI).

64

Changeability The ability of a process to meet

requirement changes (Kroeger,

2011).

 Is there a way to determine risk sources

and categories?

 Is there a strategy established for risk

management?

 Is there a way to evaluate, categorize, and

prioritize risks?

Supportability This is defined as the ability of a

software engineering process to

be supported within a specified

context. It is important that the

necessary resources, expertise and

technology for performing a

successful process are available

prior to that process being

deployed (Kroeger et al., 2014).

High-quality project management

methodology that has a strong focus on the

metrics collection and analysis may be

introduced to a project. However, if the

project team does not have the necessary data

analysis skills or if the data takes a significant

amount of effort to collect due to a lack of

supporting technology, then the process is

unlikely to achieve the desired outcomes.

(Supplier agreement management practices in

CMMI).

Effectiveness: Based on the definition and what mentioned by Baharom et al. (2011)

in terms of effectiveness, effective process is represented by a consistent, accurate

and complete process. Therefore, a set of practices related to these three sub factors

should be performed during the development process activities. These practices are

described in Chapter Five.

Adaptability: in order to ensure the adaptability process, two sub-factors, tailorability

and flexibility were identified by Kroeger et al. (2014). Tailoribilty is related to the

type of integrated process performed by an organization, the theory used for

integration, the process performance and the ease to use. Flexibility is related to the

ability of the team members to adapt to the performance of the process without

affecting the process itself. Therefore, there is a need to have a set of practices

65

during the development process to ensure the tailoribilty and flexibility of the

process. These practices are shown in Chapter Five.

Compatibility: the compatibility process can be ensured by determining whether the

interaction between more than one process is easy and clear during the development

of the product (Kroeger et al., 2014). As a result, in this study, two practices were

identified to ensure the compatibility of the process. These practices are shown in

Chapter Five.

Accessibility: based on the definition, it is clear that accessibility relates to the

training practices as introduced in the CMMI. These training practices are important

to help any team member to access any process activity easily. In addition, electronic

access and graphical process representation support the accessibility factor (Kroeger

et al., 2014).

Applicability: a process is applicable if it is tailored correctly to specific context.

This means that for each piece of work there is a clear activity to be performed and

applied throughout the whole project. In other words, the process used should have

defined activities from the beginning to the end, should be measured by

measurement mechanism, should be managed by specific plan and contribute

product measures and experience to the future product. Therefore, a set of practices

introduced by the CMMI is used to cover the process applicability. This is shown in

Chapter Five.

66

Changeability: is the ability of a process to meet requirement change. This is

important because the requirement change is one of the risks that any organization

may encounter. As a result, the CMMI risk management practices should be

performed to manage the potential risk including changing requirement. These

practices are shown in Chapter Five.

Supportability: is defined as the extent that process has been supported from

resources, expertise and technology. Therefore a set of practice introduced from

supplier agreement management practices in CMMI proposed to ensure the process

supportability. These practices are shown in Chapter Five.

2.5 Criteria of a good methodology for Web applications in SSF

Costagliola et al. (2002) defined methodology as “a comprehensive, multiple-step

approach to system development that guides the development process and influences

the quality of the final product. It describes both the activities to be carried out and

the deliverables that should be produced at the end of each activity. Furthermore, it

gives a full set of concepts and models which are internally self-consistent and a

collection of rules and guidelines”. Table 2.19 describes the required features that

must be taken into account when proposing a new Web application development

methodology for SSF.

67

Table 2.19

 Criteria of Good Development Methodology

Feature Resource

Iterative process, deal with changing requirements and

small teams.

Costagliola et al. (2002), Eldai et al.

(2008), Fayad et al. (2000) and

Rumbaugh (1995), Henderson-Sellers

(1995).

Full life cycle (model, process, rules, guidelines,

practices and activities).

Costagliola et al. (2002), Henderson-

Sellers (1995) and Rumbaugh (1995),

Must be incremental, flexible and generic enough to

meet the uniqueness and individuality that are specific

to Web applications. Therefore, several

methodologies may need to be combined and merged

to cover and cope with the above features.

Costagliola et al. (2002) and Howcroft

& Carroll (2000).

Quality attributes and assurance for the Web

applications.

Fritzsche & Keil (2007), Nawaz &

Malik (2008) and Wu & Offutt (2002).

Should have a suitable measurement mechanism for

monitoring the quality of the development and final

process.

Kettelerij (2006), Solingen and

Berghout (2001), Wangenheim et al.

(2003).

Should be built based on a specific theory. Fitzgerald et al. (2006), Ralyte et al.

(2003) and Brinkkemper (1996).

Table 2.19 indicates that the new methodology should be iterative and flexible to

meet the unique characteristics that are specific to Web applications. In addition,

these features can also deal with the limited number of staff in the SSF. However,

the new methodology must also include a full set of activities, models, rules,

practices and guidelines that describe the whole development process. Therefore,

several methodologies may need to be combined and merged to cover and cope with

the above features.

The quality attributes of the Web application product are another important aspect

that need to be considered while constructing or proposing the new methodology.

Besides these features and attributes, the measurement mechanism should also be

integrated into the new development methodology. The function of the measurement

mechanism is to analyze the collected data from a specific metrics for monitoring the

68

quality of the development process, the final product and also for reducing the defect

and accelerate the development cycle.

 The aim of this study is to construct a new methodology for Web application

development and measurement. This methodology combined the XP and Scrum. The

reasons for performing this combination are (i) to overcome the XP and Scrum

limitations, (ii) to build one specific development method that suits all projects

requirements circumstances, and (iii) to increase development method efficiency and

applicability (de Cesare et al., 2004). Based on the literature, there are several

theories that can be used to perform the combining of the two development methods,

which include the contingency-based selection, engineering and tailoring methods.

The contingency-based selection method (Iivari, 1989) is based on the principle that,

rather than using a specific method for being commonly applied, the team should

choose a method from a broad portfolio of development methods to suit each

different project context. One of the fundamental problems of using the contingency-

based selection method is that the developers should be familiar with many methods

so that they can switch to other methods if a problem occurs while using the current

(Fitzgerald et al., 2006).

 The engineering method is a meta-method process, whereby a new method is

constructed or “engineered” from the ground up using the existing “method

fragments” instead of selecting a method from any available method base

(Brinkkemper, 1996). In addition, the new method should be constructed from the

existing methods (Fitzgerald et al., 2006). The engineering method theory has three

69

types of strategies, which include assembly-based, extension-based and paradigm-

based strategies (Ralyte et al., 2003). The assembly-based strategy is used to

construct a new method by assembling many methods. The extension-based strategy

is to extend an existing method, while the paradigm-based is to construct a new

method from scratch. The theory that will be adapted in this study is the extension-

based strategy which comprises of the two stages:

- Specify and analyzes the baseline method, by determining the limitations and

strengths of the method.

- Determine the parts that should be extended to the baseline method. These parts

are included from other methods based on the limitations of the baseline method,

2.6 Validation methods

Empirical methods are commonly used for validation in the software engineering

field; examples of the empirical methods are experimentation, surveys, action

research and case studies (Sjoberg et al., 2007; Tofan et al., 2011). An experiment is

“an empirical inquiry that investigates causal relations and processes. The

identification of causal relations provides an explanation of why a phenomenon

occurred, while the identification of causal processes yields an account of how a

phenomenon occurred” (Sjoberg et al., 2007). Experiments are used when the

researcher controls the situation with immediate, exact, and efficient control of the

behavior of the phenomenon to be examined (Yin, 2003).

70

Survey is “a retrospective study of a situation that investigates relationships and

outcomes” (Sjoberg et al., 2007). It is useful for studying a large number of variables

using a large sample size and accurate statistical analysis. Surveys, particularly well-

suits studies that conducted in order to answer what, how much, and how many

questions (Pinsonneault & Kraemer, 1993).

Action research is an “an iterative process involving researchers and practitioners

acting together on a particular cycle of activities, including problem diagnosis, action

intervention, and reflective learning” (Avison et al., 1999).

Case study is “an empirical inquiry that investigates a contemporary phenomenon

within its real-life context, especially when the boundaries between phenomenon and

context are not clearly evident” (Yin, 2003).

The four methods were compared based on specific criteria. These criteria are:

Researchers control, Cost, Focus and Sample size.

 Researchers control means that the researcher control over the situation, with direct,

precise, and systematic manipulation of the behavior of the phenomenon to be

studied.

Cost: the cost of performing the method.

Focus: focus of the investigation in terms of how the researcher will investigate the

phenomenon.

https://scholar.google.com.my/citations?user=fD4h75sAAAAJ&hl=en&oi=sra

71

Sample size: the number of targeted respondents that identified to perform the

method.

Table 2.20 shows the comparison between validation methods based on the previous

criteria. The criteria used and the information of Table 2.20 was extracted from

Easterbrook (2008), Sjoberg et al. (2007), Wohlin et al. (2006), Tofan et al. (2011)

and Yin (2003).

Table 2.20

 Validation method comparison

 Method

Criteria
Experiment Survey

Action

method
Case study

Researcher control High Low High Low

Cost High Low High Medium

Focus Why and How How many and

how much

How How and

why

Sample size Small Large Small Small

Based on the comparison, it's clearly shown that experiment supports the researcher

control, consume more budget, concentrates on the how and why and suitable for

small sized sample. Survey method does not support the researcher control,has lower

cost, concentrates on how many and how much questions, adequate to the large size

sample. In addition, action method supports researcher control, consumes more

budget, concentrate on how question, suitable for small sized sample. Lastly, case

study provides less control of the researcher, consumes fair cost, focuses on how and

why questions, suitable for small sized sample.

Therefore, this study will use the case study method to validate the proposed

methodology as it has a distinct advantage to be used in the study that considered

72

the researchers an observer with little or no control on the process. In addition, using

case study not consume much budget like experiment and action method.

Furthermore, It is useful to use case studies to answer a ‘how’ or ‘why’ questions.

Moreover, the case study is often used as a plain working example of a newly

proposed method that applied to a limited number of respondents.

2.6.1 Validation factors

Several studies discuss the factors that are needed to evaluate the effectiveness of

implementing software methods, models, and frameworks, such as Kitchenham and

Pickard (1998), and Kunda (2001). Kitchenham and Pickard (1998) used three major

factors in evaluating his method of success: basic, use and gain evaluation. The basic

evaluation is concerned with the quality of the component documentation, for

example, completeness, readability and understandability of the component

description. Use validation is concerned with the quality of the component, for

example, whether the component is easy to implement and “helpful”. Gain validation

is concerned with the benefits delivered by the component, for example, whether the

component is cost-effective and supports decision making. These factors were also

adapted by Kunda (2001) to validate his framework. The factors that were used by

Kunda (2001) are shown in Table 2.21

73

Table 2.21

Kunda’s validation factors adopted from Kunda (2001)

Validation Factors Variables

Gain satisfaction - Perceived usefulness.

- Decision support satisfaction.

- Comparing with current method.

- Clarity.

- Appropriateness for task.

Interface satisfaction - Perceived ease of use.

- Internally consistent.

- Organization (Well organized).

- Appropriate for audience.

- Presentation (readable and useful format).

Task support satisfaction - Ability to produce expected results.

- Completeness.

- Ease of implementation.

- Understandability (easy to understand).

 Recently, Al-Tarawneh (2013) adopted the same factor in validating his framework.

Referring to Table 2.21, it's shown that perceived usefulness and perceived ease of

use were used as variables to measure the gain satisfaction and interface satisfaction

respectively. However, the perceived usefulness and perceived ease of use were used

in the technology acceptance model (TAM) that developed by Davis, (1989) as a

certain factors. TAM is recognized as the theory that helps users how to accept and

use a new technology.

Perceived usefulness is “the degree to which a person believes that using a particular

system or method would enhance his or her job performance". Whereas, the ease of

use defined as ”the degree to which a person believes that using a particular system

or would reduce from his effort”. Therefore, this study will merge the three factors

that were identified by Kunda (2001) and two factors that were identified by Davis,

74

(1989). The factors are: gain satisfaction, interface satisfaction, task support

satisfaction, perceived usefulness and ease of use.

2.7 Summary

This chapter clarifies the need of developing a new Web application development

methodology for SSF. The following are several areas that have been discussed

while reviewing the related resources:

 The current methods used for developing Web applications.

 Web design methods.

 Measurement methods.

 SSF problems.

The important findings in Chapter Two are used as inputs for the next chapter. These

outputs are:

 The most suitable development method to be used for SSF.

 The core and supported Agile practices that should be integrated to the

new methodology.

 The best measurement method to be used for SSF.

 The common steps for Web application design.

 Best Web application development and measurement practices for SSF.

 Criteria of a good Web application development methodology.

 Questionnaire and pilot study

75

The most popular Agile development methods that are recommended to be used in

developing Web application in SSF, are XP and Scrum. XP concentrates on the

development part and Scrum focuses on the management. Therefore, the

combination of both methods will definitely cover the development and management

issues. Nevertheless, both methods do have various limitations as described in Table

2.22.

Table 2.22

 Literature Review Analysis

Issues and problems of Web applications in SSF XP and Scrum

Staffing problems. (Small teams). Covered

Project management problems. Covered

High changing requirements Covered

Lower communication. Covered

 Risk management. Covered

 Shorter time to market and product life cycles. Covered

QA aspects. Not Covered

Measurement mechanism. Not Covered

Requirement traceability and reuse. Not Covered

Simple Design method. Not exist

Required best development and measurement practices Not fully covered

Table 2.22 shows that most of the problems faced by the Web application developers

in the SSF are fully addressed by both XP and Scrum methods. However, there are

problems regarding the integration between the XP practices and the Scrum

development method. These problems are related to the quality assurance,

measurement mechanism, requirement traceability and prototype design. As a result,

there is a need of developing a new methodology based on XP and Scrum.

In this chapter, the core Scrum practices of the management, core and supported XP

practices have been identified.

76

In order to monitor the process and product quality, a measurement mechanism

should be integrated during the development process. The best way to perform this

mechanism is using a specific measurement method. The most recommended

measurement method for SSF is light weight GQM.

Web design methods were compared based on the process activities of each method.

This helps to generate a common guideline by extracting the steps from all methods

in order to build a Web design method.

Small software firm’s developers should follow several practices during the

development process of Web applications. The application of these practices helps to

get high quality product. These practices are: short development life-cycle times,

delivery of bespoke solutions, multidisciplinary development teams, analysis and

evaluation, requirements management, testing, maintenance, project management

and quality management.

There are many criteria or features for any successful Web application developing

methodology in SSF. These criteria are concerned with the development process

type, components of the methodology and the monitoring of the product quality.

Lastly, the methodology construction should follow a specific theory.

The last output of this chapter is the questionnaire which was designed and

formulated to be used as a data collection instrument in the survey. The

questionnaire was designed based on various previous studies in the related field.

77

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter outlines the research methodology of the study. As mentioned in

chapter one, the main objective of the study is to construct an Agile Web application

development methodology for small software firm (SSF) that emphasized on

monitoring the process and product quality during the development. The research

was conducted in four main phases and followed a deductive approach. The

methodology used in the study will thus be discussed under the four phases. Phase

one is mainly focused on conducting the theoretical study and defining the research

problem. In Phase two, a quantitative approach was followed to investigate the

current practices in Web application development and measurements at SSF. In

Phase three, the Plan-Do-Check-Act model was adapted to construct the proposed

methodology. Finally, in Phase four, expert review and case study methods were

used to evaluate the proposed methodology.

3.2 Research Design Approach

The research design of this study used a deductive approach (Trochim, 2006). This

approach begins with general idea (such as theory, principles, and concepts) and

ends with specific conclusions. It is appropriate to be used for constructing a model

based on theories and concepts that are derived from the literature and empirical

78

findings. Then the proposed model will be applied and evaluated in real environment

(Bryman & Bell, 2007).

Four phases are used to develop a new methodology as shown in Figure 3.1. Each

phase consists of goal achievement, set of inputs, activities, and outputs. The

following sections explain in detail these four phases.

Theoretical Study

Chapter One & Two

Step

1.1:Identify the

most suitable

methods and

practices for

SSF

Step 1.3: Define

the common web

application

design activates

Step 1.2:

Determine the

suitable

measurement

method for SSF

Step 1.4: Identify

the best web

application

development and

measurement

practices

Step 1.5: Identify

the criteria of a

good web

application

development

methodology

Methodology Construction

Step 3.1:

Extend Scrum

method

Step 3.2:

Enhance the

design phase

Step 3.4:

Organize the

components of

the methodology

using PDCA

Step 3.3:

Construct

monitoring

Mechanism

Chapter Five

Empirical Study

Step 2.1:

Questionnaire

construction

Step 2.2:

Respondents

identification

Step 2.4: Data

analysis

Step 2.3:

Questionnaire

distribution

Chapter Four

Methodology Evaluation

Step 4.1:

Verify the

proposed

methodology

Step 4.2:

Validate the

proposed

methodology

Chapter Six

Figure 3.1. Research Methodology Phases.

79

3.3 Research Methodology

The research methodology is divided into four phases and each phase consists of

several steps. The following subsections discuss in detail about the phases.

3.3.1 Theoretical study

The theoretical study focuses on exploring the research directions related to Agile

software development practices and methods, particularly those implemented by

SSF, Web application development and software measurement and metric for

assuring process and product quality. This phase explored the software development

methods and identified the best practices that need to be implemented by SSF. In

addition, this phase also investigated the suitable measurement method, and finally

identified the common activities for Web application design. The information of the

related theories was obtained from journals, papers, books, documents and

proceedings.

The problems currently faced by the SSF in developing Web application were

highlighted. The findings of this phase were used to formalize the research problem

and research objectives as well as gain knowledge on the state of art related to the

Web application development in the SSF. The key findings of this phase were

presented in Chapter Two. Consequently, this phase involved five steps.

80

Step 1.1: Identify the most suitable methods and practices for the SSF.

The process of this step involved with the comparison of the conventional and Agile

development methods based on specific criteria related to Web application

development in the SSF. These criteria are fit to the size of 10-50, complexity,

flexibility for requirement changing, customer collaboration and the use of the

quality assurance measurement mechanism (QAMM). These criteria were extracted

from several studies such as those of Haung et al. (2008), Tarawneh and Allahawiah

(2009), Pusatli and Misra (2011) and Rodriguez et al. (2002).

Based on the comparison results, Scrum and XP were identified as the most suitable

Agile software development methods for SSF. However, the Scrum concentrates on

the management part, whilst XP concentrates on the development part. There are a

number of studies that have attempted to combine XP and Scrum to fulfill the

development and management sides. Among these are Mar and Schwaber (2002),

Fitzgerald et al. (2006), Clutterbuck et al. (2009), Qureshi (2011), Jyothi and Rao

(2011).

A comparison between these studies was performed to understand how these

methods were combined, the practices that have been used in the combinations, and

what are the Agile principles that have been achieved from each study. The result

obtained from this comparison is used to identify the core and supported practices

that need to be considered in this study. The core practices were selected based on

81

the practices recommended by all the studies. The supported practices are the

important practices to fulfill the Agile principles.

Step 1.2: Determine a suitable measurement method for SSF.

 This step was carried out by comparing the existing measurement methods using

comparison criteria. These criteria are top down, goal oriented, product and process

oriented, simplicity and fit to the SSF size. The criteria were extracted from

Ardimento et al. (2004), Kettelerij (2006), Scholtz and Steves (2004), Solingen

(2002) and Wangenheim et al. (2003). The methods used for the comparison in this

step were the PSM, QFD, GQM and light weight GQM. The results of the

comparison show that the only method that satisfies all the criteria is the lightweight

method. Therefore, the lightweight GQM is used to perform the monitoring process

in SSF.

Step 1.3: Define the common activities for designing Web applications

The standard Web design activities consist of requirements analysis, conceptual

design (object design), navigational design, presentation design and adaptation

design (Barna et al., 2003). This aim of this step is to identify which of the existing

method that fully satisfied the Web design standard activities. The comparison of the

Web design standard activities and existing methods was done as shown in Table

3.1.

82

Table 3.1

The Activities of the Web Design Methods

Standard design activities Web Design Methods

HDM OOHDM RMM WSDM SOHDM Web ML UWE

 Requirements analysis √ × √ √ √ √ √

Conceptual design (object

design).
√ √ √ √ × √ √

Navigational design. √ √ √ √ √ √ √

Adaptation Design √ √ √ √ √ √ √

Presentation Design × √ √ √ √ × √

(√) means covered and (×) means not covered

Table 3.1 shows that only three of the Web design methods fully satisfied all the

standard design activities. These methods are the RMM, WSDM and UWE.

Therefore, the common activities in this study were defined according to these

methods.

Step 1.4: Identify the best Web application development and measurement practices

for SSF

This step aims to determine the best development and measurement practices for

developing Web application in SSF. For the development practices, various

empirical studies related to the field of software and Web application development in

SSF conducted previously were reviewed. Based on this review, a list of

development practices was presented. These practices related to the development

life-cycle time, development teams analysis and evaluation, requirements

management, testing and maintenance.

83

For the measurement practices, several studies related to software measurement,

software quality and software management were reviewed. Two categories of

practices related to measurement were identified, which are quality management and

project management.

 A list of the best development and measurement practices is shown in Chapter Two

based on the results of this step.

Step 1.5: Identify the criteria of good methodology.

In this step, the criteria were identified by studying several previous studies,

including those conducted by Costagliola et al. (2002), Fitzgerald et al. (2006),

Fritzsche and Keil (2007), Eldai et al. (2008) Ralyte et al. (2003) and Wangenheim

et al. (2003). The recommendations of these studies were taken as criteria on how a

good methodology looks like. The criteria are the process type development,

methodology components, quality and progress monitoring and constructing a new

methodology based on specific theory.

3.3.2 Survey

This phase aims to determine the real characteristics of the SSF in Jordan, examine

the need of new methodology for developing Web applications in SSF, investigate

the current development and measurement practices of Web application development

in SSF and classify the development and measurement practices into specific groups

using variable clustering. The survey was conducted based specifically on the

following steps:

84

Step 2.1 Questionnaire construction

In this study, a questionnaire was used for data collection because it covers wide

access samples with minimum cost (Nachmias and Nachmias, 1996). In addition, the

use of questionnaire facilitates data analysis as well as sustaining a high degree of

privacy (Kirakowski, 2000; Robson, 1993).

This step was conducted in two parts: questionnaire design and validation. In the

first part, the questionnaire was designed based on El Sheikh and Tarawneh (2007),

Baharom et al. (2006) and McDonald (2001). The questionnaire consists of four

main sections, namely the respondent’s background, organizational background,

development and measurement issues as well as Web application development and

measurement practices. Each section has several set of questions in order to achieve

the related survey objective. Details about the objective, content and the source of

each question are shown in Appendix F.

The second part is the questionnaire validation that involved two activities, construct

and content validity. The construct validity was performed by three developers

(experts). The selected developers have at least five years of experience in Web

application development in UUM Computer Center. The content validation process

was conducted via an interview based on a list of questions that related to the

correctness, completeness and readability. The questionnaire was given to the expert

with the cover letter (refer to Appendix B).

85

For the content validity, a pilot study was conducted to find out whether the

respondents understand the questions and the time taken to answer the questionnaire

is sufficient.

Step 2.2 Respondents identification

This step aims to determine the list of respondents and sampling type. The

population of this study is the SSF in Jordan. A list of this organization was obtained

from the Ministry of Industry and Trade as well as the Jordan business directory

Web site. The sample type that was use in this study is the systematic sampling

technique. Details on this step are further explained in Chapter Four.

Step 2.3 Questionnaire Distribution

The aim of this step is to identify the data distribution methods. The common

methods used for distributing the questionnaires are: postal, email and face-to-face

interview, which were conducted to increase the response rate. For the postal and e-

mail, respondents were given one or two weeks to fill up the questionnaires. Through

the face-to-face interview, respondents can answer the questions with the researcher

guidance. The actual number of respondents’ rate was calculated after ignoring the

incomplete, none answered and lost questionnaires. As a result, only seventy five

fully answered questionnaires were collected and ready to be analyzed in the actual

survey.

86

Step 2.4 Data Analysis

This step describes the survey results analysis. The collected data were analyzed

using the SPSS package. The statistical methods used in this study are frequencies,

mean, cross tabulation, multiple responses and hierarchical clustering. Details on the

results of the analysis are shown in Chapter Four.

3.3.3 Methodology Construction

This phase aims to propose a new monitoring Agile based Web application

methodology for SSF. The methodology focused on the quality assuring and

monitoring during the development. The study adapted the Plan-Do-Check-Act

(PDCA) method to construct the methodology. The PDCA, also known as the

Deming cycle or Shewhart cycle, is an iterative four steps management method used

for controlling and continuously improve the processes and product quality (Kao et

al., 2010). This phase involved four steps:

1- Extend the Scrum method by adding the important XP elements.

2- Enhance the design phase of the Extend Agile method.

3- Construct a monitoring mechanism.

4- Organize the components of the methodology using PDCA.

87

Step 3.1: Extend the Scrum method by adding the important XP elements

This step was performed based on the extension-based strategy. The step consists of

two sub steps: XP and Scrum analysis. The analysis process was performed by

comparing XP and Scrum based on specific criteria such as the development process,

project management, requirements, testing, design and team structure. The criteria

are considered as the differences between XP and Scrum (McDonald and Welland,

2001a; Deshpande et al., 2002; Redouane, 2004; Abran et al., 2004; Haung et al.,

2008; Qumer & Henderson-Sellers, 2008). The development process criteria include

the common Agile development practices. The project management criterion relates

to the planning, staffing, monitoring and controlling activities that should be

performed in parallel with the development process. The requirement criterion

relates to the way of collecting requirements and from whom. The testing criterion

relates to the deployment of the necessary testing practices during the process by

separated team. The design criterion relates to the design approach that each method

supported. The team structure criterion relates to the team size and number of teams

that each method supported.

On the other hand, Scrum only satisfies the project management activities, but not

the development criterion. Scrum did not have a measurement mechanism that

monitors the quality of process and product. Scrum is good in requirement gathering

as it uses product backlog collected by the product owner. However, nothing

88

mentioned about the design and testing in Scrum. Lastly, Scrum is good for multiple

small development teams.

The analysis results show that even though it satisfies the development process

criterion, XP is lacking in applying the project management criterion. XP also did

not have a measurement mechanism that can monitor the process and product

quality. In addition, XP is good in collecting requirements and testing because it uses

user stories and TDD respectively. Moreover, XP depends on simple design practice

and does not support any design method to deal with the design complexity of Web

applications. Lastly, XP concentrates on small development teams that can be

applied for one team per project.

After the finishing the analysis, the extension process begins. The extension process

is shown in Figure 3.1.

89

Figure 3.1. The extension process

The main objective of extending the Scrum by adding the important XP elements is

to cover the development and management sides for each method.

The extension process started by adapting the Scrum as a base for the extended Agile

method. Consequently, three process phases will be used that include planning,

development as well as integration and maintenance phases.

The second activity of the extension process is to alternate the sprint from the Scrum

with the XP iteration activities. The iteration activities are analysis, code, design and

test. The duration of the iteration will be two weeks.

XP iteration

XP core
and

supported
practices

XP
iteration

team

Scrum
method

90

 The third activity is integrating the core and supported XP practices. This was done

by integrating the core and supported XP development practices to the combination

method. The core XP practices are pair programming, TDD, coding standards and

refactoring. The supported XP practices are continuous integration, metaphor, small

release, collective ownership and simple design.

The fourth activity of extending the Scrum is the structuring of the development

team. This activity was done by merging the master and product owner roles to the

development team to the XP iteration team which consist of two programmers and

one tester. The output of this step is the Extended Agile method that clearly

described in Chapter Five.

Step 3.2: Enhance the design phase of the Extended Agile method by adding a

simple design method to the combined method.

The steps of the design method were identified in step 1.3. The design method will

be performed in the first planning meeting, which is held once per a project. The

design features of the whole product will be described in this method in terms of the

conceptual, navigational and implementation designs. After implementing this

method, the PO will select the items needed to be entered in the first iteration. This

method will be performed by the development team and customer (PO).

Step 3.3: Construct a measurement mechanism for monitoring the quality of the

process and product.

 This mechanism used goal oriented monitoring method (GOMM) for performing the

measurement. The GOMM works based on the Lightweight GQM that was selected

91

from step 1.2. Two developers will be involved in performing the monitoring

process. One developer is responsible for collecting data and the other for data

analysis and presenting the feedback report. The data for measurement should be

prepared by the data owner to decrease the data collection time. The feedback report

will be presented to the management once the data are analyzed and processed. The

whole team should attend a training session to learn how to perform the

measurement during the process. In this session, the roles of the measurement team

will be clearly defined, the goals of the measurement will be identified and

prioritized and the role of the data owner in the measurement will be clarified.

The mechanism consists of two important parts: the development of guidelines and

metrics. The guidelines are activities that should be performed during the

development process such as planning, definition, data collection and data analysis.

The metrics used in the GOMM are quantitative and qualitative. These metrics

should be performed to measure the quality of the product and process respectively.

For the product quality, the GOMM takes the organization improvement goals such

as the quality improvement, budget reduction, shorter development cycle as well as

the productivity increment, and formulate them into questions. Next is to define the

suitable metrics to answer these questions. Finally, these goals together with the

practice monitoring goals will be measured quantitatively. For monitoring the

process quality, a set of factors was identified based on the literature review. These

factors are effectiveness, adaptability, compatibility, accessibility, applicability,

changeability and supportability. Each factor will be measured by a set of practices

(metrics). Each practice or metric will have a score. This score ranged from 0 to 4

92

Lickert scale where 0 = never, 1 = rarely, 2 = sometimes, 3 = often and 4 = always.

Then, the mean will be calculated for each factor practices to come up with a final

score for each quality factor. Then the average will be divided by (4) the highest

value of the score. The result will be multiplied by 100%. Based on this percentage,

each factor will be assessed based on the (NPLF) rating scale that adapted from

ISO/IEC 15504, where N = not achieved (0 – 15%), P = partially achieved (>15-

50%), L = largely achieved (> 50 -85%) and F = fully achieved (> 85- 100%) which

demonstrate fulfillment of the process factors. The data obtained from applying these

metrics will be formulated as a feedback report to the management to facilitate them

in making decisions.

Step 3.4 Organize the components of the methodology using PDCA

After completing the combination and enhancing steps, the components of the new

methodology should be identified clearly. The core component of the new

methodology is the process. The phases of the process depend on the PDCA method

as this method is used for controlling and continuously improve the quality of the

processes and product (Kao et al., 2010; Jani, 2011). In addition, the process of the

PDCA can be performed under the Agile perspective, particularly in the Scrum

(Quaglia, & Tocantins, 2011). Consequently, the process will start with the (Plan)

phase that clarifies the planning process for the two sides of the development and

measurement. The (Do) phase will describe the development side which relates to

the iteration activities. The (Check) phase will be performed in the measurement side

for monitoring the quality of the process and product. The (Act) phase will be

performed on the development and measurement (monitoring). For the development

93

side, the next task is to determine the action that will be done after the iteration,

whether the development team integrate the increment to the product and go to the

other iteration or issue the final version of the product. For the measurement side, the

next action is to provide the feedback for the management and the development

team. If the iteration is final, a feedback report will be submitted to the management.

The use of the PDCA phases is to guide the process of organizing the components of

the new methodology as the process should be performed based on methods. These

methods are the combined XP and Scrum, Web design method and GOMM. The

methods consist of activities and practices. The activities of the method will be

supported by specific tools. Finally, the process of the new methodology will be

performed by a team. Therefore, the components of the new methodology include

the process, methods, practices, tools and team structure.

The main output of this phase is the new monitoring oriented Agile based Web

application development methodology for SSF.

3.3.4 Methodology Evaluation

The aim of this phase is to evaluate the proposed methodology using expert review

and case study respectively. Apart from that, this study also performed a yard stick

validation to ensure strength and weakness of the proposed methodology.

Step 4.1 Verification

 The aim of this step is to verify the comprehensiveness, understandability and

feasibility of the new methodology components. This will be achieved using the

94

expert review method. The reasons of using the expert review are because it is useful

for studying a limited number of cases; and it is very helpful to take the academic

and practitioners point of views about the proposed theory (Blaxter et al., 2010; Yin,

2003). In addition, the contributions and opinions can be received from a group of

experts who are not in the same place (Murry & Hammons, 1995). Furthermore, the

expert review method allows the participant to think deeply and gather further

information about the theory between the rounds (Grobbelaar, 2007).

This method was carried out by performing the Delphi technique activities as shown

in Figure 3.1. The Delphi technique was selected because it is considered as the best

technique to achieve consensus among the experts, is widely accepted method to

achieve convergence of perspectives regarding knowledge request from experts

within specific domains, and allows the researcher to gain high reliability data from

the specified experts. It is performed by several rounds or iterations (feedback)

designed to harmonize the experts’ opinion (Hallowell & Gambatese, 2010; Rowe &

Wright, 1999).

95

Identifying Experts

Round 2

Determing the evaluation criteria

Round 3

Final

Methodology

Modified

Methodology

Proposed

Methodology
Round 1

Figure 3.2. The Delphi technique steps

In this study, the Delphi technique was performed based on the following activities:

i. Identifying the experts: Hallowell and Gambatese (2010) suggested that the

experts should hold at least one of these characteristics: i) have a PhD. or any

advanced degree, ii) faculty members at an accredited university, iii)

authorship, and iv) have at least 5 years of experience. In this study,30

experts were identified from different countries and were contacted through

e-mail and only 12 of them accepted to review the proposed methodology.

Unfortunately, after the first round, four experts withdrew from continuing

the verification process. Therefore, only 8 experts have completely

participated in reviewing and evaluating the proposed methodology. There

are four domain experts and four knowledge experts were involved in the

96

process. As recommended by Hallowell and Gambatese (2010) and Rowe

and Wright (1999), these numbers of experts are considered adequately

enough to proceed the process. The identified experts represent different

environments from the two countries: Malaysia (3) and Jordan (5) (Table

3.2). The domain experts should have at least 3 to 5 years’ working

experience in developing Web application. While the knowledge experts

were identified from PhD holders who have at least 5 years of teaching

experience in Software Engineering courses and also have many publications

related to the field of Web development, Agile development and software

measurement.

Table 3.2

 Experts Profile

 ID Qualifications Expertise
Years of

Experience
Institution

K
n

o
w

le
d

g
e

Exp
1

Ph. D

Requirements Engineering,

Organizational Analysis,

Agile development and

software measurement

9 years
University of

Malaya

Exp
2

Ph. D

Empirical Software

Engineering, Agile Software

Methodology and Software

Engineering

Software Quality

5 years
Universiti Utara

Malaysia

Exp
3

Ph. D

Software engineering, Web

development, Agile

development and Software

process improvement.

28 years

The Arab Academy

for Banking and

Financial Sciences

Exp

4
Ph. D

Web development, Agile

development and SSF.
8 years

Al-balqa Applied

University (Jordan)

D
o

m
a

in
 Exp

5
BS.c.

Web developer for small

teams
12 years

University

Teknologi Mara

(UiTM)

Exp

6
BS.c. Web developer 12 years

AL al-Bayt

University

97

Exp

7

High diploma of

computer

information

system

Programming, testing and

quality assurance
15 years University of Jordan

Exp

8
BS.c. Web developer 14 years

New York Institute

of Technology-

NYIT Amman,

Jordan

ii. Determining the evaluation criteria: Three criteria were used to verify the

proposed methodology. These criteria include comprehensiveness,

understandability, and feasibility as suggested by Behkamal et al., (2009),

Genero et al., (2008), Kunda, (2002) and Kitchenham et al, (1997). The

following are the descriptions of the criteria.

a. Comprehensiveness: is the inclusion of the important parts or factors

to achieve the desired results (Behkamal et al., 2009). This criterion

determines if the methodology components such as activities,

methods, practices, tools and team structure are covered Web

applications development and measurement process.

b. Understandability: is “the capability of the component to enable the

user to understand whether the component is suitable, and how it can

be used for particular tasks and conditions of use” (Bertoa et al.,

2006). In addition, this criterion is to evaluate the models from the

standpoint of software engineering to be clear and unambiguous

(Behkamal et al., 2009; Genero et al., 2008). Based on this criterion,

98

the methodology the structural components should be correct, clear

and well organized (genera et al., 2008).

c. Feasibility: this criterion measures the appropriateness of the

methodology for the audience (Kunda, 2002).

These criteria were used to construct a questionnaire that consists of

several questions to verify the components of the proposed methodology.

The questions were adapted from the previous studies such as Kunda

(2002), Behkamal et al (2009), and Kitchenham and Pickard (1998).

iii. Conduct Round one (send methodology to the experts): the proposed

methodology was sent to the expert via email with agreement paper to review

and answer the questionnaire given. The responses were analyzed to come up

with the experts’ suggestions and comments on each methodology

component.

iv. Conduct Round two (refine the methodology): this step was performed by

taking the experts’ comments and verifies the new methodology accordingly.

This step may take one to three rounds until the expert satisfied.

v. Conduct Round three: send the methodology back to the experts to receive

the final agreement about the modifications.

 The result of the verification step is the verified monitoring oriented Agile based

Web application development methodology for SSF.

99

Step 4.2: Validate the proposed methodology using the case study and yardstick

method.

After the new methodology has been verified by the experts, it needs to be validated.

Validation “is the process of determining whether a model or framework is an

accurate representation of the real world from the perspective of the intended usage”

(Thacker et al., 2006). Two approaches were used to perform the validation step: i)

case study, and ii) yardstick validation.

For the case study, the validation process was performed through the following

activities:

1. Selection of the organization that can participate in validating the

methodology. The organization was selected based on the following criteria

which are: size of organization, has experience in using agile development

methods, the current projects involved with developing Web application, and

its willingness to cooperate in the validation process.

2. Identifying the factors for validation the proposed methodology. The aim of

the case study is to validate the effectiveness of the MOGWD methodology

that includes set of factors. The factors were identified by referring to Davis

(1989), Kunda (2002) and Kitchenham and Pickard (1998) as discussed in

the literature review. These factors are: Gain satisfaction, Interface

satisfaction, Task support satisfaction, Perceived usefulness and Perceived

ease of use. Each factor will be measured by certain variables (items) as

100

shown in Table 3.3. These variables were used to construct the validation

form.

Table 3.3

 Factors for validating the Effectiveness of the Proposed MOGWD Methodology

Validation Factors Variables Source

Gain satisfaction - Decision support satisfaction

- Comparing with current method

- Clarity

- Appropriateness for task

Kunda (2002),

Kitchenham

and Pickard

(1998)

Interface

satisfaction

- Internally consistent

- Organization (Well organized)

- Appropriate for audience

- Presentation (readable and useful format)

Kunda (2002),

Kitchenham

and Pickard

(1998)

Task support

satisfaction

- Ability to produce expected results

- Completeness

- Ease to implementation

- Understandability (easy to understand)

Kunda (2002),

Kitchenham

and Pickard

(1998)

Perceived

usefulness

- Using MOGWD methodology enables you to

accomplish your tasks more quickly.

- Using MOGWD methodology improve the

performance of your work

- Using MOGWD methodology makes

performing your tasks easier

- MOGWD methodology is useful to your work

- Using MOGWD methodology increases your

productivity

Davis (1989)

Ease of use - Learning the MOGWD methodology is easy

for you

- Do you find it easy to use MOGWD

methodology to do what want to do

- The MOGWD methodology is flexible to

interact with

- Your interactions with the MOGWD

methodology clear and understandable

- It is easy for you to become skillful in using

MOGWD methodology
- The MOGWD methodology is easy to use

Davis (1989)

101

3. Prepare the case study toolkit. The toolkit includes specifications on how the

team will perform the new methodology. In addition, it consists of overview

about MOGWD methodology, quantitative metrics checklist, quantitative

metrics indicators, qualitative metrics and validation form. The quantitative

metrics checklist, qualitative metrics and validation form are shown in

appendix I, appendix J and appendix K. However, the quantitative metrics

indicators list is shown in section 6.2.4.1, Table 6.9.

4. Data collected through interviews and document analysis. The interview

method was selected as it is flexible and adaptable in order to provide deeper

understanding and useful information that helps the practitioners to explore

complex issues (Sekaran & Bougie, 2010). The interview was supplemented

with a toolkit that provides information on how the data will be collected and

analyzed.

The MOGWD methodology is supported by the use of a prototype tool (MO-PT) to

perform the monitoring process in a more systematic way. The prototype tool was

developed using PHP language as the programming language. The MO-PT consists

of two parts: i) front end that includes the interface for the users and ii) back end that

includes the database and server (See section 6.3.1.1).

The yardstick validation was performed by comparing the proposed methodology

with ideals or baseline methods in the same field. Using this type of validation will

increase the reliability of the proposed methodology. In particular, if the

102

methodology components match the baseline methods in the same field, it can be

taken as a proof that the model performs acceptably (Carson, 2002; Sargent, 2012).

The yardstick validation starts by determining the ideal or the baseline methods in

the field of study. Then, define the comparison criteria. Finally, the strengths and

weaknesses of the proposed method are determined, and the results are discussed.

3.4 Summary

This research methodology is described in four phases, which are used to construct

the monitoring oriented Agile based Web application development methodology for

SSF. These stages are theoretical study, survey, methodology construction and

methodology evaluation. Each stage has key steps and each step has inputs, process

and outputs to achieve the research goals.

103

CHAPTER FOUR

SURVEY

4.1 Introduction

This chapter aims to present the results of a survey that was conducted in Jordan to

investigate current development and measurement practices in SSF. Questionnaire

was used as an instrument for collecting data. The gathered data were analyzed using

multiple statistical methods such as: frequencies mean, cross tabulation, multiple

responses and hierarchical clustering. The actual findings of this survey were used to

build a new methodology for developing Web application.

4.2 Questionnaire Structure

The questionnaire consists of four main sections: respondent’s background,

organization background, software development and measurement practices and

Web application development and measurement practices. The questionnaire

included forty three (43) questions that included multiple choice and five likert scale

questions as shown in Appendix A. This part will provide a summary of each section

as followed.

4.3 Respondent’s Background

This section aims to determine the respondent’s qualification. It includes three

multiple choice questions that are related to the position, the activity involved and

the years of experience of the respondent.

104

4.3.1 Organization Background

This section aims to study the background of the Jordanian SSF. It includes three

multiple choice questions on type, sector and size of the companies.

4.3.2 Software Development and Measurement Practices

The aim of this section is to investigate software development and measurement

practices that are currently used by SSF. This section includes twenty two multiple

choice questions. The questions are related to the development, reuse, QA and

measurement practices. The results of this section were used to identify the

development and measurement issues that currently faced by SSF

4.3.3 Web application development and measurement practices

 This section aims to investigate the current Web application development and

measurement practices in SSF. It consists of seventeen five likert scale questions.

The answers of the questions ranged from strongly disagree with the value (1) to

strongly agree with the value (5). The practices included are the best Web

application development and measurement practices such as a short life development

cycle, multidisciplinary development team, requirement management, testing,

maintenance, project management and quality management.

105

4.4 Questionnaire Validation

The questionnaire was validated through construct validity and content validity.

These validation methods have been popularly used and described in Sekaran and

Bougie (2010). A brief description of both methods is given in the following section.

4.4.1 Construct Validity

The questionnaire was validated by experts using face to face interview. The three

experts were software developers from the UUM Computer Center. The

questionnaire was validated in term of correctness; completeness and readability.

The validation process was performed by asking the experts the following questions:

o Will the words be uniformly understood?

o Do the questions contain abbreviations or unconventional phrases?

o Are the questions too vague or cryptic?

o Are the questions too precise, biased or objectionable?

o Are the answer choices mutually exclusive?

o Has too much knowledge been assumed?

o Are the questions technically accurate?

o Is each question complete with enough details?

Feedback obtained from this step was used to improve the questionnaire.

106

4.4.2 Content Validity

The content validity of the questionnaire was done by conducting a pilot study. The

aims were to ensure that respondents understand the questions, check the grammar,

sentence structure and estimate the required time to answer the questionnaire.

 In the pilot study, twenty three SSF were identified randomly. From each company,

one respondent either a developer or project manager was selected. The pilot survey

has determined that respondents were able to answer the questionnaire. Pilot study

respondents advised for minor modifications on some items in the questionnaire. The

feedbacks were used to refine the questionnaire.

4.5 Identify Respondents and Sampling Type

At this stage the questionnaire was refined and ready to be answered by the

respondents. Regarding to the respondent identification, the list of SSF was

determined by the Jordanian Ministry of Trade and Industry, and the Jordan Business

Directory Website. The total number of SSF in Jordan is 769 companies. The

systematic sampling technique was adopted because it is more convenient compared

to other probability sampling techniques and it was calculated according to that

population size equal to 256. Three hundred (300) questionnaires printed and ready

to be distributed. The target respondents were identified by selecting the first

respondent number, then select respondent number +3. For example, choosing

respondent 1, 4, 7 and so on.

107

4.6 Questionnaire Distribution and Data Collection

The questionnaire with covering letter was sent to 300 Jordanian SSF. The targeted

respondents were given one month period to answer the questionnaire. Mail, email,

and face to face (interview) were used as an instrument for distributing and gathering

the data.

After two weeks, a reminder letters were sent by mail and email, and sometime the

telephone calling was used in order to improve the response rate.

Only 75 respondents were completely answered the questionnaire and able to

analyze. However, out of 300 questionnaires, 188 questionnaires were considered ”

lost questionnaire” as they were not returned back due to that the respondents do not

have time to answer or they travelled outside the country. Apart from that, 11

questionnaires were rejected as they were not completely answered by the

respondents. These questionnaires and 24 questionnaires that are out of scope were

excluded from the data analysis. Table 4.1 shows the whole number of

questionnaires that were sent and the response rate.

Table 4.1

 Questionnaire Response Rate

Description Organizations Rate (%)

Questionnaires sent 300 100%

Lost 188 63%

Received 112 37%

Usable responses 75 25%

Rejected 11 4%

Not small software firm or the size of company

over 50
24 8%

108

4.7 Analysis and Results

The collected data were entered in Statistical Package for Social Science (SPSS) ver.

14.0 for analysis. This section describes the analysis results which conducted on

seventy five SSF in Jordan. The results were presented in three sections, namely:

demographic data, current development and measurement practices and the last

section Web application development practices.

4.7.1 Demographic Data

The demographic data are presented in terms, respondents and organization

background. The analysis results of this section will help to determine the

characteristic of SSF in Jordan.

4.7.1.1 Respondents Background

In this section respondents were asked about their position, experience and the

activity that they currently occupied.

 Position and Experience

Figure 4.1 demonstrates the distribution of respondent’s position and the experience

of years working in their companies. The data were analyzed using cross tabulation

analysis. The results showed that out of 75 respondents, 55% have 3-10 years of

experience and 21% are team leaders followed by software engineering process

group member (15%), technical members (11%) and managers (6%). On the other

hand, 41% of respondents have less than three years of experience and the majority

109

of them are software engineering process group member (20%), technical members

(16%) and team leaders (5%). Lastly 4% of respondents have 10-20 years of

experience 3% are manger and 1% are team leaders.

Figure 4.1. Respondents Position and Experience

 Current activity

In this section, respondents were asked about the activity they are involved in the

development process. The results shows that 29% of the respondents are involved

with code and unit test, followed by software design (28%), software requirements

(20%), test and integration activities (9%), configuration management (8%).

Software QA and software process improvement both occupied with the same

percentage 3% of respondents. As shown in Table 4.2.

110

Table 4.2

 Current Position Activities

Current Position Activities Frequency Percent

Software Requirements 15 20

Software Quality Assurance 2 2.7

Software Design 21 28

Configuration Management 6 8

Code and Unit Test 22 29.3

Software Process Improvement 2 2.7

Test and Integration 7 9.3

Total 75 100

4.7.1.2 Organization background

In this section, the respondents were asked about the type and the size of their

companies. All respondents in this survey are from the private sector companies.

 Organization size

Respondents were asked to indicate the number of employees inside their

companies. Table 4.3 describes that majority of companies in this study have 10 to

30 employees (48%), where 47% of the companies have 31 to 50 employees.

However, only 5% of the companies have less than 10 employees.

Table 4.3

 Numbers of Employees

 Numbers of Employees Frequency Percent

Less than 10 people 4 5.3

10 - 30 people 36 48.0

31-50 people 35 46.7

Total 75 100.0

111

4.7.2 Current Software Development and Measurement Practices

This section aims to investigate the software development and measurement

practices. The practices are related to the development, reuse, QA and measurement

methods that currently used by SSF in Jordan. The results of this section identify the

development and measurement issues that faced by SSF. Consequently, this section

is categorized into two parts software development practices and software

measurement practices.

4.7.2.1 Software Development Practices

This section aims to determine the development practices performed in SSF.

Findings from the following practices are: philosophy used, development methods

used, development method that developers familiar with, requirements method,

programming language, testing, reuse and quality assurance.

 Software philosophy

Software philosophy: is “the style of a development process that the company refers

to and it may cause the success and failure of any software company” (Wikipedia,

2011). Regarding to the software philosophy type, findings showed that the

respondents followed their own philosophy (47%), code and fix (33%), Agile

software development (13%) and waterfall (7%). As shown in Figure 4.2.

112

Figure 4.2. Software Philosophy

 Methods that respondents are familiar with

Software development method is “a framework that is used to structure, plan, and

control the process of developing any software” (Pressman, 2009). Table 4.4

describes that the majority of respondents are familiar with Waterfall (71%)

followed by XP (60%), Spiral model (29%), Scrum (27%), Prototyping (17%),

DSDM (11%), Incremental (11%), AUP (9%), V-model (7%), FDD (4%), RUP

(3%) and EUP (3%).

113

Table 4.4

Methods that Respondents are Familiar with

 Development Methods that

Respondents are Familiar with

Frequency Percent

Waterfall 53 70.7

V- Model 5 6.7

Spiral model 22 29.3

 RUP 2 2.7

 AUP 7 9.3

DSDM 8 10.7

FDD 3 4

Incremental 8 10.7

Prototyping 13 17.3

Enterprise Unified Process (EUP) 2 4.3

XP 45 65.2

Scrum 20 26.6

 Requirements Collection Method

Respondents were asked about the methods or techniques that they use for collecting

the requirements. The results indicated that the majority of respondents used

interview methods (48%) followed by use case scenarios (33%), document reviews

(12%), observation (5%) and questionnaires (1%) (Table 4.5).

Table 4.5

Requirements Collection Method

Requirements Collection Method Frequency Percent

Questionnaires 1 1.3

Interviews 36 48.0

Observations 4 5.3

Document reviews 9 12.0

114

Use case scenarios 25 33.3

Total 75 100.0

 Requirements Specification Notation

Requirements Specification Notation is “the way that the development team

describes the software system that will be developed” (Leveson, 1994). SSF’s

developers were asked about the notation that they use for presenting requirements

specification. Table 4.6 reveals that the majority (47%) of respondents do not use

any notation to present the requirement specification, 36% use semi-formal notation,

9% use informal notation and 8% use formal notation.

Table 4.6

Requirements Specification Notation

Requirements Specification

Notation
Frequency Percent

Formal 6 8.0

Semi-formal 27 36.0

Informal 7 9.3

No specific notation 35 46.7

Total 75 100.0

 Programming Languages

Findings showed that 73% of respondents use the object oriented languages, 23% of

them use visual languages and 4% of them use the 4 GL programming languages.

Table 4.7 shows the results.

115

Table 4.7

 Programming Languages

Programming

Languages Frequency Percent

4GL 3 4

Visual languages 17 22.7

Object oriented 55 73.3

Total 75 100

 Testing Type

 Software testing is “a method of assessing the functionality of any software” (Basili

& Selby, 1987). Table 4.8 shows the results. It can be seen that majority of

respondents use unit test (81%) followed by the acceptance test (52%), whole system

tests (41%), code coverage test (35%), no test required (13%), alpha test (9%),

regression test (7%), beta test (4%) and usability test (1%).

Table 4.8

Test Types

Testing Types Frequency Percent

Unit Tests 61 81.3

System Testing 31 41.3

Acceptance Tests 39 52

Usability Testing 1 1.3

Beta Testing 5 6.7

Code Coverage Tests 26 34.7

Regression Testing 5 6.7

Alpha Testing 7 9.3

No tests are required 10 13.3

116

 Testing Process Stage

 The results of Table 4.9 demonstrate that most (56%) of respondents perform the

testing process at the end of the coding phase, 24% performed the testing as soon as

possible software project were acquired, others (12%) performed the testing for

documentation or other related tests. Only 4% of the respondents used testing while

integrating major software modules or when implementing the final acceptance test.

Table 4.9

 Testing Process Stages

 Testing Process Stages Frequency Percent

The end of the coding phase 42 56

Early as soon as possible software projects were

acquiring

18 24

Documentation or element that can be tested 9 12

While integrating major software modules 3 4

When implementing the final acceptance testing 3 4

Total 75 100

 Reasons for Not Using Any Development Method

Respondents were asked why they are not using any method for developing Web

applications. Most of the respondents mentioned that the current methods need

specific training (75%). 71% claimed that the current methods need to form a

specific team, 29% stated that the current methods consume more time, and 11%

stated that no one in the company is familiar with any type of methods. However,

10% of the respondents mentioned that the current methodologies costly. Table 4.10

shows the results.

117

Table 4.10

Reasons of Not Using the Current Methods

 Reasons of Not Using the Current Methods Frequency Percent

Nobody inside the organization familiar with any type of

methods
7 11.1

Using any development method takes a lot of time 18 28.6

Consume a lot of money 6 9.5

Need a specific team to be performed 45 71.4

Need specific training to be performed 47 74.6

 Reuse Types

Software reuse can be defined as “the process of creating software systems from

predefined software components” (Krueger, 1992). Table 4.11 reveals that 84% of

the respondents reused the source code, 38% reused templates, 29% reused modules,

18% reused the design of document, 18% reused the documentation or specification,

16% reused media, 12% reused data, 10% reused Web pages, 3% reused feasibility

studies and 1% reused Cost benefits calculators and estimation.

Table 4.11

 Reuse Types

 Reuse Types Frequency Percent

Source Code 61 83.6

Media 12 16.4

Templates 28 38.4

User Documentation/Specification 13 17.8

Modules 21 28.8

Cost benefits calculators and estimation 1 1.4

Feasibility Studies 2 2.7

Web Pages 7 9.6

Design Document 13 17.8

Data 9 12.3

118

 QA Activities

Quality assurance (QA) is any systematic process of checking whether a developed

product is meeting specified quality requirements (Owens & Khazanchi, 2009). The

respondents were asked about what kind of QA activities that they used. The results

show that the majority of respondents performed the testing of Web application as

QA activity (83%), code review (59%), development process audit (23%),

configuration management audit (5%), functional configuration audit (5%), version

description document (5%) and physical configuration audit (3%). Table 4.12

shows the results.

Table 4.12

 Quality Assurance Activities

QA Activities Frequency Percent

Testing of Web-based Applications 62 82.7

Code review 44 58.7

Development Process Audit 17 22.7

Configuration Management Audit 4 5.3

Functional Configuration Audit 4 5.3

Physical Configuration Audit 2 2.7

Version Description Document 4 5.3

 Performing QA Activities

The respondents were asked about who is responsible for performing the quality

assurance activities inside the company. The majority of respondents indicated that

QA activities had been performed by the project team (80%), software assurance

group (17%), and only 3% of them are performing QA Activities by other assurance

group (Table 4.13).

119

Table 4.13

 Performing QA Activities

Performing QA Activities Frequency Percent

Project team 60 80

Software Assurance Group 13 17.3

Other Assurance Group 2 2.7

Total 75 100.0

4.7.2.2 Software Measurement Practices

Software measurement: is “the process of using the appropriate measures of software

artifacts such as requirements, designs, and source code that can be analyzed during

project execution to reduce defects, rework and life cycle time” (Kettelerij, 2006).

This section aims to determine the following measurement practices: in which stage

does the respondents performed there measurement process, what the domain of

applications they usually use this measurement inside, as well as what type of

development methods did they use and which method they use for performing these

measurements.

 Measurement Stage and Application Domain

In this part respondents were asked about the stage of measurement that they

perform with the development process and the type of Web application domain that

are they currently use. Data was analyzed using the cross tabulation. Figure 4.3

shows that 65% of respondents were not using measurement during the development

distributed in using the application domain of business information systems (31%),

e-business in general (25%), personal Web pages (5%) and learning applications

120

(4%). On the other hand, 25% of respondents performed the measurement at the end

of the coding phase, 17% of them are developing business information systems, 4%

of them are developing personal Web pages and 4% of them are developing e-

business in general. Furthermore, 9% of companies performed the measurement

early, as soon as possible software projects were acquired, distributing in developing

e-business in general (3%), business information systems (3%), and personal Web

pages (4%).

This means that the most of respondents are not using the measurements at all, where

the most application domains that had been developed inside their companies are

business information system and e-business applications.

Figure 4.3.Measurements Stage and Application Domain

121

 Measurements Stages and Size of Company

Respondents were asked about measurement stage and the number of employees of

each company. Cross tabulation analysis was used to gain the data. Results revels

that the majority of the respondents were not using the measurement (65%)

distributed according to the number of employees as, 36% of them have 31- 50

employees size, 24% of them have 10-30 employee size and only 5% less than ten

employees. Furthermore, 25% of the companies performed measurement at the end

of the coding phase, which distributed as followed: 17% of them have 10-30

employees and 8% of them have 31-50 employees. Moreover, 9% of the companies

used measurement early as soon as possible software projects were acquiried. These

companies are distributed based on the number of employee as, 7% of them have 10-

30 employees and 3% have 31-50 employee size. Table 4.14 shows the results.

Table 4.14

 Measurements stages and size of company

Measurement stage

No. of employees

Total Less than 10

people

10 - 30

people
31-50 people

The end of the coding phase 0% 17.3% 8% 25.3%

 Early as soon as possible software

projects were acquiring
0% 6.7% 2.7% 9.3%

 No measurement used 5.3% 24% 36% 65.3%

Total 5.3% 48% 46.7% 100%

 Measurement Stage and Development Method Type

Respondents were asked about the stage of performing measurement within the

development process and the type development method that were currently used.

122

The data were analysed using cross tabulation analysis. The results illustrate that the

majority of respondents did not use any measurements during the development

(65%) distributed according to the development method used as, no development

method used (47%), using Waterfall (8%), XP (4%), Scrum (4%) and Spiral (3%).

Furthermore, 25% of the companies performed the measurement at the end of the

coding phase. These companies distributed according to the development method

that they used as no method used (7%), XP (9%), Waterfall (4%), Scrum (4%) and

DSDM (1%). Moreover, 9% of respondents used measurement early, as soon as

possible software projects were acquired. These companies are distributed according

to the development method used as using XP (3%), Waterfall (1%), Scrum (1%) and

DSDM (1%). See Figure 4.4. This means the majority of respondents are not use

measurements and the majority of them also still not use any specific development

method. This means the majority of respondents not use the measurement and the

majority of them also still not a specific development method.

123

Figure 4.4. Measurement Stage and Development Method Type

 Metric Type and Development Method Type

Software metric: is a “quantitative or qualitative measure of some property of a piece

of software or its specifications” (Kettelerij, 2006). In this section, respondents were

asked about the metric type and the development methods that they currently used.

The data were analyzed using cross tabulation. Table 4.15 demonstrates that the

majority of the respondents are not using any specific type of metrics (67%). These

companies are distributed according to the type of development methods that they

used as the follows: no development method used (47%), Waterfall (8%), XP (5%),

Scrum (4%) and Spiral (3%). Furthermore, 19% of the companies are using a line of

code that's distributed as follows: no development method used (7%), using XP

124

(4%), Waterfall (3%), Scrum (3%) and DSDM (3%). This means that the majority of

SSF still doesn't use any type of metrics while the majority of them still not use any

systematic development method as well.

Table 4.15

 Metrics Type and Development Methods Type

Metric type

Development method types

Total
Waterfall Spiral DSDM XP Scrum

No

methodology

Use Case Points 0% 0% 0% 0% 0% 2.7% 2.7%

Constructive Cost

Model
 0% 0% 0% 1.3% 2.7% 1.3% 5.3%

Function Points 2.7% 0% 2.7% 6.7% 0% 0% 12%

Line of Code (LOC) 2.7% 0% 2.7% 4% 2.7% 6.7% 18.7%

Links Count 0% 0% 0% 1.3% 0% 1.3% 2.7%

No specific type of

metrics
 8% 2.7% 0% 5.3% 4% 47% 66.7%

Total 13.3% 2.7% 2.7% 16% 9.3% 56% 100%

 Development methods and Measurement Methods

Measurement method: “is the way that the company used for performing the

measurement process” (Kettelerij, 2006). Respondents were asked to indicate the

type of metric and what measurement method they perform. The data were analyzed

using Cross tabulation. Based on Table 4.16, 56% of respondents do not use any

development method. Whereas, 16% of the respondents using XP distributed based

on the measurement methods that they use as the follows: not using any

measurement method (8%), using GQM (4%), using PSM (3%) and only 1%

preferred to use QFD. Furthermore, 13% of respondents using Waterfall distributed

according to the measurement method they use as, not using any measurement

125

method (11%) and using PSM (3%). Moreover, 9% of the respondent using Scrum,

distributed according to the measurement method that they use as, 7% of them aren't

using any measurement method, GQM (1%) and PSM (1%). Based on these results,

it obvious that the majority of the respondents did not use any development methods

or measurement methods. However, the respondent that used development methods

they concentrate on XP, Waterfall and Scrum. And the majority of the respondents

whom apply measurement methods during the development used GQM.

Table 4.16

 Development method and Measurement Methods

Development Method
Measurement Methods

Total
GQM PSM QFD No method

Waterfall 0% 2.7% 0% 10.7% 13.3%

Spiral model 1.3% 0% 0% 1.3% 2.7%

DSDM 1.3% 0% 1.3% 0% 2.7%

XP 4.0% 2.7% 1.3% 8.0% 16.0%

Scrum 1.3% 1.3% 0% 6.7% 9.3%

no method 12.0% 1.3% 4.0% 38.7% 56.0%

Total 20.0% 8.0% 6.7% 65.3% 100.0%

 Why Organization Does Not Use Measurements

 In this part, respondents were asked to address the reasons why they did not use any

measurement. Respondents indicate that the majority of companies were not aware

of performing software measurements (68%), software measurements need a specific

team (57%), no one in the company familiar with software measurements (47 %),

using measurement consumed time (19%) and only 13% of respondents said that

using software measurement is costly. See Table 4.17.

126

Table 4.17

Why Organization Does Not Use Measurements

Reasons of not using specific measurement Frequency Percent

Nobody inside the company familiar with software

measurement
29 46.8

Take a lot of time to employ software measurement 12 19.4

Consume a lot of money 8 12.9

Need a specific team to perform 35 56.5

Your organization is not aware to perform software

measurement
42 67.7

4.7.3 Web Application Development and Measurement Practices

SSF should pay attention to several practices during the development process. The

practices related to the development process, team, project management and quality

management. This part aims to identify the current Web application development

and measurement practices in SSF. Table 4.18 describes the practices and the

variable name of each practice that used in SPSS.

Table 4.18

Practices and SPSS Variable Name

No Practices
Variable

Name

1 Does your development process of Web application copes with time pressure? D1

2
Does your development process of Web applications clarify that all involved in this

process understand their roles and responsibilities?
D2

3
Does the development team ensure that the development process must be performed

with minimum design and quick prototype?
D3

4 Does each Web project have a nominated Web project manager? D4

5 Does your Web project plan perform the budget estimation? D5

6 Are the requirements collected directly from the user or and the manager? D6

7 Are design notations used in Web design? D7

8
Does the development process ensure that all components of the Web application

such as page, code, site, navigation and services are being tested by test cases
D8

127

generated according to requirement specifications?

9 Is the testing process carried out or performed by the development process team? D9

10 Do the developers pay attention to the quality management and standards such as

usability and user interface design when developing Web applications in your

company?

D10

11 Is an independent testing conducted by users (or appropriate representatives) under

the guidance of Software QAA before any system or enhancement goes live?
D11

12 Is there a procedure for controlling changes to the Web application requirements,

designs and accompanying documentation?
D12

13 Is a change control function established for each Web project? D13

14 Is there a documented procedure for estimating the Web application's size (such as

"Lines of Source Code") and thus for using productivity measures?
D14

15 Is a formal procedure used to produce the Web development effort, schedule, and

cost estimates?
D15

16 Is there a required training program for all newly-appointed Web managers which is

designed to familiarize them with in-house Web project management procedures?
D16

17 Is there a procedure for maintaining awareness of the state-of-the-art in case of Web

engineering technology?
D17

The practices were listed and enter to the SPSS to perform the factor analysis to

group it into specific and related groups. However, according to Palant (2007) and

Tabachnick, & Fidell (2007) indicated that the sample size, which sufficient for

performing factor analysis should be over 150, which means this study not adequate

to apply factor analysis as the sample size is 75 cases. Therefore, other technique

should be used for group this set of practices, cluster analysis was chosen for this

purpose.

Cluster analysis is a technique used for combining variables into groups. These

groups are: firstly, homogeneous i.e., variable in the group are similar to each other.

Secondly, variables in each group should be different from the other groups

(Chatfield & Collins, 1990; Johnson, & Wichern, 1992). One of the common

128

techniques that's used for grouping variables which exist in SPSS is hierarchal

clustering. This technique used different methods. One of the most known and

commonly used methods is Ward's method. Using this method, all possible pairs of

clusters are combined and the sum of the squared distances within each cluster is

calculated. This is then summed over all clusters. The combination that gives the

lowest sum of squares is chosen (Chatfield& Collins, 1990; Dingsøyr et al., 2012).

In addition, the distance between shorter distances implying greater closeness

correlation between the variables (Dingsøyr et al., 2012). In this study the distance

means the number of cases (respondents) that have been analyzed.

Consequently, the results were obtained from the hierarchal clustering and Wards

method shows that these practices are categorized in seven groups or clusters as

shown in Figure 4.5. This figure represents the process of performing the hierarchal

clustering and the output clusters. It's called dendrogram. cluster 1 contains the

practices (D6, D12 and D13) which are related to requirements phase, cluster 2

contains the practices (D10 and D11) which are related to the quality issues, cluster 3

contains the practices (D5, D14and D15) which are related to the measurement

practice, cluster 4 contains (D3, D7 and D17) which are related to the design phase,

cluster 5 contains the practices (D4 and D16) which are related to the management,

cluster 6 contains the practices (D1 and D2) which are related to the development

process and finally cluster 7 contains (D8 and D9) and these practices related to the

testing process.

129

Figure 4.5. Dendrogram

Respondents were asked to rank the degree of performing these practices inside their

companies. Therefore, Five Likert scales ranging from strongly disagree (value 1) to

strongly agree (value 5) were used to describe the degree of acceptance for applying

these practices.

Results were obtained by calculating the mean score and selecting the appropriate

interval that represent the actual mean. An appropriate interval scale was required to

represent all levels of acceptance. The interval was calculated by the following

equation:

 Appropriate interval = number of interval between values/ number of variable.

Appropriate interval for the study = (4/5) = 0.8

130

Scales representation for the degree of acceptance for each practice is shown in

Table 4.19. This internal was used and recommended by many researchers as such

Ali et al. (2011), Bidad and Campiseño (2010) and Ahmad (2008).

Table 4.19

 Internal Representations for the Degree of Acceptance

Mean interval presentation Degree of acceptance

From 1 to 1.80 Strongly Disagree

From 1.81 to 2.60 Disagree

From 2.61 to 3.40 Neutral (Don’t Know)

From 3.41 to 4.20 Agree

From 4.21 to 5 Strongly Agree

Table 4.20 illustrates the mean values of each group of practices and the degree its

acceptance.

Table 4.20

Current Web Applications Development Practices

Requirements practices
Mean

value

Degree of

acceptance

1. Are the requirements collected directly from the user or and the

manager? (D6)

2.16 Disagree

2. Is there a procedure for controlling changes to the Web application

requirements, designs and accompanying documentation? (D12)

2.16 Disagree

3. Is a change control function established for each Web project? (D13)
2.17 Disagree

Quality practices
Mean

value

Degree of

acceptance

4. Do the developers pay attention to the quality management and

standards such as usability and user interface design when

developing Web applications in your company? (D10)

1.99 Disagree

5. Is an independent testing conducted by users (or appropriate

representatives) under the guidance of Software QAA before any

system or enhancement goes live? (D11)

1.97 Disagree

131

Measurements practices
Mean

value

Degree of

acceptance

6. Does your Web project plan, perform the budget estimation? (D5) 1.85 Disagree

7. Is there a documented procedure for estimating the Web

application's size (such as "Lines of Source Code") and thus for

using productivity measures? (D14)

1.85 Disagree

8. Is a formal procedure used to produce the Web development effort,

schedule, and cost estimates? (D15)

1.83 Disagree

Design practices
Mean

value

Degree of

acceptance

9. Does the development team ensure that the development process

must be performed with minimum design and quick prototype?

(D3)

2.44 Disagree

10. Are design notations used in Web design? (D7) 2.47 Disagree

11. Is there a procedure for maintaining awareness of the state-of-the-

art in case of Web engineering technology? (D17)

2.40 Disagree

Management practices
Mean

value

Degree of

acceptance

12. Does each Web project have a nominated Web project manager?

(D4)

2.64 Neutral

13. Is there a required training program for all newly-appointed Web

managers which is designed to familiarize them with in-house Web

project management procedures? (D16)

2.31 Disagree

Process practices
Mean

value

Degree of

acceptance

14. Does your development process of Web application copes with

time pressure? (D1)

3.53 Agree

15. Does your development process of Web applications clarify that all

involved in this process understand their roles and responsibilities?

(D2)

3.52 Agree

Test practices
Mean

value

Degree of

acceptance

16. Does the development process ensure that all components of the

Web application such as page, code, site, navigation and services

are being tested by test cases generated according to requirement

specifications? (D8)

3.35 Neutral

17. Is the testing process carried out or performed by the development

process team? (D9)

3.53 Agree

The results reveal that the majority of the important practices (12 practices) have

“disagree” acceptance, two practices have neutral acceptance and the last three

practices have the value agree acceptance.

132

4.7.4 Discussion of Findings

The results of the survey can be summarized as point:

 Determine the SSF characteristics: The majority of SSF in Jordan are

private sector, and they have 10 to 30 employees followed by 31 to 50

employees, which consistent with the finding of (Fayad et al., 2000; Hofer,

2002; Laporte et al., 2005). Developers inside these firms are working with

requirements, design, coding and testing activities. In addition, all developers

have ten or less than ten years of experience and few managers and team

leaders have more than ten years’ experience. Moreover, it clearly obvious

that the greater part of the respondents working in developing business

information systems and e-business in general as an application domain.

Therefore, the development method will be proposed for the SSF should be

performed by a small number of developers and provide a training session to

meet their lack of experience.

 Determine the development issues: a greater part of respondents still did

not use any method for developing Web applications. Therefore, there a need

of new methodology for developing Web application in SSF which is

consistent with several studies such as Ahmad et al. (2005), Baskerville and

Pries-Heje (2002), Costagliola et al. (2002) and Murugesan et al. (2001).

Furthermore, the reasons for not using a specific method, a high percentage

of respondents answered that using particular method need a specific team to

be performed and assume that using specific method need training.

133

Regarding to the development method that the respondents are familiar with,

most of them are familiar with waterfall followed by XP and Scrum. The

most of developers perform the testing process at the end of the coding phase

of the development. The most component that reused often by the developers

of SSF are: source code, templates and modules during the development

process. The most common QA activities that had been performed by the

SSF are: testing Web applications and code review and these activities

currently performed by the project team. Therefore, there is a need for a

development process that constructed based on XP and Scrum. This process

should cover all the development stages and able to reuse the existing

components. Furthermore, the role and responsibilities of the development

team members should be clearly defined.

 Determine the measurement issues: The majority of respondents still don’t

use any measurements during the development process. Whereas, there is

minimal percentage of respondents used line of code and use GQM as a

measurement method after the coding phase. These results are consistent with

the findings Kettelerij (2006) and McCurley et al. (2008). This means there is

a lack of performing measurements types and methods during development

process in SSF. The reasons for not using a specific measurement methods

and metrics were because there is nobody in the company familiar with

measurement process and using measurements need a trained team to be

performed. In addition, respondents who like to perform measurement after

134

the coding phase, they often use XP then Scrum followed by Waterfall as

development method and the most used metric in these three development

methods is a line of code. Respondents who are using XP, Scrum, DSDM

and Spiral respectively, they prefer to apply measurement by using the GQM

method. Therefore, there is need of a goal oriented measurement mechanism

based on the GQM method that covers the whole development process

stages. This mechanism should use a quantitative and qualitative metrics in

order to monitor the process and product. In addition, this mechanism should

take into account the small software firm staff limitation.

 Investigate the current Web application development and measurement

practices: The degree of applying the important Web applications

development practices was low since three out of seventeen practice were

applied in the SSF in Jordan as well as three are partially applied. The

practices that are not performed in SSF are requirement, test, quality

management and measurement practices. This means there is a lack of

applying the development and measurement practices inside these companies

which consistent with the findings of Bucci et al. (2001) and El Sheikh &

Tarawneh (2007). Therefore, there is a need for development methodology

that performs these important practices.

135

4.7.5 Summary

The findings of the survey demonstrate the current practices of Web application

development and measurement in Jordanian SSF. A survey approach was adopted

for this study using questionnaires as an instrument for collecting data. The sample

comprised of seventy-five from Jordanian SSF. The respondents were mainly

managers and developers.

This survey gives a better understanding of the current development and

measurement practices that were performed by the Jordanian SSF. The issues of

using the current development and measurement methods were also highlighted. The

findings of the survey will be used for constructing a new Monitoring Oriented Agile

Based Web Applications Development Methodology for SSF

136

CHAPTER FIVE

METHODOLOGY CONSTRUCTION

5.1 Introduction

The main outcome of this chapter is a new Monitoring Oriented Agile Based Web

Applications Development Methodology (MOGWD) for Small Software Firms. As

mentioned in Chapter Three, this methodology was constructed based on four steps;

extending the Scrum method by adding the important XP elements, enhancing the

design phase by incorporating a Web design method, constructing a monitoring

mechanism and organizing the MOGWD methodology components by adopting the

PDCA method. The chapter starts by describing the Extended Agile method, the

required improvements for the Extended Agile method and presenting the details of

the methodology phases and components.

5.2 The Extended Agile Method

The methodology construction begins by analyzing the XP and Scrum methods

before extending the Scrum method. This analysis was conducted in Chapter Two

based on the specified criteria, namely the development process, project

management, requirements, testing, design and the team structure.

The results from the analysis found that the Scrum method is suitable to be used as

the basis for proposing the Agile Extended method because the Scrum is an iterative

development method that performed management practices, which are strongly

137

recommended to manage the development processes. Furthermore, it concentrates on

smaller development team. Therefore, this study adapted three phases of the Scrum

which are planning, development and integration. Each phase has a set of activities

and practices to be performed. However, the Scrum method is still lacking on the

development practices. Therefore, the study had improved the development phase of

the Scrum by analyzing the XP method.

The results from the XP method analysis found that some activities and practices in

the XP should be integrated to improve the Scrum development phase. The elements

that have been taken from the XP are the XP iteration activities, XP core and

supported practices and XP iteration team (programmer and tester). The result of this

combination is the Extended Agile method for SSF.

Table 5.1 shows the elements of the extended Agile method which include process

phases, activities and practices.

Table 5.1

The elements of the Extended Agile method

Process phase Activities Practice
Taken from

XP Scrum

Planning - Identify the product

backlog items

First planning meeting √

- Prioritize the items

- Split the large items

if any, to smaller

items.

- Estimate the items

Iteration planning

meeting

 √

Development Analysis √

Design Simple design √

138

Code Coding standards, pair

programming,

Refactoring, metaphor

and collective

ownership

√

Test TDD √

Daily reviewing

Daily meeting √

Iteration reviewing Iteration review

meeting

 √

Integration Integrate increment with

the system

Continuous

integration

√

Final release Small release √

As shown in Table 5.1, the planning phase has four activities which are identifying

the product backlog items, prioritizing the items, splitting the large items (if any) to

smaller items and estimating the items. The activity for identifying the product

backlog items should be performed by deploying the first planning meeting practice.

However, the last three activities of planning should be performed in the iteration

planning meeting practice. These activities and practices were taken from the Scrum.

The development phase will be performed through several activities. The first four

activities and their practices were taken from the XP as it concentrates on the

development more than that of the Scrum. These activities are analysis, design, code

and test. The last two development activities; the daily reviewing and iteration

reviewing were adopted from the Scrum.

The integration phase involved two activities which are integrating the new

increment with the system and final release. These activities were adopted from the

Scrum. However, the increment in the Scrum required at least one month to be

139

integrated into the system and at the moment there are no specific practices in the

Scrum to perform such integration. Therefore, this study improved the practices by

adopting a continuous integration and small release practices from the XP which are

more suitable for reducing the cycle time and risk of failure.

However, there are still some issues that failed to be covered in the proposed

Extended Agile method. The two issues are (1) the existing design phase in the

iteration is simply performed and focus more on coding and (2) the method does not

have any measurement mechanism that can monitor the quality of the process and

product. To counter these issues, two solutions have been proposed in this study. The

solutions that can be proposed are to enhance the design phase by adding a Web

design method and to construct a measurement mechanism by using the Goal

Oriented Monitoring Mechanism (GOMM) that emphasize on monitoring the quality

of the process and product. Figure 5.1 shows the improved Extended Agile Method.

Figure 5.1 indicates that the design activity in the Extended Agile method has been

improved by adopting the activities and practices from the existing Web design

method. In addition, the method was also referred to improve the first planning

meeting practice. Moreover, the study has proposed a set of qualitative and

quantitative metrics as a mechanism for monitoring the process and product quality.

The metrics were derived by using the GOMM that refers to the lightweight GQM.

140

G
O

M
M

Planning

Identify product backlog items

Estimate the items

Development

Analysis

Design

Integration

Final Release

Code

Test

Integrate increment with the

system

 Daily Reviewing

Iteration Reviewing

Web design

method

XP

Iteration

Activities

Core And

Supported

Practices

 Iteration Team

Scrum

Prioritize the items

Split the large items

Extended Agile Method

Figure 5.1. The improvements of Extended Agile Method

All improvements made for the proposed Extended Agile Method were meant to

construct the MOGWD methodology.

5.3 The overview of MOGWD methodology

Findings from the literature review (as discussed in Chapter Two) and the survey (as

discussed in Chapter Four) have contributed to the construction the MOGWD

141

methodology. The main findings from the literature review are: the XP and Scrum

are the suitable development methods to be used for SSF, the light weight GQM is

the appropriate measurement method to be used for SSF, the common steps of Web

application design, the criteria of good methodology and the list of best practices that

should be performed by SSF.

Meanwhile, the findings from the survey indicate that even though they are familiar

with the XP and Scrum methods, the majority of the practitioners in SSF are still

using ad-hoc approach for developing the Web application. The findings also show

that the practitioners in SSF are still lacking in the awareness on monitoring the

quality of the process and product. Therefore, these outputs clarify the need of a new

methodology that emphasizes on monitoring the quality of the Web applications

product and development process. Hence, this study proposed the MOGWD

methodology that focuses on producing a high quality Web application for SSF. The

main characteristic of the MOGWD methodology is an iterative Agile development

methodology that emphasizes on continuous quality monitoring for the process and

product.

This methodology concentrates on the management, development and monitoring

processes. The management and development processes were taken from the

Extended Agile method that has been improved with the Web design method, while

the monitoring process was constructed by performing the GOMM.

142

The Plan, Do, Check and Act (PDCA) method was adapted in this study to organize

the components of the MOGWD methodology. According to Quaglia and Tocantins

(2011), the process of the PDCA can be performed under the Agile perspective

particularly in the Scrum. In addition, the development and the measurement

processes can be applied together based on the PDCA phases. The MOGWD

methodology has defined four phases adapted from the PDCA, namely the Plan, Do,

Check and Act. Figure 5.2 shows the four phases of the MOGWD methodology.

Each phase has clearly defined the aim and activities.

 143

Figure 5.2. The MOGWD methodology

 144

5.4 MOGWD Methodology

As mentioned earlier, the methodology has four phases, Plan, Do, Check and Act.

Each phase provides well-defined components. These components are activities,

methods, practices, tools and team structure. Additionally, the activities performed

are based on particular methods, specific practices, and set of tools. The activities

should be carried out by team member(s). The next sections discuss in details about

the components of each phase.

5.4.1 Plan Phase

This phase aims to identify the problem and plan for the management, development

and monitoring activities. Each activity has a set of sub activities. The next section

provides a detailed explanation of these activities.

5.4.1.1 Management Planning

The management planning involved several sub activities such as staffing, training

and controlling. The first two sub activities of the management planning, staffing

and training, will be performed in the plan phase. However, the controlling sub

activity will be performed during the whole process. In this activity, the top

management will identify the master and product owner (PO). The master takes all

the responsibilities of managing the project. The master will discuss with the PO in

order to understand the problem to be solved. He also has to produce plan for

performing the management activities. This plan includes time frame, budget and

brief explanation of the management activities. Table 5.2 described the management

planning sub activities. Each sub activity includes several actions.

145

Table 5.2

 Management Planning Sub Activities

Sub activity Actions Team member

involved

Staffing - Assigning roles and responsibilities for each

team member

Master

Training - Identifying phases, activities, methods,

practices, and tools of the MOGWD

methodology

- Identifying the roles and responsibilities of each

team member that involved in certain activities.

The whole

development

team

Controlling - Keeping the process Agile and accelerating the

process.

Master

Each sub activity is described as follows:

Staffing: is an activity for identifying the team members to be involved in the

project and defining the roles and responsibilities for each member. The team

structure of the MOGWD is described in Table 5.3.

Table 5.3

 The MOGWD Methodology Team Structure

Role Responsibility Stakeholder

Master Acts as the leadership role to ensure that the practices,

rules and values process are followed according to the

planned project execution. In addition, the Master should

be aware with the XP practices and software

measurement.

Development team

(DT)

Product

owner (PO)

One of the team selected by the management and master.

He is responsible for managing, controlling and making

the product backlog visible. He is also responsible for

writing the stories and functional tests, setting

requirement priority and deciding when each requirement

satisfied. He should be aware with the XP practices and

software measurements.

146

Customer Tasks related to determine the product backlog.

Programmer Writing tests and keeping the code simple. In addition, he

must be aware with the XP practices such as pair

programming, coding standard, and software

measurement.

Tester Help the customer to write functional test, run functional

test, broadcast test results and maintain testing tools. He

must also be aware with the XP practices such as TDD

and software measurement.

GOMM

team

member

One member is responsible for assuring the product

quality and conducting the required measurements. Gives

feedback on how accurate the effort estimations which

made by the team are, progress tracking, evaluate whether

the goal achieved within time and budget and determine if

any changes needed in the process. In addition, they

should be aware with the QA practices and software

measurement. The other GOMM members are

responsible for analyzing data and preparing the feedback

report to the management

Monitoring team

(MT)

Management Decision making, communicate with the team, setting

goals and requirements and select the master and product

owner.

Top management

Based on Table 5.3, the minimum number of members who should be involved in

performing the MOGWD methodology is seven. These members will play the roles

as master, PO, two programmers, tester, and two GOMM members.

The roles and responsibilities of the MOGWD methodology are classified into three

categories of stakeholders: development team (DT), monitoring team (MT) and top

management.

Training: the whole team members should attend a simple training session that takes

around two to seven days to understand the MOGWD methodology as well as its

functions. The training session will be conducted by the master with all the team

147

members. In this session, all roles and responsibilities will be explained, process

activities will be clarified and practices will be clearly discussed. After completing

this training, each team member should know his/her roles and responsibilities

during the process. Furthermore, each team member should know the activity that

he/she will play. Lastly, each team member should know how to perform the

assigned practice.

Controlling: is one of the master responsibilities to ensure that the process remains

agile, deploys Agile practices and can be accelerated by removing impediments that

makes the process slow. A plan produced by the master clearly defines the Agile

practices, the activity to be performed and the person who will be performing.

5.4.1.2 Development planning

The development planning includes five sub activities, namely creating the product

backlog, performing the Web design method, selecting the items that will be entered

to the next Do (iteration), splitting the large items (if any) to smaller and estimating

the items. The first two sub activities are performed in order to plan for the whole

product, whereas the last three sub activities are performed to plan for the next Do

(iteration). Table 5.4 shows the sub activities, methods used, practices, tools, team

members and the outcome of each action.

148

Table 5.4

 Development Planning

Sub activities Methods Practices Tools The team

member

involved

Outcomes

- Create the product

backlog

- Perform the Web

design method

- Extended

Agile

method.

- Web design

method.

First

planning

meeting

User stories,

requirement

repository

and

ArgoUWE

Master, PO,

development

team (DT)

and

monitoring

team (MT).

- Product

backlog

- Web design

prototype.

- Select the items that

will be entered for the

next Do (iteration).

- Split the large items

(if any) to smaller

items.

- Estimate the items.

- Extended

Agile

method.

Do

(Iteration)

planning

meeting

Previous

report for

estimating

and

prioritizing

the product

backlog items

 PO, DT and

MT

- Do backlog

- The

estimated

time, cost,

line of code

and others.

Each sub activity of the development planning is discussed in details as follows:

Create the Product backlog. The product backlog is an ordered list

of requirements that is maintained for a product. It consists of features, bug

fixes, non-functional requirements and whatever needs to be done in order to

successfully deliver a viable product. This sub activity was performed using the

Extend Agile Method that emphasizes on deploying the specific practice known as

the first planning meeting. In this meeting, the PO will order the product backlog

items for the development team (DT) to choose based on risks, business values,

dependencies, date needed, and others. The meeting will be held by all the team

members’ master, product owner (PO), DT and monitoring team (MT). The Product

http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/New_product_development
http://en.wikipedia.org/wiki/Software_feature
http://en.wikipedia.org/wiki/Patch_(computing)
http://en.wikipedia.org/wiki/Patch_(computing)
http://en.wikipedia.org/wiki/Non-functional_requirement

149

backlog items should be collected directly from the customer or the product owner

using the user stories tool.

The user requirement specifications should to be saved in a simple data repository at

the first planning meeting to help customers and developers to trace the customer’s

requirements status and reuse the old requirements. The output of this sub activity is

the order list of product backlog items.

Performing the Web Design Method: This sub activity will be performed using the

Web design method. This method will be performed during the first planning

meeting to create a simple design prototype that may require the ArgoUWE tool to

support the action method. The Web design method is performed by the

development team and the PO (customer). Five actions are required to perform the

Web design method which is requirements analysis, conceptual design, navigational

design, implementation design (interface) and construction as shown in Figure 5.3.

150

Figure 5.3. Web Design method

 Requirements analysis: this action aims to take the requirements that have

been identified in the product backlog. The backlog includes items such as

Web application objectives, targeted audiences, content, style guidelines, and

development constraints. Others include requirements analysis, requirements

checking for necessity (the need for the requirement), consistency

(requirements should not be conflicting) and completeness (no service or

constraint is missing). Requirement necessity and completeness will be

ensured in this action. However, requirement consistency is determined

Requirment
Analysis

Conceptual
Design

Navigational
Design

Implementation
Design

Construction

151

through requirement prioritizing which will be carried out in the Do iteration

planning.

 Conceptual design (object design): determine the objects, classes, subclasses,

relationships, attributes and perspectives of the Web application using any

object oriented constructs (classes, relationships or use cases). During the

object modeling sub phase, the requirements of the different user classes and

their perspectives are formally described. The object models do not only

describe the object types and relationships, but also the rules or constraints on

the object types and relationships. The object oriented models also describe

the behavior of the objects.

 Navigational design: this action describes how the user can navigate through

the Web application as well as specifies how pages and content units linked

to the whole application. This will be done by determining the nodes, links,

access structure and navigational structure. In addition, the navigation design

describes how the different users can navigate through the Web application.

The navigation, design consists of a number of navigation tracks. A

navigation track expresses how users can navigate through the available

information. This is described in terms of components, links and flow charts.

 Implementation design (interface): the aim of this action is to design the look

and feel as described in the conceptual design phase by generating page

structure, page flow, user interface and logical database schema required by

the design Web application.

152

 Construction: The product owner prioritizes requirements related to the Web

design prototype, and sends it to the programmer to start developing it into a

real system. The ArgoUWE will be an effective tool to support the creation

of the design method.

After completing the planning for the whole product in the first planning meeting,

three sub activities will be performed for planning the next Do (iteration): prioritize

the backlog items to be entered for the next Do, split the large item into smaller item

and estimates the items. These actions will be performed by using the extended

Agile method during the Do (iteration) meeting.

Select the items that will be entered for the next DO (iteration). This sub activity

aims to specify the selected product backlog items for the next Do (iteration). The

selection will be performed by using Do (iteration) meeting practice. The product

owner is responsible for prioritizing and ordering the items. The prioritizing sub

activity is carried out based on the previous reports for estimating and prioritizing

items. The outcome of this sub activity is the Do backlog.

Split the large items if any, to smaller items and estimates the items. The two sub

activities will be performed during the Do (iteration) planning meeting. In this two

sub activities, the DT used their experience and reports from previous project to

select the large item and split it into smaller task to perform it in the next Do

(iteration). By the end of this meeting, the DT is ready to do his/her job for the Do

153

(iteration) and move to the Do (development phase). Among the outcomes of the two

sub activities are the split tasks, estimated time, cost, and line of code.

5.4.1.3 Monitoring planning

For the monitoring planning activity, three sub activities are involved, which include

defining the monitoring goals, determining questions and metrics, producing

monitoring plan and prioritizing monitoring goals as shown in Table 5.5. The first

two sub activities will be performed by the extended Agile using the first planning

meeting practice method and GOMM. The last sub activity will be performed in the

Do (iteration) meeting.

Table 5.5

 Monitoring Planning

Sub activities Methods Practices Tools

The team

member

involved

Outcomes

- Define the

monitoring goals,

questions and

metrics.

- Produce the

monitoring plan that

includes data

collection procedure

and data collection

instrument.

Extended

Agile

method

and

GOMM

First

planning

meeting

- Master,

PO, DT

and

Monitoring

team (MT).

- Monitoring

goals,

questions and

metrics

- Monitoring

plan.

- Prioritize the

monitoring goals.

Extended

Agile

method

and

GOMM

Do

(Iteration)

planning

meeting

and

prioritize

goals

practice

Previous

report for

estimating and

prioritizing

the product

backlog items

 Master and

MT
- The

prioritized

monitoring

goals.

154

Each sub activity of the monitoring planning is discussed in details as follows:

 Define the goals, questions and metrics: this sub activity starts by defining the

goals followed by deriving questions and metrics.

- Define the goals:

Two types of goals were defined based on the goal template mentioned in

Chapter Two. The types of goals are quantitative and qualitative as shown in

Table 5.6. The goal definition should describe the purpose of measurement, the

object that the measurement is focusing on and the people that measure the

object.

Table 5.6

Goal Definition

 Goal Definition Type Object

D
ev

el
o

p
m

en
t

P
ro

ce
ss

 Q
u

a
li

ty

 G1.1 To analyze the requirement activity for

the purpose of monitoring with respect

to a number of requirements completed

from the viewpoints of the GOMM

members

Quantitative Requirement

G 1.2 To analyze the design activity for the

purpose of monitoring with respect to

the number of SLOC, a number of Web

pages and total number of links from the

viewpoints of the GOMM members

Quantitative Design

G 1.3 To analyze the testing for the purpose of

monitoring with respect to the current

size of the test status from the

viewpoints of the GOMM members

Quantitative Testing

PG1 To analyze the common Scrum practices

(core) for the purpose of monitoring

with respect to the Scrum meetings from

the viewpoints of the GOMM members

Quantitative Management

practices

155

PG2 To analyze the common XP practices

(core) for the purpose of monitoring

with respect to the pair programming,

TDD, refactoring, coding standards,

from the viewpoints of the GOMM

members

Quantitative Development

practices

(core)

PG3 To analyze the supported XP practices

for the purpose of monitoring with

respect to small release, continuous

integration, simple design, metaphor and

collective ownership from the

viewpoints of the GOMM members

Quantitative Development

practices

(supported)

G2 To analyze the productivity tracking for

the purpose of monitoring with respect

to the value of staff productivity from

the viewpoints of the GOMM members

Quantitative Staff

Productivity

QG1 To analyze the process completeness for

the purpose of monitoring with respect

to the process activities requirements,

design, coding, testing and project

management from the viewpoints of the

GOMM members through a

questionnaire

Qualitative

Completeness

QG2 To analyze the process consistency for

the purpose of monitoring with respect

to the process activities requirements,

design, coding, testing and project

management from the viewpoints of the

GOMM members through questionnaire

Qualitative Consistency

QG3 To analyze the process accuracy for the

purpose of monitoring with respect to

the process activities requirements,

design, coding, testing and project

management from the viewpoints of the

GOMM members through a

questionnaire

Qualitative Accuracy

QG4 To analyze the process of tailorabilty for

the purpose of monitoring with respect

to the tailorability practices from the

viewpoints of the GOMM members

through questionnaire

Qualitative Tailorabilty

QG5 To analyze the process flexibility for the

purpose of monitoring with respect to

the flexibility practices from the

viewpoints of the GOMM members

through a questionnaire

Qualitative Flexibility

QG6 To analyze the process of compatibility

for the purpose of monitoring with

respect to the compatibility practices

Qualitative Compatibility

156

from the viewpoints of the GOMM

members through a questionnaire

QG7 To analyze the process of accessibility

for the purpose of monitoring with

respect to the accessibility practices

from the viewpoints of the GOMM

members through a questionnaire

Qualitative Accessibility

QG8 To analyze the process of applicability

for the purpose of monitoring with

respect to the applicability practices

from the viewpoints of the GOMM

members through a questionnaire

Qualitative Applicability

QG9 To analyze the process of changeability

for the purpose of monitoring with

respect to the changeability practices

from the viewpoints of the GOMM

members through a questionnaire

Qualitative Changeability

QG10 To analyze the process supportability for

the purpose of monitoring with respect

to the supportability practices from the

viewpoints of the GOMM members

through a questionnaire

Qualitative Supportability

W
eb

 a
p

p
li

ca
ti

o
n

 P
ro

d
u

ct
 Q

u
a
li

ty

G3 To analyze the development process cost

for the purpose of monitoring and

controlling with respect to the cost of

fix, cost of activity and project budget

from the viewpoints of the GOMM

members

Quantitative Cost

G4 To analyze the quality aspects for the

purpose of monitoring with respect to

the security, product reliability, usability

and maintainability from the viewpoints

of the GOMM members

Quantitative Quality

G5 To analyze the development life cycle

time for the purpose of monitoring with

respect to the reuse artifacts, time for

each iteration, project velocity from the

viewpoints of the GOMM members

Quantitative Time

Based on Table 5.6, the goals were defined to monitor the quality of the

development process and the Web application product. The quality of the process

will be monitored quantitatively and qualitatively. However, the Web application

product quality will be monitored quantitatively. Seven quantitative goals were

157

defined to monitor the process quality; three goals described the process quality

activities such as requirement, design and test. Another three goals described the

application of the Agile practices during the development such as the core

management practices, core development practices and supported development

practices. One goal described the staff productivity. In addition, ten qualitative goals

were defined to monitor the process quality factors such as completeness,

consistency, accuracy, tailorability, flexibility, supportability, accessibility,

applicability, changeability and compatibility. On the other hand, three quantitative

goals were defined to monitor the quality of the Web application product namely the

cost, quality and time.

- Derive the questions and metrics: after defining the goals, the questions and

metrics were derived. Each goal may have set of questions which were answered

by performing a set of metrics. The multilevel list numbering was used for the

question and metrics that started from the goal number. For example, G1.1 has

question Q1.1.1 and metric M1.1.1.1. This activity derives the question and

metrics for the defined goals.

Requirements questions and metrics: A question, Q1.1.1, related to the

requirement status was answered by performing the M 1.1.1 as shown in Table

5.7.

158

Table 5.7

 Requirements Questions and Metrics

G1.1: To analyze the requirement status for the purpose of monitoring with respect to the

number of requirements completed from the viewpoints of the GOMM members

Question Metrics

Q1.1.1: What is the

current size of the

requirements status?

M1.1.1.1: Number of product backlog items completed to

date/total number of requirements planned.

Design questions and metrics. A question, Q1.2.1, related to the design status

that was answered by performing three metrics, M1.2.1.1, M1.2.1.2 and M1.2.1.3

as shown in Table 5.8.

Table 5.8

 Designed Questions and Metrics

G1.2: To analyse the requirement status for the purpose of monitoring with respect to the

number of requirements completed from the viewpoints of the GOMM members

Question Metrics

Q1.2.1: What is the current size of the design

status?

M1.2.1.1: Number of LOC completed to

date / Total Number of SLOC planned.

M1.2.1.2: Number of Web Pages to date /

Total Number of Web Page planned.

M1.2.1.3: Total Number of internal links /

Number of Web pages.

Testing Question and Metrics: Question Q1.3.1 related to the test status that was

answered by performing the M1.3.1.1 and M1.3.2.1. Table 5.9 shows the testing

questions and metrics.

159

Table 5.9

 Testing Questions and Metrics

G 1.3: Analyze the test status for the purpose of monitoring with respect to the number of

tests completed to date and total number of tests planned from the viewpoints of the

GOMM members

Question Metrics

Q1.3.1: What is the current

size of the test status?

M1.3.1.1: The number of tests completed to date / Total

Number of tests planned.

M1.3.1.2 number of testing line of code vs. total number

lines of code

Management practice questions and metrics: Three questions were identified to

monitor the application of the management practices adopted from the Scrum;

PQ1.1, PQ1.2 and PQ1.3. Question PQ1.1 related to the application of the iteration

planning meeting that can be measured by performing the metric PM1.1.1. Question

PQ1.2 related to the application of the daily meeting that can be measured by

performing the metric PM1.2.1. Question PQ1.3 related to the application of the

iteration review meeting that can be measured by performing the metric PM1.3.1 as

shown in Table 5.10.

Core development practices questions and metrics. Three questions were defined

to monitor the application of the core development practices adopted from the XP.

These questions are PQ2.1, PQ2.2 and PQ2.3. The questions can be measured by

performing the next four metrics PM2.1.1,PM2.1.2, PM2.2.1 and PM2.3.1

respectively as shown in Table 5.10.

160

Supported development practices questions and metrics. Five questions were

defined to monitor the application of the supported development practices adopted

from the XP. These questions are PQ3.1, PQ3.2, PQ3.3, PQ3.4 and PQ3.5. The

questions can be measured by performing the next five metrics PM3.1.1, PM 3.2.1,

PM3.3.1, PM3.4.1 and PM3.5.1 respectively as shown in Table 5.10.

Table 5.10

 Practices Questions and Metrics

PG1: To analyze the common Scrum practices (core) for the purpose of monitoring with respect to the

Scrum meetings from the viewpoints of the GOMM members

Questions Metrics

PQ1.1: How to measure the iteration planning

meeting?

PM1.1.1: Number of iteration planning meetings

per one application.

PQ1.2: How to measure the daily meeting? PM1.2.1: Number of daily meetings per one

application?

PQ1.3: How to measure the iteration review

meeting?

PM1.3.1: Number of review meetings done per one

application?

PG2: To analyze the common XP practices (core) for the purpose of monitoring with respect to the pair

programming, TDD, refactoring, coding standards from the viewpoints of the GOMM members

Questions Metrics

PQ2.1: How to monitor the TDD practice?

PM2.1.1: Number of testing line of code /total

number lines of code.

PM2.1.2: Number of tests completed to date vs.

Total Number of tests planned.

PQ2.2: Does the duplicated code removed to

decrease ambiguity and redundancy, and

improve communication and adding flexibility?

PM2.2.1: Number of lines of duplicated code

removed / total line of code per iteration.

PQ2.3: Does the development team follow a

coding standard?

PM2.3.1: Adherence of coding standard (High,

Low).

PG3:To analyze the supported XP practices for the purpose of monitoring with respect to the small

release, continuous integration, simple design, metaphor and collective ownership from the viewpoints

of the GOMM members

Questions Metrics

PQ3.1: Is every iteration release with small size

of code?

PM3.1.1: (Number of LOC of the first release - the

LOC of the next release) / total NLOC

161

PQ3.2: Does the new created release reflecting

all the changes?

PM 3.2.1: (Total number of lines of code added,

removed and updated) / total line of code for the

previous iteration.

PQ3.3: Is the architecture and the code

(including the unit tests) as simple as possible?

PM3.3.1: (Number of LOC of the current release -

total LOC) / Total LOC

PQ3.4: Does the system created by setting of the

metaphors between the client and programmers?

PM3.4.1: Number of meetings between

development team and the client?

PQ3.5: Do all team members are owners of the

code (can make changes on the code)?

PM3.5.1Number of team members who made

changes in the code.

Productivity questions and metrics: A question, Q2.1, was identified to monitor

the staff productivity using one metric, M2.1.1, as shown in Table 5.11.

Table 5.11

 Productivity Questions and Metrics

G2: To analyze the productivity tracking for the purpose of monitoring with respect to the

value of staff productivity from the viewpoints of the GOMM members

Questions Metrics

Q2.1: What is the value of the

productivity of the project staff?

M2.1.1: Number of KLOC for staff in month.

Completeness questions and metrics. Five questions were defined to monitor the

process completeness. These questions are QQ1.1, QQ1.2, QQ1.3, QQ1.4 and

QQ1.5. Question QQ1.1 related to the requirement completeness that can be

measured by performing six metrics QM1.1.1, QM1.1.2, QM1.1.3, QM1.1.4,

QM1.1.5 and QM1.1.6. Question QQ1.2 related to the design completeness that can

be measured by performing seven metrics QM1.2.1, QM1.2.2, QM1.2.3, QM1.2.4,

QM1.2.5, QM1.2.6 and QM1.2.7. Question QQ1.3 related to the code completeness

162

that can be measured by performing eight metrics QM1.3.1, QM1.3.2, QM1.3.3,

QM1.3.4, QM1.3.5, QM1.3.6, QM1.3.7 and QM1.3.8. Question QQ1.4 related to the

testing completeness that can be measured by performing ten metrics QM1.4.1,

QM1.4.2, QM1.4.3, QM1.4.4, QM1.4.5, QM1.4.6, QM1.4.7, QM1.4.8, QM1.4.9 and

QM1.4.10. Question QQ1.5 related to the project management completeness that can

be measured by performing five metrics QM1.5.1, QM1.5.2, QM1.5.3, QM1.5.4 and

QM1.5.5 as shown in Table 5.12.

Table 5.12

Completeness Questions and Metrics

QG1: To analyze the process completeness for the purpose of monitoring with respect to the process

activities requirements, design, coding, testing and project management from the viewpoints of the

GOMM members through questionnaire

Questions Metrics

QQ1.1: What is the

degree of requirement

completeness?

Q.M1.1.1: Customers or P.O was available on-site for face-to-face

discussions during the requirement elicitation

Q.M1.1.2: The scope of project was identified at the beginning of a project

to create initial prioritized product backlog items

Q.M1.1.3:The requirements were validated by customers in review meetings

by using prototype/release

Q.M1.1.4: Requirements were prioritized and can be reprioritized by

customers throughout the development

Q.M1.1.5: The development team was enabled to re-estimate the time and

velocity of user stories

Q.M1.1.6:The requirements were written on cards in a short statement

QQ1.2: What is the

degree of design

completeness?

Q.M1.2.1:Model storming was performed (architecture, interface, data

structure and algorithm)

Q.M1.2.2: The architecture designs were produced

Q.M1.2.3: The interface designs were produced

Q.M1.2.4: The data structure was produced

Q.M1.2.5:The algorithms were produced

Q.M1.2.6:Iteration modeling was performed at the beginning of each

iteration

Q.M1.2.7:The designs were documented

163

QQ1.3: What is the

degree of coding

completeness?

Q.M1.3.1: Reuse of software components was encouraged

Q.M1.3.2: Detailed explanations of the functions and variables were

included in the code

Q.M1.3.3:The code was produced and integrated to system baseline

iteratively and incrementally

Q.M1.3.4: Web application was delivered frequently with increments of

features

Q.M1.3.5:Customer involved with the team for giving immediate feedbacks

Q.M1.3.6:The features with high priority were delivered first

Q.M1.3.7: Web application was deployed gradually in real environment

Q.M1.3.8: The deliverable documentation was produced late

QQ1.4: What is the

degree of testing

completeness?

Q.M1.4.1: Tests were automated

Q.M1.4.2: Tests were performed continuously throughout the development

Q.M1.4.3: Frequent integration tests were performed

Q.M1.4.4: Unit tests were performed to ensure that all requirements were

fulfilled

Q.M1.4.5: User interfaces were tested

Q.M1.4.6: Database regression testing was performed

Q.M1.4.7: Customer (P.O) wrote the user acceptance tests according to

stories/features

Q.M1.4.8: Acceptance tests were used to validate and verify user’s

requirements

Q.M1.4.9: Results of the tests were documented

Q.M1.4.10: Results from the automated tests were compared to the manual

tests

QQ1.5: What is the

degree of project

management

completeness?

Q.M1.5.1: The project was started with a clear scope, goals and objectives

Q.M1.5.2: Planning for the project was performed collaboratively with team

members

Q.M1.5.3: The current progress of iteration was revealed to everyone on

iteration burn down chart

Q.M1.5.4: Customer and end-user involvement were monitored in project

activity

Q.M1.5.5: The project plan was documented

Consistency question and metrics. The consistency is one of the effectiveness sub

factors that need to be monitored and measured for the whole process activities. It is

defined as applying the Agile standard and principles during the development

164

process to ensure the agility of the process. Consequently, as mentioned in Chapter

Two, applying the Agile principles required to follow the important Agile

development and management practices. Therefore, the consistency factor

concentrates on asking about the Agile development and measurement practices.

Table 5.13 describes the questions and metrics of process consistency. Five

questions were defined to monitor the process consistency. These questions are

QQ2.1, QQ2.2, QQ2.3, QQ2.4 and QQ2.5. Question QQ2.1 related to the

requirement consistency that can be measured by performing two metrics QM2.1.1

and QM2.1.2. Question QQ2.2 related to the design consistency that can be

measured by performing four metrics QM2.2.1, QM2.2.2, QM2.2.3 and QM2.2.4.

Question QQ2.3 related to the code consistency that can be measured by performing

ten metrics QM2.3.1, QM2.3.2, QM2.3.3, QM2.3.4, QM2.3.5, QM2.3.6, QM2.3.7,

QM2.3.8, QM2.3.9, QM2.3.10. Question QQ2.4 related to the testing consistency

that can be measured by performing six metrics QM2.4.1, QM2.4.2, QM2.4.3,

QM2.4.4, QM2.4.5 and QM2.4.6. Question QQ2.5 related to the project

management consistency that can be measured by performing seven metrics

QM2.5.1, QM2.5.2, QM2.5.3, QM2.5.4, QM2.5.5, QM2.5.6 and QM2.5.7 as shown

in Table 5.13.

165

Table 5.13

Consistency Questions and Metrics

QG2: To analyze the process consistency for the purpose of monitoring with respect to the

process activities requirements, design, coding, testing and project management from the

viewpoints of the GOMM members through questionnaire.

Questions Metrics

QQ2.1: What is the

degree of requirement

consistent?

Q.M2.1.1: Appropriate procedure is used to handle frequently

changing requirements

Q.M2.1.2: The requirements were documented by following a

particular standard

QQ2.2: What is the

degree of design

consistency?

Q.M2.2.1: Appropriate procedure was used to handle frequently

changing designs

Q.M2.2.2: The design was documented by following a particular

standard

Q.M2.2.3: Web application designs were refactored frequently

Q.M2.2.4: Metaphor was used for determining the architecture of

the system

QQ2.3: What is the

degree of coding

consistency?

Q.M2.3.1: Appropriate procedure was used to ensure that the code

was developed based on the requirements and design

Q.M2.3.2: Appropriate procedure was used to handle frequently

changing code

Q.M2.3.3: Appropriate procedure was used to deliver the Web

application releases to customers

Q.M2.3.4: Appropriate code integration strategy was followed

Q.M2.3.5: Appropriate coding/ interface/ database standards were

followed

Q.M2.3.6: Team members had authority to make changes in any

part of the code

Q.M2.3.7: Pair programming was performed

Q.M2.3.8: Failing unit tests were developed before the code was

written (TDD)

Q.M2.3.9: Rigorous code and database refactoring were

implemented

Q.M2.3.10: Code integration strategy was established and revised

QQ2.4: What is the

degree of testing

consistency?

Q.M2.4.1: The testing results were documented by following a

particular standard

Q.M2.4.2: Appropriate procedure was followed for implementing

automated tests

Q.M2.4.3: Appropriate procedure was followed for implementing

integration tests

Q.M2.4.4: Appropriate procedure was followed for implementing

166

interface tests

Q.M2.4.5: Appropriate procedure was followed for implementing

user acceptance tests

Q.M2.4.6: Appropriate procedure was followed for implementing

database regression tests

QQ2.5: What is the

degree of project

management

consistency?

Q.M 2.5.1: Appropriate procedure was used to plan the project

(estimation and work breakdown)

Q.M 2.5.2: The project plan was documented by following a

particular standard

Q.M 2.5.3: Release meetings were conducted at the beginning of

the project and each release to create release plan

Q.M 2.5.4: Iteration meetings were conducted at the beginning of

each iteration to plan the iteration

Q.M 2.5.5: Daily stand-up meetings were conducted for daily plan

Q.M 2.5.6: Continuous review meetings were conducted at the end

of each iteration to demonstrate the latest version of Web

application

Q.M 2.5.7: Retrospectives were conducted at the end of each

iteration

Accuracy questions and metrics. Process accuracy is one of the effectiveness sub

factor that need to be measured during the whole development activities (Baharom,

2008). Five questions were defined to monitor the process accuracy. These questions

are QQ3.1, QQ3.2, QQ3.3, QQ3.4 and QQ3.5. Question QQ3.1 related to the

requirement accuracy that can be measured by performing three metrics QM3.1.1,

QM3.1.2 and QM3.1.3. Question QQ3.2 related to the design accuracy that can be

measured by performing three metrics QM3.2.1, QM3.2.2 and QM3.2.3. Question

QQ3.3 related to the code accuracy that can be measured by performing two metrics

QM3.3.1 and QM3.3.2. Question QQ3.4 related to the testing accuracy that can be

measured by performing two metrics QM3.4.1 and QM3.4.2. Question QQ3.5

167

related to the project management accuracy that can be measured by performing the

QM3.5.1 metric as shown in Table 5.14.

Table 5.14

 Accuracy Questions and Metrics

QG3: To analyze the process accuracy for the purpose of monitoring with respect to the process

activities requirements, design, coding, testing and project management from the viewpoints of

the GOMM members through a questionnaire

Questions Metrics

QQ3.1: What is the degree

of requirement accuracy?

Q.M3.1.1: Requirements were gathered using customer card

Q.M3.1.2: Appropriate tools were used to facilitate requirements

gathering activities

Q.M3.1.3: A particular notation was used to represent the

requirements

QQ3.2: What is the degree

of design accuracy?
Q.M3.2.1: Web application was designed by following Web

design method steps

Q.M3.2.2: Appropriate tools were used to facilitate design

activities

Q.M3.2.3: A particular notation was used to represent the design

QQ3.3: What is the degree

of coding accuracy?

Q.M3.3.1: Appropriate tools were used for bug tracking

Q.M3.3.2: Appropriate programming language was used

QQ3.4: What is the degree

of testing accuracy?

Q.M3.4.1: Appropriate tools were used to facilitate testing

activities

Q.M3.4.2: Appropriate techniques or methods were followed for

the implemented tests

QQ3.5: What is the degree

of project management

accuracy?

Q.M3.5.1: Appropriate tools were used to facilitate the planning

activities

Tailorability questions and metrics. One question was defined to monitor the

tailorability process, QQ4.1 that can be measured by performing three metrics

QM4.1.1, QM4.1.2 and QM4.1.3. Table 5.15 describes the questions and metrics

that are required to measure the tailorability process.

168

Table 5.15

Tailorability Questions and Metrics

QG4: To analyze the process tailorabilty for the purpose of monitoring with respect to the

tailorability practices from the viewpoints of the GOMM members through questionnaire

Questions Metrics

QQ4.1: What is the

degree of process

tailorability?

Q.M4.1.1: Is the development of the Web application performed

using the integration of the XP and Scrum?

Q.M4.1.2: Is the using of the Web design method and measurement

process performed without affecting the process performance?

Q.M4.1.3: Is the integration of the Scrum, XP and GOMM easy to be

performed in the organization?

Flexibility questions and metrics. One question was defined to monitor the process

flexibility QQ5.1 that can be measured by performing two metrics QM5.1.1 and

QM5.1.2. Table 5.16 describes the questions and metrics that are required to

measure the process flexibility.

Table 5.16

 Flexibility Questions and Metrics

QG5: To analyse the flexibility process for the purpose of monitoring with respect to the

flexibility practices from the viewpoints of the GOMM members through a questionnaire

Questions Metrics

QQ5.1: What is the degree of process

flexibility?

Q.M5.1.1: Is any team member can vary the process

performance for a specific need?

Q.M5.1.2: Is this variation performed without

requiring affecting the process itself?

Compatibility question and metrics. This factor is used when the organization

used multiple processes to show the extent to which the interface and interaction

between these processes is easy and clear. One question was defined to monitor the

process compatibility QQ6.1 that can be measured by performing two metrics

QM6.1.1and QM6.1. Table 5.17 describes the questions and metrics that are required

to measure the process compatibility.

169

Table 5.17

Compatibility Goal, Questions and Metrics

QG6: To analyze the process compatibility for the purpose of monitoring with respect to

compatibility practices from the viewpoint of GOMM member through a questionnaire

Questions Metrics

QQ6.1: what is

the degree of

process

compatibility?

Q.M6.1.1: Is the development of Web application performed by interacting with

measurement and development process.

Q.M6.1.2: Is this interact done easily and clear

Accessibility question and metrics: This factor is used to assess the ease of finding

information about the product by the users. One question was defined to monitor the

process accessibility QQ7.1 that can be measured by performing seven metrics

QM7.1.1, QM7.1.2, QM7.1.3, QM7.1.4, QM7.1.5, QM7.1.6 and QM7.1.7. Table

5.18 describes the questions and metrics that are required to measure the process

accessibility.

Table 5.18

 Accessibility Questions and Metrics

QG7: To analyze the process accessibility for the purpose of monitoring with respect to the

accessibility practices from the viewpoints of the GOMM members through a questionnaire

Questions Metrics

QQ7.1: What is the

degree of process

accessibility?

Q.M7.1.1: Is there a strategic established for training in the

organization?

Q.M7.1.2: Is determining of the training is the responsibility of the

organization?

Q.M7.1.3: Is there any training and tactical plan in the organization?

Q.M7.1.4: Is there a record of the training organization?

Q.M7.1.5: Is there any way to assess the training organization?

Q.M7.1.6: Is the process practitioner able to access the training

process electronically, not by hard copy?

Q.M7.1.7: Is the process described graphically not textually?

170

Applicability Question and Metrics. Applicability describes the required activities

to perform a piece of work. One question was defined to monitor the process

applicability QQ8.1 that can be measured by performing four metrics QM8.1.1,

QM8.1.2, QM8.1.3 and QM8.1.4. Table 5.19 describes the questions and metrics

that are required to measure the process applicability.

Table 5.19

Applicability Question and Metrics

QG8: To analyze the process applicability for the purpose of monitoring with respect to the

applicability practices from the viewpoints of the GOMM members through a questionnaire

Questions Metrics

QQ8.1: What is the

degree of process

applicability?

Q.M8.1.1: Is there a defined process for each project from start up

until the end?

Q.M8.1.2: Is there a measurement mechanism used to estimate and

plan the project activities?

Q.M8.1.3: Is the project managed based on a specific plan?

Q.M8.1.4: Is there a contribute product, measures, and experience for

the future project

Changeability questions and metrics. This factor measures the extent of the

process meeting the requirement change. One question was defined to monitor the

process changeability QQ9.1 that can be measured by performing four metrics

QM9.1.1, QM9.1.2, QM9.1.3 and QM9.1.4. Table 5.20 describes the questions and

metrics that are required to measure the process changeability.

171

Table 5.20

 Changeability Questions and Metrics

QG9: To analyze the process changeability for the purpose of monitoring with respect to the

changeability practices from the viewpoints of the GOMM members through a questionnaire

Questions Metrics

QQ9.1: What is the

degree of process

changeability?

Q.M9.1.1: is there a way to determine the change requirement sources and

categories?

Q.M9.1.2: Is there a strategy established for change requirement?

Q.M9.1.3: Is there a way to evaluate, categorize, and prioritize these

changes?

Q.M9.1.4: Is the team going to develop and implement change

management plans?

Supportability questions and metrics. This factor measures the extent of the

easiness of support process in specific contexts. One question was defined to monitor

the process supportability QQ10.1 that can be measured by performing four metrics

QM10.1.1, QM10.1.2, QM10.1.3 and QM10.1.4. Table 5.21 describes the questions

and metrics that are required to measure the process supportability.

Table 5.21

 Supportability Questions and Metrics

QG10: To analyze the process supportability for the purpose of monitoring with respect to the

supportability practices from the viewpoints of the GOMM members through questionnaire

Questions Metrics

QQ10.1: What is the

degree of process

supportability?

Q.M10.1.1: Is there an agreement established and maintained

between the supplier and the organization for supporting any item?

Q.M10.1.2: Is the selection of the suppliers based on their ability of

satisfying a specific requirement?

Q.M10.1.3: Is the acquired product from the supplier evaluated from

the organization before accepting it?

Q.M10.1.4: Is the organization ensures that the agreement satisfied

before accepting the acquired product?

172

Cost questions and metrics. Three questions were derived related to the monitoring

of the cost Q3.1, Q3.2 and Q3.3. Each question has one metric M3.1.1, M3.2.1 and

M3.3.1 respectively. The cost questions and metrics are shown in Table 5.22.

Table 5.22

 Cost Questions and Metrics

G3: To analyze the development process cost for the purpose of monitoring and controlling with

respect to the cost of fix, cost of activity and project budget from the viewpoints of the GOMM

members

Questions Metrics

Q3.1: What is the cost of fix post to release

problem in a month?

M3.1.1: Dollar cost related to fix post to release

problems.

Q3.2: What is the current cost by activity

for each Web application product?

M3.2.1: Number of dollars spent to date for activity

i / Number of dollars estimated for activity.

Q3.3: What is the current budget status of

the project?

M3.3.1Number of total dollars spent to date /

Number of total dollars estimated.

Quality questions and metrics. Seven questions were defined for monitoring the

quality of the product Q4.1, Q4.2, Q4.3, Q4.4, Q4.5, Q4.6 and Q4.7. Question Q4.1

related to the distribution of the failure that can be measured by metric M4.1.1.

Question Q4.2 related to the defect density that can be measured by metric M4.2.1.

Question Q4.3 related to the defect detection process that can be measured by

performing metric M4.3.1. Question Q4.4 related to the product reliability that can

be measured by performing one metrics M4.4.1. Question Q4.5 related to the fault

locating efforts and fixing fault effort that can be measured by performing two

metrics M4.5.1 and M4.5.2. Question 4.6 related to the product usability that can be

measured by performing metric M4.6.1, M4.6.2 and M4.6.3. Question 4.7 related to

173

the maintainability that can be measured by performing three metrics M4.7.1,

M4.7.2, and M4.7.3. Quality questions and metrics are shown in Table 5.23.

Table 5.23

 Quality Questions and Metrics

G4:To analyze the quality aspects for the purpose of monitoring with respect to the security, product

reliability, usability and maintainability from the viewpoints of the GOMM members

Questions Metrics

Q4.1: What is the distribution of

failure after delivery?

M4.1.1: Severity classification for each detected failure

(fatal, major, minor and other).

Q4.2: What is the defect density? M4.2.1: Number of Do (iteration) i defects / metric for size

in iteration i(LOC).

Q4.3: What is the quality of the

defect detection process?

M4.3.1: Number of pre-release defects in Do (iteration) /

Number of pre-release + post-release defects.

Q4.4: What is the product reliability? M4.4.1: Number of defects / execution time.

Q4.5: What is the total effort in hours

spent in locating the fault vs. total

effort spent for fixing the fault?

M4.5.1: Effort in hours for locating each fault.

M4.5.2: Efforts in hours for fixing the fault.

Q4.6: How to monitor the usability

of Web application?

M4.6.1 No. of page links/ total number of internal links

(navigability)

M4.6.2 Response time

M4.6.3 Memory space

Q4.7 How to monitor Web

application's maintainability?

M4.7.1 Dynamic pages/ total no. of pages (changeability)

should be low

M4.7.2 Dynamic testing LOC/ total LOC testability should

be low

M4.7.3 1/ no of direct links (stability) should be high

The questions and metrics defined in Table 5.23 are related to the security,

reliability, usability and maintainability as identified by Wu and Offutt (2002), and

Lilburne et al., (2004) as the most important Web application quality factors.

Time questions and metrics. Three questions were defined for monitoring the time

Q5.1 and Q5.2. Question Q5.1 related to the reuse artifacts percentage that can be

measured by performing two metrics M5.1.1 and M5.1.2. Question 5.2 related to the

174

development time that can be measured by one metric M5.2.1. The monitoring time

questions and metrics are shown in Table 5.24.

Table 5.24

Time Questions and Metrics

G5: To analyze development life cycle time for the purpose of monitoring with respect to the

reuse artifacts, time for each iteration, project velocity from the viewpoints of the GOMM

members

Questions Metrics

Q5.1: What is the percentage of the

reuse artifacts?

M5.1.1: Number of SLOC of reusing code / Number of

SLOC completed to date.

M5.1.2: Number of reused Web pages / total Web

Pages number.

Q5.2: What is the development

time for each Web application

product?

M5.2.1: Elapsed time / estimated time.

Produce the monitoring plan. After defining the goals, questions and metrics for

the whole measurement mechanism, a measurement plan should be identified. This

plan clarifies the data collection procedures and instruments, then move to the data

collection step. The outputs of the first planning meeting for monitoring are MT,

goals, questions and metrics for the whole process, as well as the monitoring plan.

Prioritizing the goals, this sub activity will be performed in the Do (iteration)

meeting by the master and MT in order to specify which goal should the team

concentrate on the next iteration. The outputs of this action are the prioritized goals

for the next iteration.

After the planning phase the Do will start by taking the outputs of the planning

phase.

175

5.4.2 Do (iteration)

This phase will be performed based on the development activities identified in the

Extended Agile method. Some other activities related to the measurement

(monitoring) should also be performed. The aim of this phase is to perform and

execute all the Do (iteration) backlog items that were specified by the Do iteration

planning meeting. In this phase, the Web application product is developed through

many Do (iterations). The number of iterations ranges from 3-8 iterations. The

development activities are performed by the DT during the Do phase. However, the

MT should create the metric base for saving and retrieving metrics. The Do phase

activities are shown in Table 5.25.

Table 5.25

Do phase

Phase

name
Activities Method Practice Tools

Team

member(s)

involved

Outcomes

Do

(iteration)

Analysis Extended

Agile

method.

- Rational

rose

DT Use case

diagram,

context

diagram, ER

diagram and

monitoring data

Design Extended

Agile

method.

Simple design Argo UWE 2

programmers

Interface design,

navigation

design, content

design and

monitoring data

Code Extended

Agile

method.

Coding

standards,

pair

programming,

refactoring

and collective

ownership

Code base 2

programmers

Code, feedback

to the design

activity and

monitoring data

176

Test Extended

Agile

method.

TDD Casper JS Tester Testing code

and monitoring

data

Daily

reviewing

Extended

Agile

method.

Daily meeting Burn down

chart and

task board

Master and

DT

Progress and

what to do next

day, and

monitoring data

Do

(iteration)

reviewing

Extended

Agile

method.

Do (iteration)

review

meeting,

continuous

integration,

small release

and metaphor

Task list,

physical or

electrical

task board.

Master, PO,

DT and MT

Increment and

refined backlog

item and the

monitoring data

Several activities involved in this phase are discussed as follows:

 Analysis: in this activity, list of risks, nonfunctional requirements, and reuse

items should be identified by the programmers and discussed with the DT. In

addition, the DT checks the product backlog items, feasibility (items are

feasible to be implemented based on the budget and schedule available for

the system development). The main outcomes of this activity are use cases

and ER diagrams that are necessary for executing the whole increment by

using specific tools such as rational rose.

 Design: in this activity, class and object diagrams that describe the GUI and

the entire design specification which are determined by the Web design

method must be also presented by the two programmers. In addition, the Web

pages, conceptual design of the whole Web application and the navigation

methods should be identified in this activity. Design activity must follow the

177

simple design practice. The suggested tool for this activity is the Argo UWE.

Two programmers were involved in this activity. The outcomes of this

activity are interface design, navigation design, content design and

monitoring data.

 Coding: This activity should follow coding standards, code ownership, pair

programming and continuous integration practices to ensure and confirm the

XP practices application during the development process. The coding process

is performed by two programmers who are using one monitor. One for

writing the code and the other for validating the code. The quality of the code

is assured by using TDD and refactoring practices. Suggestion tool for

coding activity is the code base to save the produced code. The outcomes of

the coding activity are the Web application itself, unit tests and feedback to

the design activity.

 Test: The code will be tested frequently. Any part of the code that has been

tested will be integrated into the system. This activity will be repeated until

the whole system is integrated. This step also ensures the use of continuous

integration practices, which is useful for reducing the implementation risks.

The testing activity emphasized on performing the TDD practice. Suggested

tools for performing the testing is Casper JS. One tester will be involved in

this activity to produce the tested code and monitor the data.

178

 Daily reviewing: this activity will be performed by deploying practice

known as daily meeting organized by the master. This meeting is conducted

to keep track of the progress. Each DT member summarizes “what we have

done today, what we will do tomorrow and what impediments he faces”. The

duration of this meeting is fifteen minutes a day. The daily meeting will be

conducted by the DT and master. The DT may find it useful to maintain the

current Do (iteration) tasks list using the tools that are likely used in this

meeting such as burn down chart and task board.

 Do (iteration) reviewing: this activity will be performed by conducting a

particular practice called Do (iteration) review meeting. This meeting is held

by the master, PO, DT and MT on the last day of the Do (iteration) to assess

the iteration and decide on the following activity. The PO decides on the

product backlog item which is done item by negotiating with the DT who

will ensure the metaphor practice. In the event that the PO announces any

item as not done, this item will be returned to the product backlog and

prioritized by the PO as a candidate for the future Do (iteration). The Master

helps the PO and DT to change over their feedbacks into product backlog

items. Based on that, this meeting may refine the product backlog list items

by including new items. The outcomes of this meeting are the increment by

applying small release duration time (2 weeks) and continuous integration

practices that helped the team to add the increment to the system in the next

phase. This meeting also provides a time for the GOMM team members to

179

collect data and monitor the progress. A tasks list described by the task board

(electrical or physical) is helpful to be used in order to determine whether the

status of the iteration backlog items is completed or not.

The outcomes of this phase are the system increment, refined backlog items and

the monitoring data.

5.4.3 Check

This phase depends on the monitoring that includes three activities: collect, store,

and analyze the metrics as shown in Table 5.26.

Table 5.26

Check Phase

Phase

name
Activities Methods Practices Tools

Team

involved
Outcomes

Check Collect the

Metrics

GOMM Self-

prepared

data

Questionnaire GOMM

member 1

Collected

questionnaires

Store the

metrics

GOMM - Metric base GOMM

member 1

Updated

metric base

Data

analysis

GOMM - SPSS GOMM

member 2

Results

Each activity of the check phase is discussed in details as follows:

Collect the metrics. The data collection for monitoring will be performed for all the

process activities. In this activity, the way of collecting metrics during the

development process according to the measurement plan ought to be elucidated. Two

180

types of data used in the methodology are quantitative and qualitative. Quantitative

data used metrics that measure the process activities, product cost, product quality,

product time, process productivity and practices. Qualitative data measure the

process quality factors. For the quantitative metrics, Table 5.27 describes the data

owner of each metric and in which stage the data will be collected. In addition, the

Table shows each metric (process activities, cost, quality, time, productivity and

practices) and in which process activity was used.

 181

Table 5.27

 Development Process and Quantitative Metrics

Process phase
Process

Activity

Metrics

Process activities Cost Quality Time Productivity Practice

Plan Identifying the

product backlog

items

Product backlog items

number, estimated

iteration number and

estimated LOC

 Prioritize the

items

 Split the items

 Estimate the

items

M1.1.1.1: Number of

product backlog items

completed to date vs. total

number of product

backlog planned.

Estimated cost

M3.3.1: Number of

total dollars spent to

date vs. number of

total dollars

estimated.

 Estimated time PM1.1.1: Number of

Do (iteration) planning

meetings per one

application

Do Analysis

Design M1.2.1.3: Total Number

of internal links vs.

number of Web pages

 M4.6.1: No. of

page links/total

number of

internal links

(navigability)

M3.6.3 Memory

space

M3.6.2 Response

time

M4.7.1:dynamic

pages/total no. of

pages

(changeability)

should be low

M4.7.3:

M5.1.2: Number

of reused Web

pages vs. total

Web Pages

number.

 PM3.3.1: Number of

LOC of the current

release - total LOC vs.

Total LOC

182

1/number of

direct links

(stability) should

be high

Code M1.2.1.1: Number of LOC

completed to date vs.

Total Number of planned

SLOC.

M1.2.1.2: Number of Web

pages to date vs. total

number of Web planned

page.

 M4.5.1: Effort in

hours for

locating each

fault.

M4.5.2: Efforts

in hours for

fixing the fault.

M5.1.1: Number

SLOC of reusing

code vs. number

of SLOC

completed to date.

M2.1.1:

Number of

KLOC vs.

staff in month.

PM2.4.1: Adherence

of coding standard

(High, Low).

PM3.5.1:Number of

team members who

made changes in the

code.

Test M1.3.1.1: Number of test

completed to date vs. total

number of planned test.

M1.3.1.2 number of

testing line of code / total

number lines of code

 PM2.1.1: Number of

lines of duplicated

code removed vs. total

line of code per

iteration.

PM2.1.2: Number of

tests completed to date

vs. Total Number of

tests planned.
Daily reviewing M3.2.1: Number of

dollars spent to date

for activity i vs.

number of dollars

estimated for

activity.

 PM1.2.1: Number of

daily meetings per one

application?

183

Iteration reviewing M3.1.1: Dollar cost

related to fix post to

release problems.

M4.2.1: Number

of iteration i

defects vs.

metric for size in

iteration I

(LOC).

M4.3.1: Number

of pre-release

defects of an

iteration vs.

Number of pre-

release + post-

release defects.

M5.2.1: Elapsed

time vs. estimated

time.

 PM1.3.1: Number of

review meetings done

per one application?

PM3.4.1: Number of

meetings between

development team and

the client?

Act Save the increment

to the repository

 PM3.1.1: Number of

LOC of the first

release - the LOC of

the next release vs.

total NLOC

Integrate with the

system

 PM 3.2.1: Total

number of line of code

added, removed and

updated) vs. total line

of code for the

previous iteration.

Final release M4.4.1: Number

of defects vs.

execution time.

184

For the process factors Data, Table 5.28 describes the factor data, where to collect

and the data owner.

Table 5.28

Data Collection for the Process Factors

Factor Where to collect Data owner

Requirement completeness Plan phase PO

Design completeness Design activity Programmer

Coding completeness Coding activity Programmer

Testing completeness Testing activity Tester

Project management completeness Review meeting Master

Requirement consistency Plan phase PO

Design consistency Design activity Programmer

Coding consistency Coding activity Programmer

Testing consistency Testing activity Tester

Project management consistency Review meeting Master

Requirement accuracy Plan phase PO

Design accuracy Design activity Programmer

Coding accuracy Coding activity Programmer

Testing accuracy Testing activity Tester

Project management accuracy Review meeting Master

Tailorability Review meeting Master

Flexibility Review meeting Master

Compatibility Review meeting Master

Accessibility Review meeting Master

Applicability Plan phase PO

Changeability Plan phase PO

Supportability Plan phase PO

Store the metrics. After the data collection activity ends, the data of the metrics

should be stored in the (metric base).

185

Data analysis: after completing the metrics collection, the data analysis will be

begun. The analysis activity will be performed by one MT member using the SPSS

tool. The analysis results will be displayed in a simple report. This report contains

feedback for the management in decision making to improve the work if there is an

urgent situation in earlier times. The report will be updated consistently and

introduced in the daily meeting.

5.4.4 Act

The Act phase depends on the development and monitoring. Three activities are

included in the development: save the increment to the repository, integrate with the

system and final release. For the monitoring, two activities are included: (1) making

some improvements in the process, practices and progress based on the analysis

results obtained from the Check phase and (2) preparing the final report. The

activities for the development and measurement of the Act phase are shown in Table

5.29.

Table 5.29

 Act Phase

Phase

name

Development

Activities

Monitoring

activities

Practices Tools Team

member

Outcomes

Act Save the

increment to

the repository

- - Requirement

repository

Programmer Updated

requirement

repository

Integrate with

the system

Make some

improvements in

the process,

practices and

progress.

Continuous

integration

System

integration

DT, MT New system

version and

recommendations

to the next DO

Final release Prepare a

feedback report

- Burndown

chart, task

list

Master, PO,

DT and MT

Final product and

feedback report

186

 Table 5.29 shows the practices, tools and team members involved in the Act phase.

The activities of this phase are described as follows:

Save increment to the repository: Once produced from the development, the

increment should be saved in the requirement repository by the programmer.

Integrate with the system: This activity will be performed based on the

development. However, there are some monitoring activities that should be

performed during this activity. For the development, once the increment is saved to

the requirement repository, it should be integrated into the system to make a new

version of the product by performing continuous integration practice. The PO is in

charge of announcing that all product backlog items have been fulfilled by making

an agreement with the DT. This agreement is determined in the last Do (iteration)

review meeting. In addition, the agreement represents a declaration that no more

items should be added to the product backlog by using the burn down chart and the

task list tools. The endorsement of whether the system is completed successfully

depends on the PO satisfaction. The system is now ready to be launched by

performing the integration sub activities: completing the requirements, saving

(requirements repository), integrating the system, testing, and documenting.

For the monitoring activity, the MT should provide some improvements for the next

Do iteration that related to the process, practices and progress. The main outcomes of

this phase are new version of the system and recommendation to the next Do phase.

Furthermore, if the previous Do was the last Do (iteration), then the final product

187

will be submitted to the customer and final feedback report will be presented to the

management. The report describes the monitoring process, results and feedback from

planning until receiving the final product. For further discussion about the practices

and tools please refer to Appendix G and appendix H respectively.

5.5 Summary

This chapter gives a comprehensive overview on how to build monitoring and Agile

based Web application development methodology for small software firms. This

methodology consists of a process (Plan, Do, Check and Act), set of methods

(combined XP and Scrum method, Web design method and GOMM), practices

(development, Management and measurement) and team structure (roles and

responsibilities). The process of this methodology is to ensure the quality of the Web

application development using the Agile development methods (Scrum combined

with XP) and monitor the measurement mechanism using the GOMM method. The

measurement mechanism monitors the quality of both process and product.

188

CHAPTER SIX

METHODOLOGY EVALUATION

6.1 Introduction

This chapter explains the evaluation process of the proposed MOGWD. The

evaluation was carried out through verification and validation. Verification was

performed using expert review method based on Delphi technique and the validation

was performed using case study and yard stick validation. The discussion of this

chapter begins with verification, and ends with validation of the proposed

methodology.

6.2 Verification based on the experts review

The aim of the verification process is to ensure that the main components in the

proposed methodology, such as activities, methods, practices, tools and team

structure are comprehensive, understandable and feasible to be used by SSF. The

verification process was carried out through expert review method based on the

Delphi technique. This technique was performed using sequential rounds, in which,

each round has several activities. Three rounds were required to complete the

verification process. The following sections explain the results of each round.

6.2.1 Results of Round one

After identifying the experts, and getting their acceptance to participate the

verification, the first round of the verification started by sending a copy of the

questionnaire, proposed methodology and expert cover letter via email and interview

189

to the experts. The expert cover letter is shown in Appendix C. This round gave the

experts an opportunity to study the proposed methodology carefully and fill up the

questionnaire. Two types of questionnaires were used in this round: questionnaire for

the knowledge experts who focus on the theoretical part (Appendix D) and

questionnaire for a domain expert those who focus on the technical part (Appendix

E). However, there are some questions that can be answered by both knowledge and

domain experts. The experts took one month to send their feedback. The feedback

was analyzed once received.

The following sections illustrate the experts’ answers and the suggestions that are

related to the verification criteria discussed in Chapter Three.

6.2.1.1 Answers and suggestions related comprehensive criterion

This part illustrates the expert’s answers and suggestions that related to the

comprehensiveness of the methodology. Table 6.1 describes the expert’s answers

and suggestions.

Table 6.1

 Experts Answers related to comprehensiveness

Component Percentage Experts involved Suggestion

Activities

Development 100%
Knowledge and

domain
-

Measurement 100%
Knowledge and

domain
-

Methods

GOMM (metrics) 100%
Knowledge and

domain
-

Web design

method
- - -

Practices 100 %
Knowledge and

domain
-

Tools - - -

190

Team structure 100%
Knowledge and

domain
-

 Table 6.1 shows that all the experts indicated that all the MOGWD methodology

components are comprehensive. The development and the measurement activities are

comprehensive for Web application development in SSF. Regarding the Web design

method, the comprehensiveness criterion was excluded as this method concentrates

only on the design activity. In addition, experts were not asked about the tools

comprehensiveness as the tools are not meant to be a contribution in this study, and it

should not cover all the MOGWD methodology phases. Based on the above Table,

it's clearly shown that MOGWD methodology provides a set of comprehensive

components such as activities, methods, practices, tools and team structure.

Therefore, the achievement of this criterion ensures that the methodology

components are well-interactive with each other to produce a high quality Web

application.

6.2.1.2 Answers and suggestions related understandability criterion

This part illustrates the expert’s answers and suggestions which are related to the

understandability of the methodology. Based on this criterion, the methodology

components should be correct, clear and well organized. However, the practices have

been excluded from this criterion as the practices used in this study are adopted from

previous studies. Table 6.2 describes the expert’s answers and suggestions.

191

Table 6.2

 Experts Answers related to understandability

Component Correct Clear
Well-

organized

Experts

involved
Suggestion

Activities

Development 100% 100% 100%
Knowledge

and domain
- Add training

session

Measurement 100% 100% 100%
Knowledge

and domain

Methods

GOMM

(metrics)
98% 96.8% 100%

Knowledge

and domain
- Update the metrics

Web design

method
87.5% 87.5% 100%

Knowledge

and domain

- Discuss the steps

of the Web design

method

Practices - - - - -

Tools - 87.5% -
Knowledge

and domain

- Include a table to

clarify consist of

tool name, purpose

and place of using

each tool

Team structure 87.5% 87.5% 100%
Knowledge

and domain

- Define the role and

responsibilities of

each team member

- Add another team

member to perform

the measurement

process

 Table 6.2 shows that the majority of the experts indicated that all the MOGWD

methodology components are correct, clear and well-organized. Regarding to the

development and measurement activities, all of the experts indicated that this

component is correct, clear and well-organized. However, one of the knowledge

experts suggested adding a training session to help the team to understand the

process activities. Nevertheless, a majority of the experts (87.5 %) indicated that the

Web design method is correct and clear. Furthermore, they claimed that it needs to

be discussed further in details.

192

 Whereas, the majority of the experts (98 %) found the metrics are used in the

GOMM correct. However, two out of eight experts said that four metrics (M4.6.2),

(M 4.6.3), (M5.1.1) and (PM2.1.1) are not correct which means these metrics need to

be modified or updated. Furthermore, 96.8% of the metrics were found clear.

However, two out of eight experts said that six metrics (M4.6.2), (M4.6.3), (M2.1.1),

(PM2.1.1), (PM2.3.1), (Q.M6.1.1) and (Q.M8.1.4) are not clear which means these

metrics need to be modified or updated.

For the tools part, experts indicated that the tools are 87.5 % clear. However, they

suggested creating a table to clarify the tool name, purpose and where to use each

tool.

 Finally, the experts agreed that team structure 87.5 % correct and 87.5% clear. In

addition, all the experts were asked if one GOMM member is enough to perform the

measurement process, 50% of them said it is not enough to use one team member to

perform the measurement process. Therefore the experts suggest clearly defining the

role and responsibility of each team member and adding another team member to the

monitoring team.

Based on the Table 6.2, it can be concluded that the MOGWD methodology is

understandable to the experts in terms of its clearness, correctness and its well-

organized components with some modifications. The achievement of this criterion

supports the suitability and usability of the MOGWD methodology for the team.

193

6.2.1.3 Answers and suggestions related feasibility criterion

This part illustrates the experts’ answers and suggestions that are related to the

feasibility of the methodology. Table 6.3 describes the expert’s answers and

suggestions.

Table 6.3

 Experts Answers related to feasibility

Component Percentage Experts involved Suggestion

Activities Development 100% Knowledge and

domain

-

Measurement 100% Knowledge and

domain

-

Methods GOMM (metrics) 97.4% Knowledge and

domain

Update the

metrics

Web design

method

100% - -

Practices 100 % Knowledge and

domain

-

Tools 100% - -

Team structure 100% Knowledge and

domain

-

 Table 6.3 shows that all the experts indicated that all of the MOGWD methodology

components are feasible. However, 97.4% of the metrics were found feasible to be

used. However, three out of eight experts said that (M4.6.2), (M4.6.3) are not

feasible to be used for SSF, while two experts said that (M2.1.1), (PM2.1.1) and

(PM3.2.1) are not feasible which mean these metrics need to be modified or updated.

Based on the results of Table 6.3, it can be concluded that methodology is feasible to

be used for the SSF. Therefore, the achievement of this criterion means that the

MOGWD methodology meets the SSF characteristics in the lack of resources such as

194

employee number, budget, and experience. Moreover, it can deal with Web

application high changing requirements.

6.2.1.4 Answers and suggestions related to the general overview part.

In this part, the experts were asked some questions related to the general overview of

the whole methodology. The questions were asked to determine the correctness and

the clearness of the theory used to build the methodology. The questions were

answered by knowledge experts. Expert answers related to the general overview part.

The results of this part are shown in Table 6.4.

Table 6.4

 Experts Answers related to the general overview Part.

Questions Percentage

The theory used for building the methodology correct 100%

The theory used for building the methodology clear 100%

Table 6.4 shows clearly that all of knowledge experts agreed that the theory which

has been used for building the proposed methodology is correct and clear. However,

the experts provided some suggestions to improve the MOGWD methodologies such

as:

- The MOGWD methodology creation process should be explained clearly.

195

- Because of the methodology have many metrics to be performed during the

process it may take longer time, some quantitative metric should be excluded

or prioritized.

6.2.2 Results of round two

In this round, data collection and analysis were completed. Results obtained from

round one used as input for round two. This round aimed to modify the proposed

methodology based on the required modifications that were suggested by the experts

in the first round. Table 6.5 summarizes the required modifications that were needed

to modify the proposed methodology.

Table 6.5

 Required Modifications

Component

name

Expert suggestions Required modifications

Process and

methods

Add simple training session before

performing the methodology

activities in order to make the

developers understand all the

components of the methodology

before they start using it.

Conduct training session for 3 to 7 days

before starting development and

measurement process.

Clarify the Web design step by

adding chart.

Chart added.

Make each team member prepare the

data that he owns on small sheet and

give to GOMM member in order to

reduce the time and efforts for

collecting monitoring program data.

Every team member should prepare the data

that he owns for the GOMM member.

Priorities the goal of measurement

based on the company aims or

demands. Furthermore, reduce from

the quantitative metric also to reduce

the time consuming.

Priorities the goal in the planning phase of

the measurement by development team and

customer.

Add, Exclude and modify some

metric in GOMM.
 Add metrics M4.4.2, M4.4.3 and

M4.4.4 for reliability.

 Exclude metrics M4.6.2 and M4.6.3

196

from the usability metrics because they

are not applicable.

 Delete the metric M1.3.1.2 because it’s

covered by the practice monitoring

metrics PM2.2.2 and update the metric

numbering conversely.

 Delete the metric PM2.2.1 because it’s

covered by the process monitoring

metrics M1.3.1.1 and update the metric

numbering conversely.

 Delete the question PQ2.1 and metric

related PM2.1.1 because the metric

covered by consistency factor metric

QM2.3.7 update the metric numbering

conversely.

 Update the metrics QM6.1.2 and

QM8.1.4 as the expert mentioned are

not clear.

Tools Add table for each tool, purpose and

the place of use.

Table is added.

Team

structure

Clearly define the role and

responsibility of each team member.

Table is added.

Clearly show in which activity each

member plays his role.

Add one team member to perform

the monitoring process

One team member is added.

General

Overview

Explain the creation phase clearly Explain about the methodology

construction in the research

methodology part

Table 6.5 illustrates the required modifications which have been done to improve the

proposed methodology. The next sections explain in details these modifications.

6.2.2.1 Process and Methods Modifications

The experts suggested a number of modifications related to the process and methods

parts such as:

197

 Adding training session to be conducted by the whole team members before

using the MOGWD methodology. The session intends to familiarize the team

members with methodology and clarifies their role during the process.

 Including a chart to clarify the Web design steps and structure. The chart

should show that steps are performed iteratively. However, it is important to

say that the steps should be performed during different phases of the process.

For example, the requirement analysis will be performed in Plan phase.

Conceptual design, navigational design and implementation design will be

performed in the design activity in the Do phase. Construction will be

performed in the Act phase. The chart is shown in Figure 5.3 in Chapter five.

 Adding two practices to the GOMM. The first practice is self-preparing data

which involves improving the process of monitoring by making each

development member prepares the data that he owns such as the tester is

responsible for prepare the testing LOC. While the second practice is

prioritizing the goals by helping the team to prioritize the monitoring goals

based on their importance and the company demands (see appendix G).

 Modifying some of the GOMM quantitative and qualitative metrics. For the

quantitative metrics, this action is done by adding some metrics related to the

reliability, deleting the inapplicable metrics, removing the duplicated metrics

and updating the unclear metrics. Table 6.6 shows the new list of quantitative

metrics. Additionally, the table also includes in which activity the metric will

198

be performed, the calculation of each metric, the indicator of each metric and

possible improvement. This table will be used in the validation stage.

For the qualitative metrics, the experts asked to update two metrics and the

results of updating the metrics as followed:

Q.M6.1.2: Is this interaction between the team and the process done easily

and clearly?

Q.M8.1.4: Is the contributed product, modules, code and measures saved to

be used for the future project?

199

Table 6.6

 New list for quantitative metrics

Phase Activity Metric # Calculation Indicators Action for improvement

Plan Identifying the

product backlog

items

 Prioritize the items

 Split the items

 Estimate the items

PM1.1.1 # of Do items number

Do Design M1.2.1.3 #of internal links / #of web

pages

Acceptable = > 1

Need to improve: less than 1

The improvement by increasing the

internal links or reducing the web pages

The improvement by increasing the

internal links or reducing the web pages

M4.6.1 # of page links / #of internal

links

(0 – 15) % Poor (need to improve) By increasing the page link (internal and

external) (15 – 50) % Acceptable (pay more

attention)

(50 - 85)% Very Good

(85 -100)% Perfect

M4.7.1 # of dynamic pages / Total #

of web pages

(0 – 15) % Perfect By reducing the dynamic ages

(15 – 50) % very good

(50 - 85)% Acceptable (pay more

attention)

(85 -100)% Poor (need to improve)

M4.7.3 1 / # of direct links (0 – 15) % Poor (need to improve) Reducing the direct inks

(15 – 50) % Acceptable (pay more

200

attention)

(50 - 85)% Very Good

(85 -100)% Perfect

M5.1.2 #of reused web pages / Total

of web pages

Monitoring the reuse it should be

acceptable if less than 50%.

 Reducing the reused web pages

Code M1.2.1.1 LOC completed to date /

LOC estimated

(0 – 15) % Poor (need to improve) The action should be taken to increase the

programmer productivity (15 – 50) % Acceptable (pay more

attention)

(50 - 85)% Very Good

(85 -100)% Perfect

M1.2.1.2 # of web pages to date /

Estimated # of Web pages

(0 – 15) % Poor (need to improve) The action should be taken to increase the

programmer productivity (15 – 50) % Acceptable (pay more

attention)

(50 - 85)% Very Good

(85 -100)% Perfect

M4.5.1 Effort in hour for locating

each fault

 Acceptable if the result < 3 Reduced by the application of pair

programming

M4.5.2 Effort in hour for fixing each

fault

Acceptable if the result < 3 Reduced by the application of pair

programming

M5.1.1 # of reused LOC /

Total LOC

Acceptable if not more, than 50% Reducing the reused code

M2.1.1 # of KLOC for the

programmer in the month

Not less than 3 Increase the programmer productivity

PM3.5.1 # of team members who made

changes on the code

Just the development team ranges from 2-

5

Just he DT can change the code and at

least the two programmers

Test M1.3.1.1 # of test completed to date /

Total # of planned test

(0 – 15) % Poor (need to improve) Increase the number of tests by applying

the TDD practice. (15 – 50) % Acceptable (pay more

attention)

201

(50 - 85)% Very Good

(85 -100)% Perfect

PM2.1.1 # of duplicated LOC removed

/ Total LOC

Not more than 30% Reduce the duplicate the code by

monitoring the code quality and ensuring

the application of pair programming

practice by the master

Daily reviewing M1.1.1.1 # of product backlog items

completed to date / Total # of

product backlog planned

(0 – 15) % Poor (need to improve) Adding staff resources and increase the

productivity. (15 – 50) % Acceptable (pay more

attention)

(50 - 85)% Very Good

(85 -100)% Perfect

M3.2.1 # of dollars spent for the Do/

Estimated Do budget

Acceptable if less than 100% If the ratio high and the product still need

time to be achieved the team should take

some action to reduce the budget, by

reusing code, pages… etc.

M3.3.1 Total # of Dollars spent /

Estimated cost in dollars

Acceptable if less than 100% If the ratio high and the product still need

time to be achieved the team should take

some action to reduce the budget, by

reusing code, pages… etc.

PM1.2.1 # of daily meeting per one

application

10-12 acceptable The master should ensure that the meeting

conducted daily

Iteration reviewing M3.1.1 Dollars spent to fix post to

release problems

- -

M4.2.1 # of Do defects /

LOC for the DO

(0 – 15) % Perfect Monitor the code quality by insuring pair

programming practice (15 – 50) % very good

(50 - 85)% Acceptable (pay more

attention)

(85 -100)% Poor (need to improve)

202

M4.3.1 # of pre-release defect of the

DO / (# of pre-release+ post-

release defects of the DO)

(0 – 15) % Poor (need to improve) Improve by ensuring the application of the

pair programming, continuous integration

and refactoring practices.
(15 – 50) % Acceptable (pay more

attention)

(50 - 85)% Very Good

(85 -100)% Perfect

M4.4.2 Mean time to find defects Acceptable if the result <3. Improve by ensuring the application of the

pair programming, continuous integration

and refactoring practices.

M4.4.3 Mean time between two

defects

Acceptable if the result <3. Improve by ensuring the application of the

pair programming, continuous integration

and refactoring practices.

M4.4.4 Mean time to recover Acceptable if the result <3. Improve by ensuring the application of the

pair programming, continuous integration

and refactoring practices.

M5.2.1 Elapsed time /

Estimated time

Acceptable if < 100 Encourage reuse to gain more time.

M5.2.2 (Current DO time /

Estimated DO time) * 100%

Acceptable if < 100 Encourage reuse to gain more time.

PM1.3.1 # of review meeting per one

application

Acceptable if the results = 1. The master should insure the meeting

after completing each iteration.

PM3.4.1 # of meeting between DT and

client

Acceptable if the result >2. The master should monitor the application

of metaphor practice.

 M4.4.1 # of defects /

Execution time

(0 – 15) % Perfect Improve by ensuring the application of the

pair programming, continuous integration

and refactoring practices
(15 – 50) % very good

(50 - 85)% Acceptable (pay more

attention)

(85 -100)% Poor (need to improve)

203

Act Save the increment

to the repository

PM3.1.1 (LOC of the first release -

LOC of the current release) /

Total LOC

(0 – 15) % Perfect Reduce the iteration LOC to ensure the

small release practices (15 – 50) % very good

(50 - 85)% Acceptable (pay

more attention)

(85 -100)% Poor (need to

improve)

Integrate with the

system

PM3.2.1 LOC added, removed and

updated / Total LOC of the

previous iteration

(0 – 15) % Poor (need to improve) By applying the pair programming and

continuous integration practices (15 – 50) % Acceptable (pay more

attention)

(50 - 85)% Very Good

(85 -100)% Perfect

PM3.3.1 # of LOC of the current

release – Total LOC

The less is better Reduce the iteration LOC to ensure the

small release practices

Final release

204

6.2.2.2 Tools Modification

The experts suggested a modification related to this part. The modification was to

create a table that shows the phase, tool name and the aim of each tool. The table is

shown in Appendix H.

6.2.2.3 Team structure Modifications

The experts suggested three modifications regarding to the team structure. The first

defines the role and responsibility of each team member, the second modification

shows the activities each member plays and the third adding one team member to

perform the monitoring process. However, the first two modifications were done by

adding Table 5.3 in the Plan phase in Chapter five that shows the role,

responsibilities and stakeholder of each team member. The third modification

performed by assigning new team member to be another GOMM member. As a

result two members were assigned for monitoring, one for collecting the data and the

other for analyzing and preparing the management report.

6.2.2.4 General overview modifications

A modification has been suggested by the expert regarding to the general overview

part; it was clarifying the methodology construction in the research methodology

part. Deep discussion is provided in research methodology section 3.3.3 on how the

MOGWD methodology was created.

205

Nonetheless, the main output of this round was a report included the modifications

and the improved methodology.

6.2.3 Results of Round Three

The report mentioned above was sent to the experts as a new round in order to get

their approval and acceptance. E-mail was used to communicate with the experts.

The results of this round convey that the experts approved the modifications that

have been done to the methodology components.

6.3 Validation based on case study and yardstick method

The aim of the validation process is to evaluate the effectiveness MOGWD

methodology. Accordingly, two approaches have been used to perform the validation

which are case study and yardstick validation.

6.3.1 Validation based on the case study method

In order to validate the effectiveness of the MOGWD methodology, one Jordanian

SSF was identified and agreed to implement the methodology. The case study

project aimed to develop a Content Management System (CMS). In order to simplify

the validation process, this study had proposed a prototype system support tool that

was used to assist the application of the MOGWD methodology. This tool called

monitoring prototyping tool (MO-PT). The MO-PT is a prototype tool aims to

support the monitoring of the product and the process quality during the

206

development. In addition, the tool performs the metrics calculation and provides a

feedback report to the management at the end of each iteration.

The MO-PT was built using the PHP technology and My SQL. The structure of the

tool consists of a front-end and back-end (see Figure 6.1).

Figure 6.1. MO-PT structure

The front-end represents the interface that determines the interaction between the

users and the system which created using the PHP language. On the other hand, the

back-end represents the database and the server. The database for the MOGWD

methodology was created using my SQL application. The database used to save the

values of the metrics and calculation results. Furthermore, the tool should be

uploaded to a host server on the internet. In this case study, the tool is only used to

207

calculate metrics and presenting the results. For more details for the MO-PT refer to

Appendix L. The next section will discuss the results of the case study.

6.3.1.1 Case Study: Developing the CMS Web application by Firm “A”

Firm “A” was established in Jordan in 2010. It focuses on the Internet consulting and

development. This firm helps clients to create and implement full-service digital

business solutions. The main objective of this firm is to produce highly scalable

business solutions and rich user experiences. In addition, it deals with a simple static

or a fully dynamic Web application or e-commerce site. This firm has 24 employees

working with managing and developing the Web application products. Firm “A” has

one manager, three project or team leaders and 20 developers. In this case study,

Content Management System (CMS) has been developed using MOGWD

methodology. The CMS is created to allow the customer to manage their website.

This system automatically generates navigation elements, makes the content

searchable and indexable, track the users and manage their security settings. A CMS

consists of three layers namely; presentation, application and database layer (see

Figure 6.2).

208

Figure 6.2. CMS layers

The presentation layer (user layer) is created using the HTML, Cascading Style

Sheets (CSS) and Java scripts. This layer allows the content manager to manage the

creation, modification, and removal of content their Web site. The application layer

(developer layers) is the middle layer between the user and the database. The layer

consists of the CMS and database management system (MySQL). The lowest layer

of this system is the database which includes all the manipulations that were made by

the database management system.

The team was given 3 days to study and understand the descriptions of the MOGWD

before implementing it. After that, a meeting was held with the manager to clarify

any misunderstanding or ambiguity of the MOGWD methodology.

209

 The next sections describe the details of the MOGWD methodology related phases

in developing and monitoring the quality of the CMS application.

6.3.1.1.1 Plan

Referring to section 5.4.1, the plan phase consists of the following management,

development and monitoring planning.

A. Management planning

Three sub activities involved in the management planning; staffing, training and

controlling. The staffing is defining each member role and responsibilities. Seven

team members were assigned to perform this project; these members are: master,

PO, two programmers, tester and two GOMM member. For the training session, each

team member knows the activity that he plays and how to perform it. Controlling

involved with accelerating the process and keeping it Agile. In this sub activity, the

master should define the practices to keep the process Agile. These practices are

shown in Appendix G.

B. Development planning

This activity includes five sub activities that performed in two meetings. The first

two sub activities are: create the product backlog and perform the Web design

method, these sub activities were performed in the first planning meeting. On the

other hand, three sub activities were performed at the Do planning meeting, these

210

sub activities are: select the items that will be entered for the next Do (iteration), split

the large items (if any) to smaller items and estimate the items.

In the first planning meeting the PO order the items of the product backlog and

presents the list of them to the team as shown in Table 6.7. Twenty items were

identified to be developed.

Table 6.7

List of product backlog items

Product backlog no. Description

PB1 Detailing database design

PB2 Building unit tests

PB3 Securing Service

PB4 Log in page

PB5 Manage account page

PB6 Adding / Edit account page

PB7 Traceability of access.

PB8 Management System sections.

PB9 Manage the news

PB10 Manage articles

PB11 Manage ads

PB12 Manage the book

PB13 Manage the news sent

PB14 Manage the Archives

PB15 Manage Comments and activated and stopped

PB16 Control the breaking news appearance

PB17 Full control on-site

PB18 Statistics of the site and the number of visits

PB19 Tape news

PB20 Resetting password option

For performing the Web design method, the team sat together to specify the

requirement for designing CMS. Five actions were involved with performing the

211

Web design method, namely, requirement analysis, conceptual design, navigational

design, implementation and construction.

Requirements analysis is performed by taking the product backlog items that are

related to the design. Conceptual design defines the modules, classes, and Web pages

that need to be designed. Navigational design determined the number of links and the

sitemap for the application. Implementation describes the interface items to be used

for designing the whole application. The construction is to select the items to be

entered into the Do phase. The outputs of performing the Web design method are

shown in Table 6.8.

Table 6.8

 The Main Outputs of Web Design Method

Web design action Item Outputs

Requirement analysis # of modules (product backlog

items)

20

Conceptual design # of web pages 119

#of dynamic pages 17

of classes 86

Navigational design # of internal links 68

of direct links 6

Interface design # of interface items 71

 After finishing the first planning meeting, the PO and development team (DT) hold

another meeting called Do (iteration) planning meeting. The aim of this meeting is to

select product backlog items for the next Do (iteration). The items were priorities or

ordered by the PO and estimated by the DT. The DT decided to divide the items into

two iterations. The outputs of this meeting are shown Table 6.9.

212

Table 6.9

The Outputs of the Do Planning Meeting

Iteration

no.
Duration Product backlog item

Estimated

Time

(Day)

Priority

Iteration

one

23Nov- 8 Dec

(14 days)

PB1: Detailing database design. 2 High
PB2: Building unit tests. 3

↓

↓

↓

↓

low

↓

Low

PB3: Securing Service. 2
PB4: Log in page

0.5

PB5: Manage account page. 2

PB6: Adding / Edit account page. 0.5

PB7: Traceability of access. 1.5

PB8: Management System sections. 0.5

PB9: Manage the news. 0.5

PB10: Manage articles. 0.5

PB11: Manage ads. 0.5

PB12: Manage the book. 0.5

Iteration

two

9 Dec- 24 Dec

(14 days)

PB13: Manage the news sent. 0.5 High

↓

↓

↓

↓

PB14: Manage the Archives. 1

PB15: Manage Comments and activated and stopped. 1

PB16: Control the breaking news appearance. 2.5

PB17: Full control on-site. 3

PB18: Statistics of the site. 3

PB19: Tape news. 1.5

PB20: Resetting password option 1.5 Low

In addition, the meeting has other results related to the construction action of the web

design method (see Table 6.10).

Table 6.10

 Construction Action, Results

Web design action Item Iteration 1 Iteration 2 Total

Requirement analysis
of modules (product

backlog items)

12 8 20

Conceptual design

of web pages 68 51 119

#of dynamic pages 7 10 17

of classes 47 39 86

Navigational design
of internal links 32 34 68

of direct links 3 3 6

213

Interface design # of interface items 39 32 71

C. Monitoring planning

For the monitoring planning, the team used the monitoring goals, questions and

metrics that were defined by the researcher. In addition, the team should produce the

monitoring plan that includes data collection procedure and data collection

instrument. Moreover the MOGWD methodology allows the team to prioritize the

monitoring goals. In this case, the researcher took the organization agreement to

measure all the monitoring goals without excluding. Two team members were

involved in the monitoring, one for collecting data from the team and the other

member presents the report using the MO-PT to the management and describes the

improvement actions that should be taken. After finishing the plan phase, the Do

phase begins.

6.3.1.1.2 Do phase

This phase includes the activities of building CMS. These activities are: analysis,

design, code, daily reviewing and iteration reviewing.

A. Analysis and design

 After the Do items were analysis, the conceptual design, the navigation design and

content design were created in this activity. The master ensured that the

programmers follow the simple design practice. Two programmers were involved in

214

this activity. The outcomes of this activity are interface design, navigation design,

content design and monitoring data. After the design finished the GOMM member

collected the design data from the programmers.

B. Code

In this activity, the programmers started coding the two iterations sequentially; they

took into their consideration the application of coding standards, code ownership,

pair programming and continuous integration practices. After the code activity

finished, the GOMM member asked the programmer to fill the coding data in the

checklist.

C. Test

The code is tested regularly using the unit tests. Each feature of the system is tested

individually, and then integrated to the system. The tester followed the TDD practice

during the testing process. The tester also was asked to fill the testing data in the

checklist.

D. Daily reviewing

Daily meetings were conducted by the master and DT. The aim of the meetings was

to know what the team has done and what they will do in the next day. Data were

collected from the PO during this meeting. However, the short duration of the

215

meeting did not allow doing that in every daily meeting. Therefore, the researcher

took the DT agreement to collect the data at last daily meeting of each iteration.

E. DO (iteration) reviewing

This meeting is held by the master, PO, DT and MT on the last day of the Do

(iteration). The outcomes of this meeting are the increment by applying small release

duration time (2 weeks) and continuous integration practices that helped the team to

add the increment to the system in the next phase. This meeting also provides a time

for the GOMM team members to collect data from the master. The main outcome of

the first Do reviewing meeting was not completed at the first iteration, therefore,

another iteration was needed to accomplish CMS product.

6.3.1.1.3 Check phase

This phase includes three activities namely, collect, store and analyze the metric. The

researcher took the monitoring data from the firm “X” and entered the data to MO-

PT. The data analysis is supported and performed by the MO-PT.

6.3.1.1.4 Act phase

This phase includes three activities which are: safe the increment to the repository,

integrate into the system and the final release.

216

A. Save increment to the repository

After the first iteration has been finished, the increment has been saved in the

requirement repository by the team. In this activity, the PO provided monitoring data

to the GOMM member.

B. Integrate with the system

Once the increment is saved to the requirement repository, it has been integrated

with the system to make a new version of the product by performing continuous

integration practice. The PO is in charge of announcing that all product backlog

items have been achieved by making an agreement with the DT. In addition, the

programmer was also required to fill the last section of the monitoring data in the

checklist.

After finishing the development activities the monitoring report was presented. In

this activity, the main role of the MO-PT is appeared. The data were analyzed and

the report was issued from the master page by clicking on view report in the iteration

page (see Figure 6.3).

217

Figure 6.3. View report

Based on the above figure, each iteration has a monitoring report. Each report

consists of quantitative metrics and qualitative metrics results. The report includes

the indicators and action of improvement if needed for each metric. A snapshot of

the quantitative and qualitative results that attain from the MO-PT is shown in Figure

6.4.

218

Figure 6.4. Quantitative and Qualitative Results

If any metric has the indicator “need to improve”, the MO-PT shows the action

button beside the indicator. By clicking on that action button, a pop up message will

be shown telling the team the action that should be taken (see Figure 6.5).

219

Figure 6.5. Action message

After the project ended, the GOMM member merged the two iteration results into

one report which has been presented to the management. The report showed the

quantitative and the qualitative results. Table 6.11 shows the quantitative results.

220

Table 6.11

 Quantitative results

Phase Activity Metric #
Iteration

one
Indicator Action

Iteration

two
Indicator Action

Do Design M1.2.1.3: Impact factor 0.5 Need to

improve

Increasing the internal

links or reducing the

web pages

0.7 Need to

improve

Increasing the internal

links or reducing the

web pages

M4.6.1: Navigability 40% Acceptable - 32% Acceptable -

M4.7.1: Changeability 10% Perfect - 14% Perfect -

M4.7.3: Stability 33% Acceptable - 33% Acceptable -

M5.1.2: Reused web pages 15% Acceptable - 14% Acceptable -

Code M1.2.1.1: LOC progress 47% Perfect - 88% Perfect -

M1.2.1.2: Web pages

progress

52% Perfect - 91% Perfect -

M5.1.1: Reused LOC

percentage

15% Acceptable - 20% Acceptable -

M2.1.1: Programmer

productivity

1.4 Need to

improve

Increase the

programmer

productivity

2.6 Need to

improve

Increase the

programmer

productivity

PM3.5.1: Collective

ownership (number of

teams who change the

code)

3 Acceptable - 3 Acceptable -

Test M1.3.1.1: Test progress 54% Perfect - 95.4% Perfect -

PM2.1.1:Refactoring 11% Acceptable - 15% Acceptable -

Daily M1.1.1.1: Backlog item's 60% Perfect - 100% Perfect -

221

reviewing progress

M3.2.1:Do budget spent 92% Acceptable - 95% Acceptable -

M3.3.1: Total budget spent 46% Acceptable - 93% Acceptable -

PM1.2.1:Daily meeting 12 Acceptable - 12 Acceptable -

Iteration

reviewing

M3.1.1: Dollars spent to

fix the post to release

problems

120 - 166 - -

M4.2.1: Defect density 0.2% Perfect - 0.1% Perfect -

M4.3.1: Defect detection

quality

73% Perfect - 75% Perfect -

M4.4.2: Mean time to find

defects

10 Need to

improve

Ensure the application

of the pair

programming,

continuous integration

and refactoring

practices

7 Need to

improve

Ensure the application

of the pair

programming,

continuous integration

and refactoring

practices

M4.4.3: Mean time

between two defects

22 Need to

improve

Ensure the application

of the pair

programming,

continuous integration

and refactoring

practices

16 Need to

improve

Ensure the application

of the pair

programming,

continuous integration

and refactoring

practices

M4.4.4: Mean time to

recovery

5 Need to

improve

Ensure the application

of the pair

programming,

continuous integration

and refactoring

practices

5.5 Need to

improve

Ensure the application

of the pair

programming,

continuous integration

and refactoring

practices

222

M5.2.1: Consumed time

percentage

31% Acceptable - 62% Acceptable -

PM1.3.1: Review meeting 1 Acceptable - 1 Acceptable -

PM3.4.1: Metaphor 7 Acceptable - 8 Acceptable -

 M4.4.1: Reliability

(defects /execution Time)

20% Very good - 14% Perfect -

Act Save the

increment to

the

repository

PM3.1.1: Small release No need - 6.4% Acceptable -

Integrate

with the

system

PM3.2.1: Continuous

integration

No need - 84% Very good -

PM3.3.1:simple design No need - -14034 - -

223

Based on Table 6.11, it is clearly shown that most of the quantitative metrics which

have been used in the case study achieved the acceptance level. However, five

metrics need to be improved namely, M1.2.1.3, M2.1.1, M4.4.2, M4.4.3 and M4.4.4.

The result of metric M1.2.1.3 can be improved by increasing the internal links or by

reducing the Web pages number. The metric result has been improved from 0.5 to

0.7 in the second iteration, but it still needs to reach 1.0. Regarding to M2.1.1 which

related to the programmer productivity was improved from 1.4 to 2.6 in the second

iteration but it has not reached 3. For this metric, the team accepted the results but

they said that they will take it into their consideration in the future. For the metrics

M4.4.2, M4.4.3 and M4.4.4 the team enhanced the results of the metrics during the

two iterations; however they did not reach the acceptable level. Therefore, the team

mentioned that these results are acceptable from their point of view and they will

improve it in the future. Table 6.12 shows the results of the qualitative metrics.

Table 6.12

Qualitative results

Factor

Iteration

one

percentage

Indicator

Iteration

tow

percentage

Indicator

Requirement completeness 88% Fully achieved 83% Largely achieved

Requirement consistency 75% Largely achieved 88% Fully achieved

Requirement accuracy 92% Fully achieved 92% Fully achieved

Design completeness 89% Fully achieved 89% Fully achieved

Design consistency 94% Fully achieved 94% Fully achieved

Design accuracy 83% Largely achieved 92% Fully achieved

Coding completeness 91% Fully achieved 81% Largely achieved

Coding consistency 85% Fully achieved 88% Fully achieved

Coding accuracy 100% Fully achieved 88% Fully achieved

Testing completeness 88% Fully achieved 83% Largely achieved

Testing consistency 83% Largely achieved 75% Largely achieved

Testing accuracy 100% Fully achieved 88% Fully achieved

Project management completeness 95% Fully achieved 90% Fully achieved

224

Project management consistency 93% Fully achieved 93% Fully achieved

Project management accuracy 75% Largely achieved 100% Fully achieved

Tailorabilty 92% Fully achieved 92% Fully achieved

Flexibility 88% Fully achieved 100% Fully achieved

Compatibility 88%% Fully achieved 100% Fully achieved

Accessibility 82% Largely achieved 89% Fully achieved

Applicability 94% Fully achieved 94% Fully achieved

Changeability 88% Fully achieved 88% Fully achieved

Supportability 88% Fully achieved 81% Largely achieved

It is clearly shown in the above table that all the factors fully or largely achieved

during the two iterations. Therefore, no improvements need to be taken. After

finishing the project the team members answered the validation form (see Appendix

K). The results of the validation will be discussed in the next section.

6.3.1.2 Validation results

The validation was conducted through an interview with the MOGWD team. The

team answered the validation form that was constructed based on a set of evaluation

factors as shown in Chapter Three, Section 3.4. These factors are: gain satisfaction,

interface satisfactions, task support satisfaction, perceived usefulness and perceived

ease of use. Each factor has certain items. The team was asked to rank the level of

these items achievement. Therefore, Five Likert scales ranging from strongly

disagree (value 1) to strongly agree (value 5) were used to describe the level of

achievement of the items. The results were calculated by getting the mean score for

each item and selecting the appropriate interval that represent the actual mean. An

appropriate interval scale was required to represent all levels of achievement. Table

6.13 shows the mean interval presentation and the achievement level.

225

Table 6.13

Representations of the achievement levels

Mean interval presentation Achievement level

From 1 to 1.80 Not achieved

From 1.81 to 2.60 Very limited achievement

From 2.61 to 3.40 Partially achieved

From 3.41 to 4.20 Largely achieved

From 4.21 to 5 Fully achieved

Table 6.14 shows the validation results.

Table 6.14

Validation results

Gain satisfaction

Item Mean
Overall

mean

Achievement

level

Decision support satisfaction: is the MOGDW methodology

helps the management to take a well-defined decision based on

the process and product monitoring?

4.3

4.3 Fully achieved

Comparison with the current development method: is the

MOGDW methodology better than the old development that you

used in terms of the structure and achieve results?

4.3

Clarity (clear and illuminate the process): Is the MOGWD

process clear to the development team, where each phase clearly

presents the required inputs, outputs, methods or practices, and

activities?

4.4

Task Appropriateness: Are the phases and activities that

presented in the MOGWD methodology appropriate for

developing and monitoring web application in your company,

and is the flow of the process presented in a systematic and

effective way?

4.1

Interface satisfaction

Item Mean
Overall

mean

Achievement

level

Internally consistent: the MOGWD methodology is internally

consistent?
4

4.1
Largely

achieved
Organization (well organized): the component of MOGWD

methodology well organized and structured that makes the

process is easy to perform?

4.1

226

Appropriate for audience: is the MOGWD methodology

appropriate for the audience. Those audiences are referred to the

development and the monitoring team in the Small Software

firms?

4.3

Presentation: is the results presented by performing the

MOGWD process produced in a readable and useful format?
4.1

Task support satisfaction

Item Mean
Overall

mean

Achievement

level

Ability to produce expected results: is the MOGDW

methodology able to produce expected results?
4.3

4.4 Fully achieved

Completeness (adequate or sufficient): is the MOGDW

methodology adequate and sufficient for developing web

application in your organization.

4.4

Ease of implementation: is the process of the MOGDW

methodology easy to implement?
4.4

Perceived usefulness

Item Mean
Overall

mean

Achievement

level

Using MOGDW methodology enables you to accomplish your

tasks more quickly.
4.3

4.4 Fully achieved

Using MOGDW methodology improve the performance of your

work
4.1

Using MOGDW methodology makes performing your tasks

easier
4.6

MOGDW methodology is useful to your work 4.3

Using MOGDW methodology increases your productivity 4.9

Perceived ease of use

Item Mean
Overall

mean

Achievement

level

Learning the MOGDW methodology is easy for you 4.6

4.5 Fully achieved

Do you find it easy to use MOGDW methodology to do what

want to do
4.4

The MOGDW methodology is flexible to interact with 4.7

Your interactions with the MOGDW methodology clear and

understandable
4.3

It is easy for you to become skilful in using MOGDW

methodology
4.3

The MOGDW methodology is easy to use 4.7

Results in Table 6.14 show that four factors gained “fully achieved” level. These

factors are: gain satisfaction, task support satisfaction, perceived usefulness and

227

perceived ease of use. However, the interface satisfaction attained “largely achieved”

level. Consequently, it can be concluded that the MOGWD found effective and

applicable to be used in Jordanian SSF. Nevertheless, the team claimed that using the

MO-PT should reduce the number of GOMM to one member and the number of the

goals should be reduced by using the goal prioritizing.

6.3.2 Validation based on the yardstick method

The main objective of the validation process is to demonstrate the correctness of the

proposed methodology for its intended purpose, the comparison with existing

baseline methods is also considered as a reliable and the perfect way to validate a

model, this method called yardstick validation (Carson, 2002). Yardstick approach is

used usually with other approaches to increase the trustworthiness of the model or

the methodology that was proposed (Sargent, 2011). Specifically, if the model’s

components are compared and found that they match with baseline models in the

same field, it will be considered as proof to the validity of that model (Carson, 2002;

Sargent, 2011).

The yardstick validation was performed through the following steps:

Step 1: Identify the baseline methods. As discussed in Chapter Two, there are six

studies taken as a baseline for the comparison as they combined XP and Scrum.

These studies are: Mar and Schwaber (2002), Fitzgerald et al. (2006), Clutterbuck et

al. (2009), Qureshi (2011), Jyothi and Rao (2011) and Temprado and Bendito

(2010).

228

Step 2: Determine the comparison criteria and compare the baseline methods and

MOGWD based on them. The comparison criteria were determined based on the

criteria of building a good methodology in Chapter Two. These criteria are: process

style (Iterative or sequential), deal with changing requirements and small teams, well

defined components (model, process, rules, guidelines, practices and activities),

should have the suitable measurement mechanism for monitoring the quality of the

development process and the final product and should be built based on a specific

theory. Table 6.15 shows the methods used and whether they achieved the criteria.

Table 6.15

Baseline Models and Comparison Criteria.

 Models

Criteria

Mar and

Schwaber

(2002)

Fitzgerald

et al.

(2006)

Clutterbuck

et al. (2009)

Qureshi

(2011)

Jyothi

and Rao

(2011)

Temprado

and

Bendito

(2010)

MOGWD

methodology

Iterative style √ √ √ √ √ √ √

Well-defined

components
> > > > > > √

Deals with design

complexity
> > > > > > √

Monitor the

quality of process

and product
× × × × × × √

Built based on

specific theory
× √ × × × × √

 (√) means satisfy the criterion, (×) means not satisfied the criterion and (>) partially satisfy the

criterion.

Based on the above table, it is clearly shown that the MOGWD satisfied all the

comparison criteria. However, the baseline method did not satisfy all the criteria

except the iterative development style. Consequently, two criteria were partially

229

stratified by the baseline methods, namely well-defined components and dealing the

Web application design complexity as they still use simple design activity process

and not define the components of the methods. Moreover, all the baseline methods

did not use any monitoring mechanism that measures the quality of process and

product. Finally, just the MOGWD methodology and Fitzgerald et al. (2006) method

used a specific theory for creating the methods. However, Fitzgerald et al. (2006) did

not depend on the Agile principles when they create the methods. Based on this

comparison the strength and weaknesses of the baseline methods and MOGWD are

determined in the next step.

Step 3: Determine the strength and weaknesses of the baseline methods and

MOGWD methodology. As mentioned earlier, the strengths and weaknesses for each

method were determined based comparison that conducted in the previous step.

Table 6.16 presents the comparison between the MOGWD methodology and the

baseline methods based on their strengths and weaknesses.

230

Table 6.16

 Yardstick validation

 Strengths Weaknesses

MOGWD
methodology

 Iterative process.

 Combine XP and Scrum based on the Agile principles achieved.

 Nine XP practices used which are: simple design, collective ownership, pair

programming, metaphor, coding standards, TDD, continuous integration,

refactoring and small release.
 Enhance the design phase of the combined XP and Scrum.

 Use measurement mechanisms for monitoring the quality of the process and

product.

 Activities, methods, practices, tools and team structure are clearly defined and

organized using the PDCA method.

 The methodology can be used for Web applications development.

 The methodology specified for SSF in Jordan.

 Just seven factors used for monitoring the quality of the process.

Mar and

Schwaber

(2002)

 Iterative process.

 Combined XP and Scrum based on practices.

 Seven practices used in this combination which are: simple design, collective

ownership, pair programming, coding standards, TDD, continuous integration and

refactoring.

 No theory used in the combination.

 Agile principles are not taken into account in the combination

process.

 Design phase still simple.

 No measurement mechanism used.

 Just process and practices were discussed in this study

 Metaphor and small release are not integrated in the combination.

However, these two practices are very important to fulfil the Agile

principles.

Fitzgerald et

al. (2006)
 Iterative process.

 Combined XP and Scrum based on practices used method engineering.

 Six practices used in this combination which are: simple design, collective

ownership, pair programming, coding standards, TDD and refactoring

 Agile principles are not taken into account in the combination

process.

 Design phase still simple.

 No measurement mechanism used.

 Just process and practices were discussed in this study.

 Metaphor, small release and continuous integration are not integrated

231

in the combination. However, these two practices are very important

to fulfil the Agile principles.

Clutterbuck

et al. (2009)
 Iterative process.

 Combined XP and Scrum based on practices.

 Seven practices used in this combination which are: Simple Design, Collective

Ownership, Pair Programming, Coding Standards, TDD, Continuous Integration

and Refactoring.

 No theory used in the combination.

 Agile principles are not taken into account in the combination

process.

 Design phase still simple.

 No measurement mechanism used.

 Just process and practices were discussed in this study.

 Metaphor and small release are not integrated in the combination.

However, these two practices are very important to fulfil the Agile

principles.

Qureshi

(2011)
 Iterative process.

 Combined XP and Scrum based on practices.

 Seven practices used in this combination which are: Simple Design, Collective

Ownership, Pair Programming, Coding Standards, TDD, Continuous Integration

and Refactoring.

 No theory used in the combination.

 Agile principles are not taken into account in the combination

process.

 Design phase still simple.

 No measurement mechanism used.

 Just process and practices were discussed in this study.

 Metaphor and small release are not integrated in the combination.

However, these two practices are very important to fulfil the Agile

principles.

Jyothi and

Rao (2011)
 Iterative process.

 Combined XP and Scrum based on practice.

 Four practices used in this combination which are: collective ownership, pair

programming, continuous integration and Refactoring.

 No theory used in the combination.

 Agile principles are not taken into account in the combination

process.

 Design phase still simple.

 No measurement mechanism used.

 Just process and practices were discussed in this study.

 Metaphor, small release, simple design, coding standards and TDD

are not integrated in the combination. However, these two practices

are very important to fulfil the Agile principles.

232

Temprado

and Bendito

(2010)

 Iterative process.

 Combined XP and Scrum based practice.

 Five practices used in this combination which are: pair programming, TDD, onsite

customer, coding standards and Refactoring.

 No theory used in the combination.

 Agile principles are not taken into account in the combination

process.

 Design phase still simple.

 No measurement mechanism used.

 Just process and practices were discussed in this study.

 Metaphor, small release, simple design, collective ownership and

continuous integration are not integrated in the combination.

However, these two practices are very important to fulfil the Agile

principles

Table 6.16 shows that the MOGWD have less number of weaknesses and maximum number strengths among the baseline methods. However,

the baseline methods still have critical weaknesses that may affect the quality of the Web application these weaknesses are: using simple design

activity, and they did not any mechanism for monitoring the quality of the process and product. In addition, no base line method takes into

account the Agile principles on combining XP and Scrum. Moreover, all the baseline methods focus on the process and practices and neglecting

the other components such as tools and team structure, that may affect the completeness of their methods. Finally, nine XP development

practices were used in the MOGWD methodology. Where, the number of practices that used in the baseline methods range from 4-7 practices.

233

6.4 Summary

This chapter presented the evaluation process of MOGWD Methodology for SSF

that was conducted through the verification and validation process. The verification

process was conducted using expert review method. Eight experts verified the new

methodology. Delphi technique was used to describe the verification process through

three rounds of modifications in order to improve the methodology. In the final

round, the methodology components were modified according to the expert’s

suggestions. And finally, get the experts' agreement that the modifications fulfilled

their suggestions.

For the validation, two approaches were used the case study and yardstick validation.

Regarding to the case study, one case study conducted in Jordan was implemented

the MOGWD methodology. It was found that MOGWD was effective and applicable

to be used in SSF. However, the team recommended to reduce the monitoring team

as the methodology proposed the MO-PT.

 In the yard stick validation, the MOGWD methodology was compared with the

baseline methods in the field to the show the strengths and the weaknesses of the

proposed methodology. The comparison conducted using specified criteria. The

criteria were taken from the criteria of the good methodology. The output validation

shows that the MOGWD methodology satisfies all the comparison criteria and has

less number of weaknesses among the baseline methods.

234

CHAPTER SEVEN

CONCLUSION

7.1 Introduction

This chapter concludes the research findings. It includes an overview of results,

research contributions, methodology limitations, and future work.

7.2 Overview of Results

The main goal of this research was to develop a new Web application development

methodology that emphasized on monitoring. The research was performed through a

theoretical study, survey, methodology development, and methodology evaluation.

These phases are described phases as below:

7.2.1 Theoretical study

This research started with the reviewing literature that related to software

engineering, software development, software measurement, Web applications

development and development practices for SSF. In this phase, problems that

currently faced developers in SSF were highlighted. The findings of this phase were

used to formalize the research problem and research objectives as well as gain

knowledge on the state of the art that related to Web application development in

SSF. This phase involved with five steps: identify the most suitable methods and

practices for SSF, determine a suitable measurement method for SSF, define the

common activities for designing Web applications, identify the best Web application

development and measurement practices for SSF and identify the criteria of good

235

methodology. The main outcomes of this phase are suitable Agile development

methods and practices for SSF, suitable measurement method for SSF, common Web

application design steps, best Web application development and measurement

practices and criteria of the good development methodology.

7.2.2 Survey

This survey aims to determine the real characteristics of SSF in Jordan. In addition,

it is conducted to examine the need of new methodology for developing Web

applications in SSF. Moreover, it also investigates the current development and

measurement practices of Web application development in SSF. In performing this

phase, survey approach was adopted and questionnaire was used to be a data

collection instrument.

The results of this phase have been achieved and presented in Chapter Four, section

4.6. In short, the main results are summarized as follows:

7.2.2.1 SSF Characteristics

The majority of SSF in Jordan is private sectors and they have 10 to 30 employees.

Consequently, all developers have ten or less than ten years of experience and few

managers and team leaders have more than ten years’ experience.

236

7.2.2.2 Development issues

According to the development issues respondents indicate that the majority of them

are not using any method for developing Web applications. This means that there is a

need for a new methodology to develop Web application for SSF. The most common

methods that they are familiar with are Waterfall, XP and Scrum.

In terms of the test, the test type that is normally used by the respondents are unit

test, acceptance test, system test and code coverage test and most of the developers

perform the testing process at the end of the coding phase of the development.

The most components that had been reused by the SSF in Jordan are source code,

templates and modules.

7.2.2.3 Measurement issues

The majority of respondents do not use any measurements during the development

process, whereas there is a minimal percentage use line of code measurement type

and use GQM as a measurement method after the coding phase, which means there

is a lack of using measurements during the development process. Consequently,

respondents were asked about why they are not using any specific measurements or

method, the majority of them explain that because nobody in the company familiar

with measurements type and methods. In addition, they indicate that using a specific

measurement and using measurements need specific trained team to be performed.

237

7.2.2.4 The current Web applications development and measurement practices

The degree of applying the important Web applications development practices was

low in case of just three among seventeen practices were applied in the small

software in Jordan as well as three are partially applied. This means there is a lack of

applying the development and measurement practices inside these companies.

Consequently, these practices are related directly to enhance and improve the

development process such as requirement, test, quality measurement and

management. Therefore, that there is a need to a development methodology that

deploys the important practices in order to get a high quality Web application.

7.2.3 Methodology Construction

The aim of this phase is to construct a new monitoring Agile based Web application

methodology for SSF. The methodology focused on continuous quality monitoring

of process and product. The methodology also handles the XP and Scrum

limitations. Based on the theoretical and the survey findings, XP and Scrum were

identified as the suitable methods for SSF. Therefore, this study proposed a new

methodology to handle the XP and Scrum limitations by extending Scrum method

with important XP elements. Then enhance the Extended Agile method by adding

Web design method and in corporate GOMM for monitoring process and product.

After carrying out these this study adapts the PDCA method to organize the

components and guide the development and measurement process.

238

7.2.4 Methodology Evaluation

The evaluation of the MOGDW was performed in two stages: verification and

validation.

7.2.4.1 Verification

The verification phase aims to verify the completeness, understandability, feasibility

of the MOGWD methodology components. The verification process was performed

using the experts review approach joined with the Delphi technique. After three

rounds of reviewing, the results of verification show that MOGWD methodology is

acceptable with some modifications and the improved version of MOGWD

methodology.

7.2.4.2 Validation

The aim of the validation is to confirm that MOGWD methodology is effective and

applicable in SSF. Accordingly, two approaches were used which are: case study and

yardstick. Regarding to the case study, one case study in Jordan was chosen. The

firm implements the MOGWD methodology for developing CMS. The methodology

was validated based on various factors such as gain satisfaction, interface

satisfaction, task support satisfaction, perceived usefulness and perceived ease of

use. The findings show that MOGWD is applicable and effective for developing and

monitoring the quality of the Web application in the real life.

In addition, this study used yardstick validation to increase the reliability of the

validation stage. The aim of conducting the yardstick validation is to check

239

MOGWD methodology validity comparing with other valid methods in the field.

Accordingly, six baseline methods have been identified. The comparison criteria

were specified based on the good criteria of building new methodology for

developing Web application in SSF. These criteria are: process style (Iterative or

sequential), deal with changing requirements and small teams, well defined

components (model, process, rules, guidelines, practices and activities), should have

the suitable measurement mechanism for monitoring the quality of the development

process and the final product and should be built based on a specific theory. The

results of the yard stick validation showed that the MOGWD has more strengths than

previous methods.

7.3 Research contributions

The contributions of this study are MOGWD methodology, Extended Agile method,

Web Design method, GOMM, MO-PT software and survey findings.

7.3.1 MOGWD methodology

The main aim of this methodology is to produce high quality Web applications. The

MOGWD methodology focuses on continuous quality monitoring of the

development process and the product. In doing so, The MOGWD adapts the PDCA

method phases to guide the process of management, development and monitoring

and organize the methodology components namely, activities, methods, practices,

tools and team structure.

240

In addition, the new MOGWD methodology combined the Extended Agile Method

with Web design method and GOMM methods, to cope with the uniqueness and

individuality that is specific to Web applications and deals with the small software

firm’s limitations.

The new MOGWD methodology enhanced the design phase of the Extended Agile

method by adding Web design method to deal with the Web application design

complexity. Furthermore, it enhanced the Agile development practices by adding the

Web design practices and the measurement practices.

This methodology has a measurement mechanism that includes quantitative and

qualitative metrics to monitor the quality of process and product.

7.3.2 Extended Agile method with Web design method

This method aims to overcome the XP and Scrum limitations. Based on the

discussion in Chapter Two this method was created by extending the Scrum method

with XP important elements. These elements are: XP iteration activities, XP core and

supported practices and XP iteration team. The XP iteration activities were adapted

from XP as these activities should be performed during 2 weeks of time that may

accelerate the process. Whereas, the core and supported XP practice were merged to

the Extended Agile method in order to ensure the application of the Agile principles.

Finally, at least two programmers and one tester were used to perform the iteration

activities. However, the Extended Agile method still has limitations. One of the

241

limitations is the simple design phase that was covered by adding Web design

method.

The simple Web design method merged to the Extended Agile method to meet the

complexity of Web application design. This method produced a better design phase

of the new methodology. This method integrated to the planning phase of the new

methodology and used once per Web application. The simple design method created

based on the existing Web design methods. The steps of the method are:

requirements analysis, conceptual design, navigational design, implementation

design (interface) and construction.

7.3.3 GOMM

To ensure the quality of process and product, several metrics were integrated into the

Extended Agile method to reduce defects, time and rework of the development life

cycle. The measurement mechanism was performed by using the GOMM. This

method used a set of goals, questions and quantitative and qualitative metrics that

monitor the quality of process and product. The GOMM monitors the process quality

and the Web application product quality. Twenty quantitative and qualitative goals

identified for monitoring the quality of the process. Ten quantitative goals related to

the process activities, development and management practices and staff productivity.

Ten qualitative goals identified for monitoring the process quality factors that related

to process effectiveness, adaptability, compatibility, accessibility, applicability,

changeability and supportability. Whereas, Monitoring the Web application product

is done by achieving three quantitative goals: cost, quality and time.

242

7.3.4 Survey results

The main goal of this survey is to investigate the current development and

measurement practices for SSF in Jordan.

The survey offers a view on the development and measurement practices in SSF,

particularly in Jordan. Therefore, this research is useful as it extracts and ranks the

most important practices that affect development and measurement process in SSF.

This research is useful and beneficial to other researchers. Researchers will find this

study useful for its contribution in literature and survey findings related to Web

applications in SSF.

7.4 Limitations of the Research

Despite the achievement, this study has some limitations. Among these are:

7.4.1 Lack of the Related Researches

There is a lack of researches that combine the Agile development methods to GQM.

Therefore, it was a challenge to combine Agile development with GQM. In this

regard, many related publications on Agile and software measurement were utilized

in this study in order to carry out this combination. In addition, the related studies

did not show how XP and Scrum methods can be extended and integrated with

GQM. Therefore, it was difficult to search for literature on extending the combined

XP and Scrum method to cover all the Agile principles and monitor the quality of

product and process for SSF, as these firms need to have lightweight processes in

their development processes. Due to these obstacles, some quality factors are not

243

included in the new MOGWD methodology because it may take time to deploy.

Therefore, future research can be continued to address the missing specific factors.

7.4.2 Limited Scope in the Evaluation Processes

During the verification process, the expert review comprising of eight members was

performed. The experts include four knowledge experts (two from Malaysia and two

from Jordan) and four domain experts (one from Malaysia and three from Jordan).

Accordingly, the verification and validation process was carried out based on the

characteristics of a limited number of Jordanian SSF. In future, the verification and

validation can be made more extensive by including SSF from other countries in

order to assess the comprehensiveness of the research results.

7.5 Future Work

The MOGWD methodology presented in this study is the starting point for working

towards collaboration between Agile methods and GQM. During the course of the

research, several potential directions for future investigation were identified. Some

of these are meant to address the current limitations of this study. Sections 7.5.1,

7.5.2 and 7.5.3 highlight the potential directions for future work.

7.5.1 Add more quality factors for the process

The MOGWD methodology supports the specific goals related to seven process

quality factors. These factors are effectiveness, adaptability, compatibility,

accessibility, applicability, changeability and supportability. Therefore, future

244

research can incorporate other factors based on the organization recommendations.

The Web application development and measurement in this methodology can be

used as a guideline for developing better applications. On the other hand the GOMM

that used in the MOGWD is mainly focused on the process and product. Therefore,

future research can incorporate suitable measurement for the people and technology.

Moreover, the measurement process should be refined by referring to the existing

standard for software process assessment such as ISO 15504.

7.5.2 Using other Agile Practices or methods for the Extended Agile method

The construction of the MOGWD methodology was based on the Extended Agile

Method and GOMM. In this regard, there is possible avenue for further research to

examine the use of other Agile methods such DSDM, LSD, AM and AUP (RUP).

These are all effective methods that could be used by SSDFs and may be extended to

large organizations. Therefore, the combination of some new Agile methods will

offer better development practices that are suitable for large organizations.

7.5.3 Extend the MOGWD to include other Key process areas

Currently, the MOGWD methodology focused on development and monitoring Web

applications practices in SSF. The practices covered by XP, Scrum and Web design

method. These practices should be analyzed in order to improve the maturity of the

methodology by including other key process areas. Therefore, it will be fruitful if the

future research can identify what maturity level does this methodology achieve and

improve it by adding the identified Key process areas.

245

7.6 Summary

This research started from the need to have a suitable methodology for development

and measurement in SSF. These firms suffer from problems during the development

of their products. This is because Web application products were developed in a

chaotic manner. A more suitable methodology integrating the Agile methods with an

appropriate measurement method was developed to address the SSF' needs. The

thesis reports on the development of the new methodology.

246

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software

development methods. Relatório Técnico, Finlândia.

Abran, A., Moore, J. W., Dupuis, R., Dupuis, R., & Tripp, L. L. (2004). Guide to the

Software Engineering Body of Knowledge–SWEBOK, trial version. IEEE-

Computer Society Press.

Abrantes, J. F., & Travassos, G. H. (2011). Common Agile Practices in Software

Processes. In Proceedings of the Fifth International Symposium on Empirical

Software Engineering and Measurement (ESEM), (pp. 355–358).

Ahmad, F. (2008). Presage, context, process and product: Influencing variables in

literature instruction in an ESL Context. GEMA Online Journal of Language

Studies, 8(1), 1-21.

Ahmad, M., Yousef al-Tarawneh, M., & Bashah Mat Ali, A. (2012). Software

process improvement in small software development firms. Global Journal

on Technology, 1.

Ahmad, R., Li, Z., & Azam, F. (2005, September). Web engineering: a new

emerging discipline. In Emerging Technologies, 2005. In Proceedings of the

IEEE Symposium on Emerging Technologies (pp. 445-450). IEEE.

Aleksy, M., Gitzel, R., & Schwind, M. (2004). Developing Web Applications for

Small and Medium-sized Enterprises-An Experience Report. In GI

Jahrestagung (1) (pp. 282-286).

Alexandre, S., Renault, A., & Habra, N. (2006, August). OWPL: a gradual approach

for software process improvement in SMEs. In Proceedings of the 32nd

EUROMICRO Conference on Software Engineering and Advanced

Applications (EUROMICRO-SEAA'06) (pp. 328-335). IEEE.

Ali, R., Iqbal, S., Shahzad, S., Qadeer, M. Z., & Khan, U. A. (2011). Use Of

Reinforcement Practices in the Educational Institutions and its Impacts on

Student Motivation. International Journal Of Academic Research, 3(1), 960-

963.

Allen, P., Ramachandran, M., & Abushama, H. (2003, November). PRISMS: an

approach to software process improvement for small to medium enterprises.

In Proceedings of the Third International Conference On Quality Software

247

(QSIC’03) (pp. 211-214). IEEE.

Altarawneh, H., & El Shiekh, A. (2008, August). A theoretical agile process

framework for web applications development in small software firms. In

Proceedings of the Sixth International Conference on Software Engineering

Research Management and Applications, SERA'08 (pp. 125-132). IEEE.

Al-Tarawneh, M. Y. (2013). Harmonizing CMMI-DEV 1.2 and XP Method to

Improve The Software Development Processes in Small Software

Development Firms (Doctoral dissertation, Universiti Utara Malaysia).

al-Tarawneh, M. Y., Abdullah, M. S., & Ali, A. B. M. (2011). A proposed

methodology for establishing software process development improvement for

small software development firms. Procedia Computer Science, 3, 893-897.

Anacleto, A., von Wangenheim, C., Salviano, C., & Savi, R. (2004). A method for

process assessment in small software companies. Paper presented at the 4
th

international SPICE conference on process assessment and improvement,

Portugal, 2004.

Androcec, D., & Dobrovic, Z. (2012, June 25-28). Creating hybrid software

engineering methods by means of metamodels. In Proceedings of 34th,

International Conference on Information Technology Interfaces (ITI), Cavat,

Croatia.

Ardimento, P., Baldassarre, M. T., Caivano, D., & Visaggio, G. (2004). Multiview

framework for goal oriented measurement plan design. In Proceeding of 5
th

international conference on the Product Focused Software Process

Improvement (PROFES 2004), (pp. 159-173), Kansai, Japan

Avison, D. E., Lau, F., Myers, M. D., & Nielsen, P. A. (1999). Action research.

Communications of the ACM, 42(1), 94-97.

Awad, M. A. (2005). A comparison between agile and traditional software

development methodologies. Honours program thesis, University

of Western Australia.
Azuma, M., & Mole, D. (1994). Software management practice and metrics in the

european community and japan: Some results of a survey. Journal of Systems

and Software, 26(1), 5-18.

Baharom, F. (2008). A software certification model based on development process

quality assessment. Unpublished doctoral dissertation, Universiti Kebangsaan

Malaysia.

248

Baharom, F., Deraman, A., & Hamdan, A. (2006). A survey on the current practices

of software development process in Malaysia. Journal of ICT, 4, 57-76.

Baharom, F., Yahaya, J., Deraman, A., & Hamdan, A. R. (2011, July). SPQF:

Software Process Quality Factor. In Proceedings of Electrical Engineering

and Informatics (ICEEI), (pp. 1-7). IEEE. Bandung, Indonesia

Balasubramanian, V., Bieber, M., & Lsakowitz, T. (1996). Systematic hypermedia

design. Information Systems Working Papers Series, Stern School of

Business, NYU.

Barna, P., Frasincar, F., Houben, G. J., & Vdovjak, R. (2003, April). Methodologies

for web information system design. In Proceedings of the International

Conference on Information Technology: Computers and Communications

(ITCC 2003) (pp. 420–424). Las Vegas, NV, USA. IEEE Computer Society

Barnett L., & Schwaber C.E. (2004). Adopting Agile Development Processes:

Improve Time-To-Benefits for Software Projects. Trends, Forrester Research,

March 2004.

Barry, C. & Lang, M. (2001) A Survey of Multimedia and Web Development

Techniques and Methodology Usage. IEEE Multimedia, 8 (2), 52-60.

Basili, V. R. (1992). Software modeling and measurement: the Goal/Question/Metric

paradigm. Tech. Rep. CS-TR- 2956, Department of Computer Science,

University of Maryland, College Park, MD 20742, Sept. 1992.

Basili, V. R., & Selby, R. W. (1987). Comparing the effectiveness of software

testing strategies. , IEEE Transactions on Software Engineering, 13(12),

1278-1296.

Basili, V. R., & Turner, A. J. (1975). Iterative enhancement: A practical technique

for software development. IEEE Transactions on Software Engineering,

1(4), 390-396.

Basili, V., Caldiera, G., & Rombach, H. D. (1994). Encyclopedia of Software

Engineering, chap. Goal Question Metric Approach, (pp. 528{532). John Wiley

& Sons, Inc.

Baskerville, R., & Pries-Heje, J. (2002). Information Systems Development@

Internet Speed: A New Paradigm In The Making!. Proceedings of the

European Conference on Information Systems (ECIS 2002), (pp. 282-291).

Wrycza, Gdansk, University of Gdansk

249

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10),

70-77.

Beck, K. (2000). Extreme programming explained: embrace change. Addison-

Wesley Professional.

Begel, A., & Nagappan, N. (2008, October). Pair programming: what's in it for me?.
In Proceedings of the second international symposium on empirical software

engineering and measurement,(ESEM) (pp 120–128). ACM, Kaiserslautern, Germany

Behkamal, B., Kahani, M., & Akbari, M. K. (2009). Customizing ISO 9126 quality

model for evaluation of B2B applications. Information and software

Technology, 51(3), 599-609.

Bell, D. (2001). Software engineering: A programming approach. Prentice Hall

International (UK) Ltd..

Bellettini, C., Marchetto, A., & Trentini, A. (2004, March). WebUml: reverse

engineering of web applications. In Proceedings of the 2004 ACM

symposium on Applied computing, (pp. 1662–1669). New York, NY, USA:

ACM

Berardi, E., & Santillo, L. (2010). COSMIC-based Project Management in Agile

Software Development and Mapping onto related CMMI-DEV Process

Areas. In Proceedings of International Workshop on Software Measurement–

IWSM, Stuggart (Germany),

Bertoa, M. F., Troya, J. M., & Vallecillo, A. (2006). Measuring the usability of

software components. Journal of Systems and Software, 79(3), 427-439.

Bidad, C. D., & Campiseño, E. R. (2010). Community Extension Services OF SUCs

IN REGION IX: Basis For A Sustainable Community Enhancement

Program. E–International Scientific International Scientific International

Scientific Research Journal Research Journal, 235-243.

Blackburn, J. D., Scudder, G. D., & Van Wassenhove, L. N. (1996). Improving

speed and productivity of software development: a global survey of software

developers. IEEE Transactions on Software Engineering, 22(12), 875-885.

Blaxter, L., Hughes, C., & Tight, M. (2010). How to research. McGraw-Hill

International.

Bocij, P., Chaffey, D., Greasley, A., & Hickie, S. (1999). Business Information

Systems. Technology, Development and Management.

Boehm, B. (2006, May). A view of 20th and 21st century software engineering.

250

In Proceedings 28th International Conference on Software Engineering

(ICSE) pp. 12–29. Shanghai, China.

Boehm, B. W. (1988). A spiral model of software development and

enhancement. Computer, 21(5), 61-72.

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp, L. (1999). The guide to

the software engineering body of knowledge. Software, IEEE, 16(6), 35-44.

Briand, L. C., Differding, C. M., & Rombach, H. D. (1996). Practical guidelines for

measurement-based process improvement. Software Process Improvement

and Practice, 2(4), 253-280.

Briand, L. C., Morasca, S., & Basili, V. R. (2002). An operational process for goal-

driven definition of measures. , IEEE Transactions on Software

Engineering, 28(12), 1106-1125.

Brinkkemper, S. (1996). Method engineering: engineering of information systems

development methods and tools. Information and Software Technology,

38(4), 275-280.

Brown, N. (1999). High-Leverage Best Practices: What Hot Companies Are Doing

to Stay Ahead. Cutter IT Journal, 12(9), 4-9.

Bryman, A. (2001). Social research methods. Oxford: Oxford University Press.

Bryman, A., & Bell, E. (2007). Business research methods. USA: Oxford University

Press.

Bucci, G., Campanai, M., & Cignoni, G. A. (2001). Rapid Assessment to Solicit

Process Improvement in Small and Medium-Sized Organizations. Software

Quality Professional Magazine, 4(1), 33-41.

Caldiera, V. R. B. G., & Rombach, H. D. (1994). The goal question metric approach.

Encyclopedia of Software Engineering, 2(1994), 528-532.

Calero, C., Ruiz, J., & Piattini, M. (2005). Classifying web metrics using the web

quality model. Online Information Review, 29(3), 227-248.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An

empirical study. Software, IEEE Software, 25(1), 60-67.

Carson, J. S., II. (2002, Dec). Model verification and validation. In Proceeding of the

2002 Winter Simulation Conference, (pp. 52-58 Vol.1). USA: IEEE

Computer Society.

251

Cater-Steel, A. (2004). An evaluation of software development practice and

assessment-based process improvement in small software development firms

(Doctoral dissertation, Griffith University).

Cater-Steel, A. P. (2001). Process improvement in four small software companies.

In Proceedings of the 13th Australian Software Engineering Conference

(ASWEC'01) (pp. 262-272). IEEE.

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web Modeling Language (WebML): a

modeling language for designing Web sites. Computer Networks, 33(1), 137-

157.

Chatfeild, c. and Collins, A.J. (1990). Introduction to Multivariate Analysis.

Chapman and Hall publication. London.

Cho, J. (2009). A hybrid software development method for large-scale projects:

rational unified process with scrum. Issues in Information Systems, 10(2),

340–348.

Clutterbuck, P., Rowlands, T., & Seamons, O. (2009). A case study of SME web

application development effectiveness via Agile methods. Electronic Journal

Information Systems Evaluation Volume, 12(1), 13-26.

Conallen, J. (1999). Modeling Web application architectures with UML.

Communications of the ACM, 42(10), 63-70.

Cook, Dave and Les Dupaix.(1998). Life Cycle Reviews from a Software

Engineering Perspective, Presented at the 1998 Software Technology

Conference, May 1998, Salt Lake City, Utah.

Costagliola, G., Ferrucci, F., & Francese, R. (2002). Web engineering: Models and

methodologies for the design of hypermedia applications. Handbook of

Software Engineering & Knowledge Engineering, 2, 181–199.

Creswell, J. W. (2003) Research Design: Qualitative, Quantitative and Mixed

Methods Approaches, 2
nd

 Ed., sage publication, California.

da Rocha, A. R. C., Montoni, M., Weber, K. C., & de Araújo, E. E. R. (2007,

September). A Nationwide Program for Software Process Improvement in

Brazil. In Proceedings of the 6th International Conference on the Quality of

Information and Communications Technology (QUATIC’2007) (pp. 449-

460). Lisbon New University, Lisbon, Portugal.

Dangle, K., Larsen, P., Shaw, M., & Zelkowitz, M. (2005). Software process

improvement in small organizations: A case study. IEEE Software, 22(6), 68-

75.

252

Daskalantonakis, M. K. (1992). A practical view of software measurement and

implementation experiences within Motorola. IEEE Transactions

on Software Engineering, 18(11), 998-1010.

Daskalantonakis, Michael K. A practical view of software measurement and

implementation experiences within Motorola. IEEE Transactions

on Software Engineering, 18(11), 998-1010

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User

Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.

de Cesare, S., Iacovelli, N., Merico, A., Patel, C., & Lycett, M. (2004). Tailoring

software development methodologies in practice: A case study. Journal of

Computing and Information Technology, 16(3), 157-168.

De Troyer, O. M. F., & Leune, C. J. (1998). WSDM: a user centered design method

for Web sites. Computer Networks and ISDN systems, 30(1), 85-94.

DeGrace, P., & Stahl, L. (1990). Wicked problems, righteous solutions: a catalogue

of modern software engineering paradigms: Prentice Hall.

Deshpande, Y., Murugesan, S., Ginige, A., Hansen, S., Schwabe, D., Gaedke, M.,

White, B. (2002), WEB ENGINEERING, Journal of Web Engineering, 1(1),

003-017.

Diaz-Ley, M., Garcia, F., & Piattini, M. (2008). Implementing a software

measurement program in small and medium enterprises: a suitable

framework. IET Software, 2(5), 417-436.

Dingsøyr, T., Nerur, S., Balijepally, V. G., & Moe, N. B. (2012). A decade of agile

methodologies: Towards explaining agile software development. Journal of

Systems and Software, 85(2012), 1213-1221.

Distante, D., Rossi, G., Canfora, G., & Tilley, S. (2007). A comprehensive design

model for integrating business processes in Web applications. International

Journal of Web Engineering and Technology, 3(1), 43-72.

Dumke, R. R., & Foltin, E. (1998, March). Metrics-based evaluation of object-

oriented software development methods. In Proceedings of the 2nd

Euromicro Conference on Software Maintenance and Reengineering

(CSMR’98) (pp. 193-196). Florence, Italy

Dutta, S., Van Wassenhove, L. N., & Kulandaiswamy, S. (1998). Benchmarking

European software management practices. Communications of the

ACM, 41(6), 77-86.

253

Dyba, T. (2000). An instrument for measuring the key factors of success in software

process improvement. Empirical software engineering, 5(4), 357-390.

Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical

methods for software engineering research. In Guide to advanced empirical

software engineering (pp. 285-311). Springer London.

El Emam, K., & Madhavji, N. H. (1995, March). A field study of requirements

engineering practices in information systems development. In Proceedings of

2nd international symposium on requirements engineering (pp.68-80). York,

England, IEEE CS Press,

El Sheikh, A., & Tarawneh, H. (2007, September). A survey of web engineering

practice in small Jordanian web development firms. In proceedings of the 6th

Joint Meeting on European software engineering conference and the ACM

SIGSOFT symposium on the foundations of software engineering: companion

papers (pp. 481-489). ACM.

Eldai, O. I., Ali, A. H. M. H., & Raviraja, S. (2008). Towards a new methodology

for developing web-based systems. World Academy of Science and

Technology, 46(2008), 190-195.

Esaki, K., Ichinose, Y., & Yamada, S. (2012). Statistical Analysis of Process

Monitoring Data for Software Process Improvement and Its Application.

American Journal of Operations Research, 2(1), 43-50.

ESI (1997) Software Best Practice Questionnaire: Analysis of Results, European

Software Institute, Bilboa.

Fayad, M., Laitinen, M., & Ward, R. (2000). Thinking objectively: software

engineering in the small. Communications of the ACM, 43(3), 115-118.

Feiler, P. H., & Humphrey, W. S. (1993, February). Software process development

and enactment: Concepts and definitions. In Proceedings of the 2nd

International Conference on the Software Process (pp. 28-40)., Berlin, IEEE

Computer Society Press, Los Alamitos, CA,

Fernandes, J. M., & Almeida, M. (2010). Classification and Comparison of Agile

Methods. Paper presented at the7
th

 International Conference on the Quality of

Information and Communications Technology, ICQICT.391-369

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to

software practices at Intel Shannon. European Journal of Information

Systems, 15(2), 200-213.

Fitzgerald, B., Russo, N. L., & O'Kane, T. (2003). Software development method

tailoring at Motorola. Communications of the ACM, 46(4), 64-70.

254

Floyd, C. (1984). A systematic look at prototyping. In Approaches to prototyping

(pp. 1-18). Springer Berlin Heidelberg.

Fraternali, P. (1999). Tools and approaches for developing data-intensive Web

applications: a survey. ACM Computing Surveys (CSUR), 31(3), 227-263.

Fritzsche, M., & Keil, P. (2007). Agile methods and CMMI: compatibility or

conflict?. e-Informatica Software Engineering Journal, 1(1), 9-26.

Gaedke, M., & Gräf, G. (2001, May). Development and evolution of web-

applications using the web composition process model. In proceedings of the

9th International World Wide Web Conference on Web Engineering,

Amsterdam, the Netherlands.

Garzotto, F., Paolini, P., & Schwabe, D. (1991, September). HDM—a model for the

design of hypertext applications. In Proceedings of the third annual ACM

conference on Hypertext (pp. 313-328). ACM.

Genero, M., Poels, G., & Piattini, M. (2008). Defining and validating metrics for

assessing the understandability of entity–relationship diagrams. Data &

Knowledge Engineering, 64(3), 534-557.

Gilb, T., & Graham, D. (1995). Software inspection. ACM SIGSOFT Software

Engineering Notes, 20(5), 90.

Ginige, A., & Murugesan, S. (2001). Web engineering: An introduction. IEEE

MultiMedia, 8(1), 14-18.

Govers, C. P. M. (1996). What and how about quality function deployment (QFD).

International Journal of Production Economics, 46(1996), 575-585.

Graf, K (2005). Addressing Challenges in Application Security, A WatchFire

whitepaper, Retrieved august 14, 2010, from http://www 01.ibm.com/

software /rational/ offerings/websecurity.

Greenfield, J., & Short, K. (2003, October). Software factories: assembling

applications with patterns, models, frameworks and tools. In Companion of

the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications (pp. 16-27). ACM.

Grobbelaar, S. S. (2007). R&D in the National system of innovation: A system

dynamics model (Doctoral dissertation, University of Pretoria).

Guceglioglu, A. S., & Demirors, O. (2011, July). The application of a new process

quality measurement model for software process improvement initiatives. In

proceedings of the 11th International Conference on Quality Software, 2011,

(pp. 112-120).

255

Hallowell, M. R., & Gambatese, J. A. (2010). Qualitative research: application of the

Delphi method to CEM research. Journal of construction engineering and

management, 136(1), 99-107.

Hassan, A. E., & Holt, R. C. (2003, November). Migrating web frameworks using

water transformations. In Proceedings of COMPSAC 2003: International

Computer Software and Application Conference, Dallas, Texas, USA, Nov.

2003.

Henderson-Sellers, B. (1995). Who needs an object-oriented methodology

anyway?. Journal of Object Oriented Programming, 8(6), 6-8.

Hjerling, J., & Ljungqvist, P. (2004). Capability Maturity Model Integration

(CMMI) and Agile Methods. A course Paper, unpublished.

Hofer, C. (2002). Software development in Austria: results of an empirical study

among small and very small enterprises. In Proceedings of the 28th

Euromicro Conference (EUROMICRO’02) (pp. 361–366). IEEE Computer

Society,

Howcroft, D., & Carroll, J. (2000, July). In Proceedings of the Eighth European

Conference on Information Systems, Vienna.

Huang, W., Li, R., Maple, C., Yang, H., Foskett, D., & Cleaver, V. (2008, August).

Web Application Development Lifecycle for Small Medium-Sized

Enterprises (SMEs)(Short Paper). In Proceeding of the Eighth International

Conference on the Quality Software (QSIC'08) (pp. 247-252). Oxford, UK

IEEE Computer Society

Humphrey W.,(1995) A Discipline for Software Engineering, Addison-Wesley,

England, 1995.

Humphrey, W.S.(2000). The Personal Software Process (PSP), Software

Engineering Institute, Carnegie Mellon University, Technical Report

CMU/SEI-2000-TR- 022, ESC-TR-2000-022, December 2000.

Iivari, J. (1989). A methodology for IS development as organizational change: A

pragmatic contingency approach. Systems Development for Human Progress,

North-Holland, Amsterdam, 197-217.

Imreh, R., & Raisinghani, M. S. (2011). Impact of Agile Software Development on

Quality within Information Technology Organizations. Journal of Emerging

Trends in Computing and Information Sciences, 2(10). 460-475.

Isakowitz, T., Stohr, E., & Balasubramanian, P. (1995). RMM: a methodology for

structured hypermedia design. Communications of the ACM, 38(8), 34-44.

Itkonen,J., Kristian ,R., and Lassenius,C.,(2005) Towards Understanding Quality

Assurance in Agile Software Development, Paper presented at the

256

International Conference on Agility Management (ICAM 2005), Helsinki,

July 2005.

Jani, H. M. (2011, October). Intellectual capacity building in higher education:

Quality assurance and management. In Proceeding 5th International

Conference on of the Information Science and Service Science (NISS), 2011

New Trends in (pp. 361-366). IEEE.

Javdani, T., Zulzalil, H., Ghani, A. A. A., Sultan, A. B. M., & Parizi, R. M. (2012).

On the Current Measurement Practices in Agile Software Development.

IJCSI International Journal of Computer Science Issues, 9(4), 127-133.

Jeffries, R., Anderson, A., & Hendrickson, C. (2000). Extreme programming

installed: Addison-Wesley Longman Publishing Co., Second Edition.

Prentice Hall Inc. Boston, MA, USA.

Jiang, L., & Eberlein, A. (2008, May). Towards a framework for understanding the

relationships between classical software engineering and agile

methodologies. In Proceedings of the 2008 international workshop on

Scrutinizing agile practices or shoot-out at the agile corral (pp. 9-14). ACM.

Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical

analysis (Vol. 4). Englewood Cliffs, NJ: Prentice hall.

Jones, C. (2003). Implementing a Successful Measurement. IT Metrics and

Benchmarking: Part II, 16(11), 12-18.

Jun, L., Qiuzhen, W., & Lin, G. (2010, December). Application of agile requirement

engineering in modest-sized information systems development. In

Proceedings of the Second World Congress on Software Engineering

(WCSE), 2010 (Vol. 2, pp. 207-210). IEEE.

Jyothi, V. E., & Rao, K. N. (2011). Effective Implementation of Agile Practices.

International Journal of Advanced Computer Science and Applications

(IJACSA), 2(3), 41-48.

Kaner, C. (2004). Software engineering metrics: What do they measure and how do

we know?. Software Engineering Metric, 8(5), 1-6.

Kao, Y. W., Lin, C. F., Cheng, K. Y., Yuan, S. M., & Tsai, C. T. (2010, October). A

PCDA-based critical exception management system in semiconductor

industry. In proceeding of the International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, (pp. 417-420). IEEE.

Kassou, M., & Kjiri, L. (2012). A Goal Question Metric Approach for Evaluating

Security in a Service Oriented Architecture Context. IJCSI International

Journal of Computer Science Issues, 9(4), 238- 249.

257

Kaur, G., & Bahl, K. (2014). Software Reliability, Metrics, Reliability Improvement

Using Agile Process. IJISET, 1(3), 143-145.

Kautz, K., & Nørbjerg, J. (2003, June). Persistent problems in information systems

development. The case of the world wide web. In Proceedings of 11th

European Conference on Information Systems (ECIS) (pp. 919-926). Naples,

Italy, June 16-21,

Kettelerij, R. (2006). Designing A Measurement Programme For Software

Development Projects. Master thesis, Universtiet van Amsterdam,

Amsterdam.

Kim, J. A., Choi, S. Y., & Jung, R. (2007). Process improvement with process

management agent. International Journal of Software Engineering and Its

Applications, 1(1). 37-52.

Kirakowski, J. (2000). Questionnaires in usability engineering

.www.ucc.ie/hfrg/resources/qfaq1.html (accessed Jul 2010).

Kirk, D., & Tempero, E. (2012, December). Software Development Practices in New

Zealand. In Proceedings of the Nineteenth Asia-Pacific Software Engineering

Conference (APSEC 2012), Hong Kong.

Kitchenham, B. A., & Mendes, E. (2004, May). A comparison of cross-company and

within-company effort estimation models for web applications. In

proceedings of the 8th International Conference on Empirical Assessment in

Software Engineering (pp. 47-55). Edinburgh, Scotland, UK

Kitchenham, B. A., & Pickard, L. M. (1998). SIGSOFT Softw. Eng. Notes, 23(1), 24-

26.

Kitchenham, B., Linkman, S., & Law, D. (1997). DESMET: a methodology for

evaluating software engineering methods and tools. Computing & Control

Engineering Journal, 8(3), 120-126.

Knauber, P., Muthig, D., Schmid, K., & Widen, T. (2000). Applying product line

concepts in small and medium-sized companies. IEEE Software, 17(5), 88-

95.

Knight, A., & Dai, N. (2002). Objects and the Web. IEEE software, 19(2), 51-59.

Koblenz, C.(2003) Maintenance Activities in Software Process Models: Theory and

Case Study Practice. University of Koblenz Landau Campus Koblenz.,

Mastre thesis.

KOCH N.(2001). Software Engineering for Adaptive Hypermedia Applications,

PhD. Thesis, Reihe Softwaretechnik 12, Uni-Druck Publishing Company,

Munich.

258

Koch, N. (1999). A comparative study of methods for hypermedia

development.Ludwig-Maximilians-University Munich, Institute of Computer

Science.

Koch, N., & Kraus, A. (2002, June). The expressive power of uml-based web

engineering. In proceedings of the Second International Workshop on Web-

oriented Software Technology (IWWOST02).

Kolski, C. (1998). A “call for answers” around the proposition of an HCI-enriched

model. ACM SIGSOFT Software Engineering Notes, 23(3), 93-96.

Kroeger, T. A. (2011). Understanding the Characteristics of Quality for Software

Engineering Processes. Doctor of Philosophy, University of South Australia.

Kroeger, T. A., Davidson, N. J., & Cook, S. C. (2014). Understanding the

characteristics of quality for software engineering processes: A Grounded

Theory investigation. Information and Software Technology, 56(2), 252-271.

KRUEGER, C. W. (1992). Software Reuse. ACM Computing Surveys, 24(2), 132-

183.

Kulas, H. (2012). Product Metrics in Agile Software Development (Doctoral

dissertation, Master’s Thesis, Univ. of Tampere, Finland).

Kumar, G., & Bhatia, P. K. (2012). Impact of Agile Methodology on Software

Development Process. International Journal of Computer Technology and

Electronics Engineering (IJCTEE), 2(4), 46-50.

Kunda, D. (2002). A social-technical approach to selecting software supporting

COTS-Based Systems, Unpublished Doctoral Thesis, Department of

Computer Science, University of York, York, UK.

Kunwar, S. (2013). Metamodelling and Evaluating Extreme Programming. Master

Thesis, University of Tampere. Finland.

Lang, M. (2002, June). Hypermedia systems development: do we really need new

methods. In Proceedings of the Informing Science and IT Education

Conference, (pp. 883-891). Cork, Ireland

Laporte, C. Y., Renault, A., Desharnais, J. M., Habra, N., Abou El Fattah, M., &

Bamba, J. C. (2005, May). Initiating software process improvement in small

enterprises: Experiment with micro-evaluation framework. In Proceedings of

International Conference on Software Development, (pp. 153-163).

University of Iceland, Reykjavik, Iceland, May 27-June 1, 2005,

Larman C. (2003). Agile and iterative development: a manager's guide. Addison

Wesley.

Lassenius, C.(2008). Software Process Improvement. http://www.soberit.hut.fi/T-

http://www.soberit.hut.fi/T-76.3601/

259

76.3601/

Lee, H., Lee, C., & Yoo, C. (1998, January). A scenario-based object-oriented

methodology for developing hypermedia information systems. In

Proceedings of the 31st Annual Conference on Systems Science (pp. 47-56).

IEEE.

Leveson, N. G., Heimdahl, M. P. E., Hildreth, H., & Reese, J. D. (1994).

Requirements specification for process-control systems. IEEE Transactions

on Software Engineering, 20(9), 684-707

Li, J., Moe, N. B., & Dybå, T. (2010, September). Transition from a plan-driven

process to scrum: a longitudinal case study on software quality.

In Proceedings of the 2010 ACM-IEEE international symposium on

empirical software engineering and measurement (p. 13). ACM.

Lilburne, B., Devkota, P., & Khan, K. M. (2004). Measuring quality metrics for web

applications. Paper presented at the Innovations Through Information

Technology: 2004 Information Resources Management Association

International Conference, New Orleans, Louisiana, USA, May 23-26, 2004.

Lindstrom, L., & Jeffries, R. (2004). Extreme programming and agile software

development methodologies. Information Systems Management, 21(3), 41-

52.

Loftus, C., & Ratcliffe, M. (2005, June). Extreme programming promotes extreme

learning?. In Proceedings of the 10th Annual Conference on Innovation and

Technology in Computer Science Education (ITICSE 2005) (pp.311-315). Monte de

Caparica, Portugal,

Lowe, D., & Henderson-Sellers, B. (2001). Characteristics of web development

processes. In Proceedings of the International Conference on Advances in

Infrastructure for Electronic Business, Science, and Education on the

Internet (SSGRR’ 2001).

Lyytinen, K., & Rose, G. (2005). How Agile is Agile Enough? Toward a Theory of

Agility in Software Development. Business Agility and Information

Technology Diffusion, 203-225.

Mar, K., & Schwaber, K. (2002). Scrum with XP. Informit. com.

Marinelarena, V. K. I. (2014). Agile Methodologies and Software Process

Improvement Maturity Models, Current State of Practice in Small and

Medium Enterprises. Master thesis. Blekinge Institute of Technology.

Sweden .

McCaffery, F, Wilkie, FG, McFall, D & Lester, N (2004), Northern Ireland software

industry survey, in Proceedings of 4th International SPICE Conference on

http://www.soberit.hut.fi/T-76.3601/

260

Process Assessment and Improvement (pp. 159-61). Lisbon, Portugal,

McCarthy, J. (1995). Dynamics of software development (Vol. 3). Redmond,

Washington: Microsoft Press.

Mccarthy, R. V., & Aronson, J. E. (2001). Activating consumer response: a model

for web site design strategy. Journal of Computer information systems, 41(2),

2-8.

McCurley, J., Zubrow, D., Dekkers, C.(2008). Measures and Measurement for

Secure Software Development.Build security in. Retrieved august 14, 2010,

from https://buildsecurityin.us-cert.gov/bsi/articles/best-

practices/measurement/227-BSI.html

McDonald, A., & Welland, R. (2001, May). Web engineering in practice. In

Proceedings of the fourth WWW10 Workshop on Web Engineering (pp. 21-

30).

McDonald.A and Welland. R., (2001b), ‘A Survey of Web Engineering in Practice’,

Department of Computing Science Technical Report R-2001-79, University

of Glasgow, Scotland, 1 March 2001.

Mendes, E., Mosley, N., & Counsell, S. (2003, April). Investigating early web size

measures for web cost estimation. In Proceedings of EASE’2003 Conference,

Keele, April, 2003, (pp 1-22).

Moniruzzaman, A. B. M., & Hossain, D. S. A. (2013). Comparative Study on Agile

software development methodologies. Global Journal of Computer Science

and TechnologySoftware & Data Engineering. 13(7).4-18.

Montero, S., Díaz, P., & Aedo, I. (2003, February). A Framework for the Analysis

and Comparison of Hypermedia Design Methods. In: Proceedings of The

IASTED International Conference on Software Engineering (SE’2003), (pp.

1053-1058).

Moody, D. L., Sindre, G., Brasethvik, T., & Sølvberg, A. (2003, May). Evaluating

the quality of information models: empirical testing of a conceptual model

quality framework. In Proceedings of the 25
th

 International Conference of

Software Engineering, (pp. 295-305). Oregon State University, Portland,

Oregon USA: IEEE Computer Society.

Morasca, S.(1999). Software measurement. Handbook. of Software Engineering and

Knowledge Engineering, 2, 239-276.

Temprado, E., & Ruz Bendito, E. (2010). Lean Software Development and Agile

Methodologies for a small Software development organization. Master thesis,

university of Boras, Sweden.

https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/227-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/227-BSI.html

261

Morse, J. M. (2003). Principles of mixed methods and multimethod research

design. Handbook of mixed methods in social and behavioral research, 189-

208.

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. (2008). A case

study on the impact of refactoring on quality and productivity in an agile

team. Balancing Agility and Formalism in Software Engineering, 252-266.

Munassar, N. M. A., & Govardhan, A. (2010). A Comparison Between Five Models

Of Software Engineering. IJCSI International Journal of Computer Science

Issues, 7(5), 94-101.

Murphy, T., & Cormican, K. (2012). An analysis of non-observance of best practice

in a software measurement program. Procedia Technology, 5(2012), 50-58.

Murry, J. W., & Hammons, J. O. (1995). Delphi-a versatile methodology for

conducting qualitative research. Review of Higher Education, 18(4), 423-436.

Murugesan, S., Deshpande, Y., Hansen, S., & Ginige, A. (2001). Web engineering:

A new discipline for development of web-based systems. In proceedings of

the First ICSE Workshop on Web Engineering, International Conference on

Software Engineering (pp. 3-13). Springer Berlin Heidelberg.

Nachmias, F., & Nachmias, D. (1996). Research Methods in the Social Sciences, 5
th

Edition, Aenold a member of the Hodder Headline Group, London.

Næsset, L. R., & Bhargava, A. (2003). Electronic Process Guides in Connection

With the Use of RUP at ConsultIT. The Norwegian University of Science and

Technology (NTNU).

Naqvi, S. (2007).A Semi-Autonomous On-Line Chemotherapy Prescription System,

Master, Thesis. Department of Computer Science, Memorial Newfoundland

Uni, Canada.

Nawaz, A., & Malik, K. (2008). Software Testing Process in Agile Development,

Computer Science Master Thesis. Comp Science Dept. School of

Engineering Blekinge Institute of Technology, Sweden, 2008.

Neuman, W. (2003). Social research methods: Qualitative and quantitative

approaches: Pearson Education

O’Sheedy, D., & Sankaran, S. (2013). Agile Project Management for IT Projects in

SMEs: A Framework and Success Factors. The International Technology

Management Review, 3(3), 187-195.

Okoli, C., & Carillo, K. (2012). The best of adaptive and predictive methodologies:

open source software development, a balance between agility and discipline.

International Journal of Information Technology and Management, 11(1),

262

153-166.

Owens, D. M., & Khazanchi, D. (2009). Software Quality Assurance. Handbook of

Research on Technology Project Management, Planning, and Operations.

ISBN, 1965131010.

Paetsch, F., Eberlein, A. & Maurer, F. (2003). Requirements engineering and agile

software development. Proceedings of the IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises, (pp.

308 -313).

Pallant, J. (2007). SPSS Survival Manual: A Step by Step Guide to Data Analysis

Using SPSS for Windows Version 15: 3rd ed.Open University Press

Park, R. E., Goethert, W. B., & Florac, W. A. (1996). Goal-Driven Software

Measurement – A Guidebook. Tech. Rep. CMU/SEI-96-HB-002, Software

Engineering Institute, Carnegie Mellon University, August 1996.

Park, Y., Park, H., Choi, H., & Baik, J. (2006, July). A study on the application of

six sigma tools to PSP/TSP for process improvement. In: proceeding of the

5th International Conference on Computer and Information Science,

Component-Based Software Engineering, Software Architecture and Reuse.

ICIS-COMSAR (pp. 174-179). IEEE.

Pathak, S., Pateriya, P., & Pal, P. (2012). A Case Study on Software Development

Projects in Academic Knowledge Centers using SCRUM. International

Journal of Computer Applications, 43(10), 20-24.

Patton, M. (2002). Qualitative research and evaluation methods: Sage Publications,

Inc.

Paul, C. (1995). Software testing: A craftsman's approach. CRC PressInc.

Pinsonneault, A., & Kraemer, K. L. (1993). Survey research methodology in

management information systems: an assessment. Journal of management

information systems, 10(2),75-105.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile

toolkit. Boston: Addison-Wesley Professional.

Powell, T., Jones, D., & Cutts, D. (1998). Web site engineering: beyond Web page

design: Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

Preciado, J. C., Linaje, M., Sanchez, F., & Comai, S. (2005, September). Necessity

of methodologies to model Rich Internet Applications. In Proceedings of the

7th IEEE International Symposium on Web Site Evolution, (pp. 7-13). IEEE.

Pressman, R. (2009).Software Engineering: A Practitioner’s Approach, 7th Edition,

McGraw-Hill Education.

263

Preuninger, R.D. (2006). The advantages of implementing software engineering

process models, Master Thesis. Faculty of the Graduate School, Texas At

Arlington Uni, USA.

Punch, K. (2005). Introduction to social research: Quantitative and qualitative

approaches: Sage Publications Ltd.

Pusatli, O. T., & Misra, S. (2011). Software Measurement Activities in Small and

Medium Enterprises: an Empirical Assessment. Acta Polytechnica

Hungarica, 8(5), 21-42.

Quaglia, E. J., & Tocantins, C. A. (2011, December). Simulation projects

management using Scrum. In Proceedings of the 2011 Winter Simulation

Conference (WSC), (pp. 3421-3430). IEEE.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in

six agile methods and its applicability for method engineering. Information

and Software Technology, 50(4), 280-295.

Qureshi, M. R. J. (2011). Empirical Evaluation of the Proposed eXSCRUM Model:

Results of a Case Study. IJCSI, 8(3), 150-157.

Ralyté, J., Deneckère, R., & Rolland, C. (2003, January). Towards a generic model

for situational method engineering. In proceedings of 15th International

Conference on the Advanced Information Systems Engineering (CAiSE 2003)

(pp. 95-110). Klagenfurt, Austria

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering

practices and challenges: an empirical study. Information Systems

Journal,20(5), 449-480.

Redouane, A. (2002, October). Guidelines for Improving the Development of Web-

Based Applications. In Proceedings of the Fourth International Workshop on

Web Site Evolution (WSE'02) (p. 93). IEEE Computer Society.

Redouane, A. (2004, August). Towards a new method for the development of web-

based applications. In proceedings of the Third IEEE International

Conference on Cognitive Informatics (pp. 116-122). IEEE.

Ribeiro, F. L., & Fernandes, M. T. (2010). Exploring agile methods in construction

small and medium enterprises: a case study. Journal of Enterprise

Information Management, 23(2), 161-180.

Richardson, I., & von Wangenheim, C. (2007). Guest Editors' Introduction: Why are

Small Software Organizations Different? IEEE Software, 24(1), 18-22.

Rico, D. F., Sayani, H. H., & Sone, S. (2009). The business value of agile software

methods: maximizing ROI with just-in-time processes and documentation. J.

264

Ross Publishing.

Robson C. (1993) Real World Research. A Resource for SocialScientists and

Practitioner–Researchers. Blackwell Publishers,Oxford.

Rodríguez, D., Harrison, R., & Satpathy, M. (2002). A generic model and tool

support for assessing and improving Web processes. In Proceedings of the

Eighth IEEE Symposium on Software Metrics (METRICS.02) (pp. 141-151).

IEEE.

Rombach, H. D., & Basili, V. R. (1991). Practical benefits of goal-oriented

measurement. Software reliability and metrics, 217-235.

Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: issues

and analysis. International Journal of Forecasting, 15(4), 353-375.

Royce, W. W. (1970, August). Managing the development of large software systems.

In proceedings of IEEE WESCON, 26(8), 118-127.

Rumbaugh J. (1995). What is a method?. Journal of Object Oriented Programming,

8(6), 10-16.

Rumpe, B., & Schröder, A. (2002, May). Quantitative survey on extreme

programming projects. In: Proceedings of the Third International Conference

on Extreme Programming and Flexible Processes in Software Engineering

(XP2002), (pp. 95-100). Alghero, Italy

Runeson, P., & Isacsson, P. (1998, August). Software quality assurance-concepts and

misconceptions. In Proceedings of the 24th Euromicro Conference

(EUROMICRO 1998), Vesteras, Sweden, IEEE.

Russo, N. L., & Graham, B. R. (1999, August). A first step in developing a Web

application design methodology: understanding the environment. In

Proceedings of the Sixth International Conference on Information Systems

Methodology (pp. 24-33). Salford University, Manchester, UK, Springer,

London, UK

Saiedian, H., & Carr, N. (1997). Characterizing a software process maturity model

for small organizations. ACM SIGICE Bulletin, 23(1), 2-11.

Salo, O. (2006). Enabling software process improvement in agile software

development teams and organizations. Ph.D. dissertation, University of Oulu,

Finland.

Salo, O., & Abrahamsson, P. (2008). Agile methods in European embedded software

development organisations: a survey on the actual use and usefulness of

Extreme Programming and Scrum. IET Software, 2 (1), 58–64.

Sanchez, J. C., Williams, L., & Maximilien, E. M. (2007, August). On the sustained

265

use of a test-driven development practice at IBM. In Proceedings of the Agile

Conference (AGILE), (pp. 5-14). IEEE.

Santos, G., Montoni, M., Vasconcellos, J., Figueiredo, S., Cabral, R., Cerdeiral, C. &

Rocha, A. R. (2007, September). Implementing software process

improvement initiatives in small and medium-size enterprises in Brazil. In

Proceedings of the Sixth International Conference on the Quality of

Information and Communications Technology (QUATIC 2007), (pp. 187-

198). IEEE.

Sargent, R. G. (2012). Verification and validation of simulation models. Journal of

Simulation, 7(1), 12-24.

SARGUT, K. (2003). Application of Statistical Process Control to Software

Development Processes via Control Charts. Master Thesis, THE MIDDLE

EAST TECHNICAL UNIVERSITY.

Sato, D., Bassi, D., Bravo, M., Goldman, A., & Kon, F. (2006). Experiences tracking

agile projects: an empirical study. Journal of the Brazilian Computer Society,

12(3), 45-64.

Savolainen, P., Sihvonen, H. M., & Ahonen, J. J. (2007). SPI with lightweight

software process modeling in a small software company. In Software Process

Improvement (pp. 71-81). Springer Berlin Heidelberg.

Schneider, J. G., & Vasa, R. (2006, April). Agile practices in software development-

experiences from student projects. In Proceedings of the 2006 Australian

Software Engineering Conference (ASWEC’06), Sydney, Australia. IEEE

Computer Society.

Scholtz, J., & Steves, M. P. (2004, November). A framework for real-world software

system evaluations. In Proceedings of the 2004 ACM conference on

Computer supported cooperative work (pp. 600-603). ACM.

Schwabe, D., & Rossi, G. (1995). The object-oriented hypermedia design model.

Communications of the ACM, 38(8), 46.

Schwabe, D., & Rossi, G. (1998, June). Developing hypermedia applications using

OOHDM. In Workshop on Hypermedia Development Process, Methods and

Models,(Hypertext´98), Pittsburg, USA

Schwaber, K. and Beedle.(2001). Agile Software Development with Scrum: Upper

Saddle River: Prentice Hall. New Jersey 2001

Seidman, I. (1991). Interviewing as qualitative research: A guide for researchers in

education and the social sciences: Teachers College Press New York.

Sekaran, U. & Bougie, R. (2010). Research methods for business: A skill building

266

Approach (5th ed.). New York: John Wiley & Sons.

Serrano, M. A., Montes de Oca, C., & Cedillo, K. (2003, November). An experience

on using the team software process for implementing the Capability Maturity

Model for software in a small organization. In Proceedings of the Third

International Conference on Quality Software (QSIC’03), (pp. 327-334).

IEEE.

Sison, R., & Yang, T. (2007). Use of Agile Methods and Practices in the Philippines.

Paper presented at the 14th Asia-Pacific Software Engineering Conference

(APSEC'07), Nagoya, Japan.

Sjoberg, D. I., Dyba, T., & Jorgensen, M. (2007, May). The future of empirical

methods in software engineering research In Proceedings of the 29th

International Conference on Software Engineering (ICSE’07), (pp. 358-378).

Future of Software Engineering (FOSE’07), Minneapolis, Minnesota, USA

IEEE Computer Society.

Software Management Guide, Vol. I, Software Technology Support Center, October

1993, p. 23.

Software Program Managers Network (SPMN). 1999. 16 Critical Software

PracticesTM for Performance-based Management.

<http://www.spmn.com/critical-software-practices.html>

Sorensen, R. (1995). A comparison of software development

methodologies.CrossTalk, 8(1), 10-13.

Sørumgård, S., & Sindre, G. (1995, July). Aspects of process quality. In Proceedings

of the 4th International Conference on Software Quality, Dundee,

Scotland (pp. 4-5).

Spasibenko, N., & Alite, B. (2009). Project Suitability for Agile methodologies.

Master.Thesis, Umeå School of Business, Sweden.

Stojanovic, Z., Dahanayake, A., & Sol, H. (2003). Modeling and Architectural

Design in Agile Development Methodologies. In Proceedings of the 8th

International Workshop on Evaluation of Modeling Methods in Systems

Analysis and Design (EMMSAD'03), (pp.1-10). Velden, Austria.

Strode, D. (2006). Agile methods: a comparative analysis. Paper presented at the

19th Annual Conference of the National Advisory Committee on Computing

Qaulifications (NACCQ 2006), Willington, New Zealand.

Stutzke, R. D. (2005, November). Measuring and Estimating Process Performance.

In 5th Annual CMMI Technology Users Group Meeting Denver, Colorado.

267

Sulayman, M., & Mendes, E. (2009). A systematic literature review of software

process improvement in small and medium web companies. In Proceedings

of the International Conference on Advanced Software Engineering and Its

Applications (ASEA’09), (pp. 1–8). Jeju Island, Korea, Springer.

doi:10.1007/978-3-642-10619-4_1

Sulayman, M., & Mendes, E. (2010, March). Quantitative assessments of key

success factors in software process improvement for small and medium web

companies. In Proceedings of the 2010 ACM Symposium on Applied

Computing (pp. 2319-2323). ACM.

Sulayman, M., Urquhart, C., Mendes, E., & Seidel, S. (2012). Software process

improvement success factors for small and medium Web companies: A

qualitative study. Information and Software Technology, 54(2012), 479-500.

Suwanya, S., & Kurutach, W. (2008, July). An analysis of software process

improvement for sustainable development in Thailand. In Proceedings of

2008 IEEE 8th International Conference on Computer and Information

Technology, Sydney, Australia (pp. 724-729). IEEE.

Tabachnick, B., & Fidell, L. (2007). Using multivariate analysis. Using multivariate

analysis. 5th Edition Allyn & Bacon; Needham Heights MA.

Tan, M., & Yap, C. Y. (1995). Impact of organisational maturity on software quality.

In Software Quality and Productivity: Theory, practice, education and

training, Editors M. Lee, B. Barta, & P. Juliff, Chapman and Hall for IFIP,

London, (pp. 231-234). Springer US.

Tarafdar, M., & Zhang, J. (2008). Determinants of reach and loyalty-a study of

Website performance and implications for Website design. Journal of

Computer Information Systems, 48(2), 16-24.

Tarawneh , H& Allahawiah, S (2009). Web applications Development and Software

Process Improvement in Small Software Firms: a Review. In Proceedings of

the 4th international Conference on Information Technology (ICIT 2009), al

zaytoonah University of Jordan.

Tessem, B. (2003). Experiences in learning xp practices: A qualitative study. In

Proceedings of the Fourth International Conference on Extreme Programming

and Agile Processes in Software Engineering (pp. 131-137). Springer Berlin

Heidelberg.

Thacker, B. H., Anderson, M. C., Senseny, P. E., & Rodriguez, E. A. (2006). The

role of nondeterminism in model verification and validation. International

Journal of Materials and Product Technology, 25(1), 144-163.

Theunissen, W. H., Boake, A., & Kourie, D. G. (2005, July). In search of the sweet

spot: agile open collaborative corporate software development. In

Proceedings of the 2005 annual research conference of the South African

268

institute of computer scientists and information technologists on IT research

in developing countries (pp. 268-277). South African Institute for Computer

Scientists and Information Technologists.

Tofan, D., Galster, M., Avgeriou, P., & Weyns, D. (2011, April). Software

engineering researchers' attitudes on case studies and experiments: An

exploratory survey. In proceedings of the 15th Annual Conference

on Evaluation & Assessment in Software Engineering (EASE 2011), (pp. 91-

95). IET.

Toffolon, C., & Dakhli, S. (1998, March). Software artifacts reuse and maintenance:

an organizational framework. In Proceedings of the 2nd Euro micro

Conference on Software Maintenance and Reengineering (CSMR), (pp. 228-

233). March 1998, Palazzo degli Affari, Italy IEEE.

Trochim, W. M. (2006). Qualitative measures. Research Measures Knowledge Base,

(pp.361-9433). Retrieved on 13 May 2013 from

http://www.socialresearchmethods.net/kb/qualval.php.

Tsai, H. L., & Cheung, D. (1999). A monitoring framework for software project

development. In Proceedings of the Second International Conference on

Intelligent Processing and Manufacturing of Materials (IPMM'99), (pp.

1079-1085). IEEE.

Tsun, C. Dac-Buu, C. (2008). A survey study of critical success factors in agile

software projects. The Journal of Systems and Software, 81(6), 961–971.

Tu, H., Sun, W., & Zhang, Y. (2009). The Research on Software Metrics and

Software Complexity Metrics. Paper presented at International Forum on the

Computer Science-Technology and Applications IFCSTA '09.

Turk, D., France, R., Rumpe, B. (2002). Limitations of Agile Software Processes,

paper presented at the Third International Conference on eXtreme

Programming and Agile Processes in Software Engineering, Sardinia, Italy,

43-46.

Turk, D., Robert, F., & Rumpe, B. (2005). Assumptions underlying agile software-

development processes. Journal of Database Management (JDM), 16(4), 62-

87.

Tyrrell, S. (2000). The many dimensions of the software process. Crossroads, 6 (4),

22-26.

Upender, B. (2005, July). Staying agile in government software projects. In

Proceedings of the Agile Development Conference (ADC’05) (pp. 153-159).

IEEE.

269

Väänänen, M. (2008), “evaluating agile methods and their implementations,” Master

thesis, Information System Competence, Applied Sciences UNI, Finland

Van Solingen, R. (2002). The goal/question/metric approach. Encyclopedia of

Software Engineering—2 Volume Set, 578-583.

Van Solingen, R., & Berghout, E. (1999). The Goal/Question/Metric Method: a

practical guide for quality improvement of software development: McGraw-

Hill.

Van Solingen, R., & Berghout, E. (2001). Integrating goal-oriented measurement in

industrial software engineering: industrial experiences with and additions to

the Goal/Question/Metric method (GQM).paper presented at the 7
th

International Software Metrics Symposium, London, UK,

Varkoi, T., & Mäkinen, T. (2000, October). Software process improvement initiation

in small organisations. In Proceedings of the 3rd European Software

Measurement Conference, FESMAAEMES, Madrid, Spain.

Visconti, M., & Cook, C. R. (2004). An ideal process model for agile methods. In

Proceedings of 5th International Conference on Product Focused Software

Process Improvement PROFES 2004, (pp.431-441), Lecture Notes in

Computer Science, 3009,

Von Wangenheim, C. G., Punter, T., & Anacleto, A. (2003). Software measurement

for small and medium enterprises. In Proceeding of the 7th International

Conference on Empirical Assessment in Software Engineering (EASE). Keele

University, Staffordshire, UK.

Vriens, C. (2003, June). Certifying for CMM Level 2 and IS09001 with XP@

Scrum. In Proceedings of the Agile Development Conference, (pp. 120-124).

IEEE.

Weiss, D. (1994). GQM plus heuristics better than brainstorming. IEEE Software,

11(1), 8-9.

West, D., Grant, T., Gerush, M., & D’silva, D. (2010). Agile development:

Mainstream adoption has changed agility. Forrester Research, 2, 41.

Whitgift, D. (1991). Methods and tools for software configuration management:

John Wiley & Sons, Inc. New York, NY, USA.

Whitson, G. (2006). WebHelix: another web engineering process. Journal of

Computing Sciences in Colleges, 21(5), 21-27.

Wikipedia. (2011). List of software development philosophies. Retrieved Dec. 08,

2011, from

http://en.wikipedia.org/wiki/List_of_software_development_philosophies#So

ftware_development_philosophies

http://en.wikipedia.org/wiki/List_of_software_development_philosophies#Software_development_philosophies
http://en.wikipedia.org/wiki/List_of_software_development_philosophies#Software_development_philosophies

270

Williams, L. (2012). What agile teams think of agile principles. Communications of

the ACM, 55(4), 71-76.

Williams, L., & Erdogmus, H. (2002, May). On the economic feasibility of pair

programming. In Proceedings of the International Workshop on Economics-

Driven Software Engineering Research EDSER, Orlando, Florida, USA.

Williams, L., Rubin, K., & Cohn, M. (2010, August). Driving process improvement

via comparative agility assessment. In Proceedings of the Agile 2010

Conference, (pp. 3-10). Piscataway, NJ IEEE.

Wills, G. B., Abbas, N., Chandrasekharan, R., Crowder, R. M., Gilbert, L., Howard,

Y. M. & Walters, R. J. (2007, September). An agile hypertext design

methodology. In Proceedings of the eighteenth conference on Hypertext and

hypermedia (pp. 181-184). ACM.

Winger, A. R. (1994). Is Big Really Bad? Business Economics. 29(3), 38-42.

Withers, D. H. (2000, December). Some fundamental issues in model building:

software engineering best practices applied to the modeling process. In

Proceedings of the 32nd conference on Winter simulation (pp. 432-439).

Wohlin, C., Höst, M., & Henningsson, K. (2006). Empirical research methods in

Web and software Engineering. In Web engineering (pp. 409-430). Springer

Berlin Heidelberg.

Wong, B., & Hasan, S. (2006). Software Process Improvement In Bangladesh.

In Software Engineering Research and Practice (pp. 246-252).

Wu, Y., & Offutt, J. (2002). Modeling and testing Web-based applications. Technical

Report, George Mason University 2002.

Xu, Y., Lin, Z., & Foster, W. (2003). Agile Methodology in CMM Framework: an

Approach to Success for Software Companies in China. In Proceedings of the

Global Information Technology Managemen GITM. Calgary, Alberta,

Canada.

Yin, R. (2003). Case Study Research Design and Methods (3
rd

 edition). London, UK:

Sage.

ZAROUR, M . (2009). Methods to evaluate lightweight software process assessment

methods based on evaluation theory and engineering design principles”, PhD

Thesis, Universite du Quebec, Canada

Zelenka, P. (2006). Modern methods of web applications analysis and

design.ZEMEDELSKA EKONOMIKA-PRAHA-, 52(4), 152.

Zelkowitz, M., & Wallace, D. (1998). Experimental models for validating

technology. Computer, 31(5), 23-31.

271

Appendix A

Questionnaire

272

273

274

275

276

277

278

279

280

Appendix B

 Questionnaire Face Validity Cover Letter

281

Appendix C

Expert cover letter

282

Appendix D

Knowledge expert questionnaire

Reviewing the proposed new monitoring oriented agile based web

application development methodology for small software firms

PhD Student: Moath Husni Altarawneh

School of computing

College of Arts and Sciences

Universiti Utara Malaysia

Kedah, Malaysia
Tarawneh80@yahoo.com

The research aims to propose a new monitoring oriented agile based web application

development methodology for small software firms. One of the objectives of this

research is to verify the components of the methodology. This could be achieved

through an expert review. Your answers to the following questions will serve as

useful feedback on the methodology's comprehensiveness, understandability and

feasibility. Your kind cooperation and participation in answering the questions is

highly appreciated and will be treated as strictly confidential.

==

The new methodology consists of five (5) components: activities, methods, practices,

tools and team structure.

You are required to give answers related to each component.

1. Activities and methods

The proposed methodology process consists of two sides: development and

measurement. Development process performed based on the combined XP and

Scrum method and web design prototype. A measurement process performed based

on the goal oriented monitoring method (GOMM).

1.1 Development activities: planning, development and integration

mailto:Tarawneh80@yahoo.com

283

a) Are the activities of the development process correct, clear and feasible?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Do the activities cover all the stages of building Web applications?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Are the web design method steps correct, clear and feasible?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

d) Is it applicable to use the planning phase to perform the web design method?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

e) Are the requirement repository activities (save, reuse and trace requirements.)

correct, clear and feasible?

284

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.2 Measurement process: planning, definition and feedback

a) Are the measurement activities correct and clear?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Are the measurement activities feasible to be used for SSF?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Do the measurement activities cover all stages of building Web applications?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

285

d) Please fill up the following table to determine the correctness and the

clearness of goals. Use "√” for YES and leave the space blank for NO.

Goal

description

Goal Correct Clear

Process

activities

G1.1:To analyze requirement status

for the purpose of monitoring

with respect to no. of requirements

completed from the viewpoint of GOMM

member

G1.2:To analyze the design status

for the purpose of monitoring

with respect to no of SLOC, no of web

pages and total no. of links

from the viewpoint of

GOMM member

G1.3To analyze the testing process

for the purpose of monitoring

with respect to current size of test status

from the viewpoint of GOMM member

Practices PG1:To analyze common Scrum practices

(core) for the purpose of Monitoring with

respect to Scrum meetings from the

viewpoint of GOMM member

PG2: To analyze the common XP practices
(core) for the purpose of monitoring with

respect to pair programming, TDD,

refactoring, coding standards, from the

viewpoint of GOMM member

PG3:To analyze the supported XP

practices for the purpose of monitoring

with respect to small release, continuous

integration, simple design, metaphor and

collective ownership from the viewpoint of

GOMM member

Productivity G2:To analyze productivity tracking

for the purpose of monitoring

with respect to value of staff productivity

from the viewpoint of GOMM member

Process quality QG1: To analyze the process completeness

for the purpose of monitoring with respect

to process activities requirements, design,

coding, testing and project management

from the viewpoint GOMM member

through a questionnaire

QG2: To analyze the process consistency

for the purpose of monitoring with respect

to process activities requirements, design,

coding, testing and project management

from the viewpoint of GOMM member

through a questionnaire

QG3: To analyze the process accuracy For

286

the purpose of Monitoring With respect to

process activities requirements, design,

coding, testing and project management

From viewpoint of GOMM member

through a questionnaire
QG4: To analyze the process tailorabilty

for the purpose of monitoring with respect

to tailorability practices from the viewpoint

of GOMM member through a

questionnaire

QG5: to analyze the process flexibility for

the purpose of monitoring with respect to

flexibility practices from the viewpoint of

GOMM member through a questionnaire

QG6: To analyze the process compatibility

for the purpose of monitoring with respect

to compatibility practices from the

viewpoint of GOMM member through a

questionnaire

QG7: To analyze the process accessibility

for the purpose of monitoring with respect

to accessibility practices from the

viewpoint of GOMM member through a

questionnaire

QG8: To analyze the process applicability

for the purpose of monitoring with respect

to applicability practices from the

viewpoint of GOMM member through a

questionnaire

QG9: analyze the process changeability for

the purpose of monitoring with respect to

changeability practices from the viewpoint

of GOMM member through a

questionnaire

QG10: to analyze the process

supportability for the purpose of

monitoring with respect to supportability

practices from the viewpoint of GOMM

member through a questionnaire

Cost To analyze development process cost for

the purpose of monitoring and controlling

with respect to the cost of fix ,cost of

activity and project budget from the

viewpoint of GOMM member

Quality To analyze quality aspects

for the purpose of monitoring

With respect to security, product

reliability, usability and maintainability

from the viewpoint of

GOMM member

Time To analyze development life cycle time for

the purpose of monitoring

With respect to reuse artifacts, time for

each iteration, project velocity from the

view point of GOMM member

287

e) Please fill up the following table to determine the correctness and the

clearness of the questions. Use "√” for YES and leave the space blank for

NO.

Metric type Questions Correct Clear

Process

activities

Q1.1.1: What is the current size of the

requirements status?

Q1.2.1: What is the current size of the

design status?

Q1.3.1: What is the current size of the

test status?

Practices PQ1.1: How to measure the iteration

planning meeting?

PQ1.2: How to measure the daily

meeting?

PQ1.3: How to measure the iteration

review meeting?

PQ2.1: Does the coding stage

performed by two programmers

simultaneously?

PQ2.2: how to monitor the TDD

practice?

PQ2.3: Does the duplicated code

removed to decrease ambiguity and

redundancy, and improve

communication and adding

flexibility?

PQ2.4: Does the development team

follow a coding standard?

PQ3.1: Is every iteration release with

small size of code?

PQ3.2: Does the new created release

reflecting all the changes?

PQ3.3: Is the architecture and the

code (including the unit tests) as

simple as possible?

PQ3.4: Does the System created by

set of Metaphors between the client

and programmers?

PQ3.5: Do all team members are

owners of the code (can make

changes on the code)?

Productivity Q2.1: What is the value of

productivity of the project staff?

Completeness QQ1.1: what is the degree of

requirement completeness?

288

QQ1.2: what is the degree of design

completeness?

QQ1.3: What the degree of coding

completeness?

QQ1.4: What the degree of testing

completeness?

QQ1.5: What the degree of project

management completeness?

Consistency QQ2.1: what is the degree of

requirement consistency?

QQ2.2: what is the degree of design

consistency?

QQ2.3: What the degree of coding

consistency?

QQ2.4: What the degree of testing

consistency?

QQ2.5: What the degree of project

management consistency?

Accuracy QQ3.1: what is the degree of

requirement accuracy?

QQ3.2: what is the degree of design

accuracy?

QQ3.3: What the degree of coding

accuracy?

QQ3.4: What the degree of testing

accuracy?

QQ3.5: What the degree of project

management accuracy?

Tailorability QQ4.1: what is the degree of process

tailorability?

Flexibility QQ5.1: what is the degree of process

flexibility?

Compatibility QQ6.1: what is the degree of process

compatibility?

Accessibility QQ7.1: what is the degree of process

accessibility?

Applicability QQ8.1: what is the degree of process

applicability?

Changeability QQ9.1: what is the degree of process

changeability?

Supportability QQ10.1: what is the degree of process

supportability?

Cost Q3.1: What is the cost of fix post to

release problem in a month?

Q3.2: What is the current cost by

activity for each software product?

289

Q3.3: What is the current budget

status of the project?

Quality Q4.1: What the distribution of failure

after delivery?

Q4.2: What is the defect density?

Q4.3: What is the quality of the defect

detection process?

Q4.4: What is the product reliability?

Q4.5: What is the total effort in hours

spent in locating the fault vs. total

effort spent for fixing the fault?

Q4.6: how to monitor the usability of

Web application?

Q4.7 how to monitor Web

application's maintainability?

Time Q5.1: What is the percentage of reuse

artifacts?

Q5.2: What is the development time

by activity for each Web application

product?

Q5.3: What is the Project velocity?

f) Please fill up the following table to determine the metric correctness,

clearness and feasibility. Use "√” for YES and leave the space blank for

NO.

Metric type Metric Correct Clear Feasible

Process

activities

M1.1.1.1: Number of product backlog

items completed to date / Total Number

of requirements planned.

M1.2.1.1: Number of LOC completed

to date / Total Number of SLOC

planned.

M1.2.1.2: Number of Web Pages to date

/ Total Number of Web Page planned.

M1.2.1.3: Total Number of internal

links / Number of Web pages.

M1.3.1.1: Number of test completed to

date / Total Number of test planned.

M1.3.1.2 number of testing line of code

/ total number lines of code

Practices PM1.1.1: Number of iteration planning

meetings per one application.

PM1.2.1: Number of daily meetings per

one application?

PM1.3.1: Number of review meetings

done per one application?

PM 2.1.1: Number of programmers.

290

PM2.2.1: Number of tests completed to

date /Total Number of tests planned.

PM2.2.2: Number of testing line of

code / total number lines of code.

PM2.3.1: Number of lines of duplicated

code removed / total line of code per

iteration.

PM2.4.1: Adherence of coding standard

(High, Low).

PM3.1.1: (Number of LOC of the first

release - the LOC of the next release) /

total NLOC

PM 3.2.1: Total number of line of code

added, removed and updated) / total line

of code for the previous iteration.

PM3.3.1: (Number of LOC of the

current release - total LOC) / Total LOC

PM3.4.1: Number of meetings between

development team and the client?

PM3.5.1Number of team members who

made changes in the code.

Productivity M2.1.1: Number of LOC for staff in

month.

Cost M3.1.1: Dollar cost related to fix post to

release problems.

M3.2.1: Number of dollars spent to date

for activity i /Number of dollars

estimated for activity.

M3.3.1Number of total dollars spent to

date / Number of total dollars estimated.

Quality M4.1.1: Severity classification for each

detected failure (fatal, major, minor and

other).

M4.2.1: Number of iteration i defects /

metric for size in sprint i(LOC).

M4.3.1: Number of pre-release defects

of in iteration / (Number of pre-release

+ post-release defects).

M4.4.1: Number of defects / execution

time.

M4.5.1: Effort in hours for locating

each fault.

M4.5.2: Efforts in hours for fixing the

fault.

M4.6.1 No. of page links/ total number

of internal links (navigability)

M4.6.2 Response time

M4.6.3 Memory space

M4.7.1dynamic pages/ total no. of

291

pages (changeability) should be low

M4.7.2 dynamic testing LOC/ total

LOC testability should be low

M4.7.3 1/ no of direct links (stability)

should be high

Time M5.1.1: Number SLOC of reusing code

/ Number of SLOC completed to date.

M5.1.2: Number of reuse Web pages /

total Web Page number.

M5.2.1: Elapsed time / estimated time.

g) Please fill up the following table determine the metric correctness, clearness,

and feasibility. Use "√” for YES and leave the space blank for NO.

Metric type Metric Correct Clear Feasible

Completeness Q.M1.1.1: Customers or P.O were

available on-site for face-to-face

discussions during requirement

elicitation

Q.M1.1.2: The scope of project was

identified at the beginning of a project

to create initial prioritized stack of

requirements

Q.M1.1.3:The requirements were

validated by customers in review

meetings by using prototype/release

Q.M1.1.4: Requirements were

prioritized and can be reprioritized by

customers throughout the

development

Q.M1.1.5The development team was

enabled to re-estimate the time and

velocity of user stories

Q.M1.1.6:The requirements were

written on cards in short statement

Q.M1.2.1:Model storming was

performed (architecture, interface,

data structure and algorithm)

Q.M1.2.2: The architecture designs

were produced

Q.M1.2.3: The interface designs were

produced

Q.M1.2.4: The data structure was

produced

Q.M1.2.5:The algorithms were

produced

Q.M1.2.6:Iteration modelling was

performed at beginning of each

iterations

292

Q.M1.2.7:The designs were

documented

Q.M1.3.1: Reuse of software

components was encouraged

Q.M1.3.2: Detailed explanations on

the functions and variables were

included in the code

Q.M1.3.3:The code was produced and

integrated to system baseline

iteratively and incrementally

Q.M1.3.4:The software was delivered

frequently with increments of features

Q.M1.3.5:Customer involved with the

team for giving immediate feedbacks

Q.M1.3.6:The features with high

priority were delivered first

Q.M1.3.7:The software was deployed

gradually in real environment

Q.M1.3.8: The deliverable

documentation were produced late

Q.M1.4.1: Tests were automated

Q.M1.4.2: Tests were performed

continuously throughout the

development

Q.M1.4.3: Frequent integration tests

were performed

Q.M1.4.4: Unit tests were performed

to ensure that all requirements were

fulfilled

Q.M1.4.5: User interfaces were tested

Q.M1.4.6: Database regression testing

were performed

Q.M1.4.7: Customer wrote the user

acceptance tests according to

stories/features

Q.M1.4.8: Acceptance tests were used

to validate and verify user’s

requirements

Q.M1.4.9: Results of the tests were

documented

Q.M1.4.10: Results from automated

tests were compared to manual tests

Q.M1.5.1: The project was started

with a clear scope, goals and

objectives

Q.M1.5.2: Planning for the project

was performed collaboratively with

team members

Q.M1.5.3: The current progress of the

293

iteration / sprint was revealed to

everyone on sprint burn down chart

Q.M1.5.4: Customer and end-user

involvement were monitored in

project activity

Q.M1.5.5: The project plan was

documented for in-hand problems

Consistency Q.M2.1.1: Appropriate procedure is

used to handle frequently changing

requirements

Q.M2.1.2: The requirements were

documented by following a particular

standard

Q.M2.2.1: Appropriate procedure was

used to handle frequently changing

designs

Q.M2.2.2: The design was

documented by following a particular

standard

Q.M2.2.3: Software designs were

refactored frequently

Q.M2.2.4: Metaphor was used for

determining architecture of the system

Q.M2.3.1: Appropriate procedure was

used to ensure that the code was

developed based on the requirements

and design

Q.M2.3.2: Appropriate procedure was

used to handle frequently changing

code

Q.M2.3.3: Appropriate procedure was

used to deliver the software releases

to customers

Q.M2.3.4: Appropriate code

integration strategy was followed

Q.M2.3.5: Appropriate coding/

interface/ database standards were

followed

Q.M2.3.6: Team members had

authority to make changes at any part

of the code

Q.M2.3.7: Pair programming was

performed

Q.M2.3.8: Failing unit tests were

developed before the code was written

(TDD)

Q.M2.3.9: Rigorous code and

database refactoring were

implemented

Q.M2.3.10: Code integration strategy

294

was established and revised

Q.M2.4.1: The testing results were

documented by following a particular

standard

Q.M2.4.2: Appropriate procedure was

followed for implementing automated

tests

Q.M2.4.3: Appropriate procedure was

followed for implementing integration

tests

Q.M2.4.4: Appropriate procedure was

followed for implementing interface

tests

Q.M2.4.5: Appropriate procedure was

followed for implementing user

acceptance tests

Q.M2.4.6: Appropriate procedure was

followed for implementing database

regression tests

M.Q2.5.1: Appropriate procedure was

used to plan the project (estimation

and work breakdown)

M.Q2.5.2: The project plan was

documented by following a particular

standard

M.Q2.5.3: Release meetings were

conducted at the beginning of the

project and each release to create

release plan

M.Q2.5.4: Iteration meetings were

conducted at the beginning of each

iteration to plan the iteration

M.Q2.5.5: Daily stand-up meetings

were conducted for daily plan

M.Q2.5.6: Continuous review

meetings were conducted at end of

each iterations to demonstrate the

latest version of web application

M.Q2.5.7: Retrospectives were

conducted at end of each iteration

 Accuracy Q.M3.1.1: The requirements were

gathered using a particular method

Q.M3.1.2: Appropriate tools were

used to facilitate requirement

gathering activities

Q.M3.1.3: A particular notation was

used to represent the requirements

Q.M3.2.1: Software was designed by

following a particular method

Q.M3.2.2: Appropriate tools were

295

used to facilitate design activities

Q.M3.2.3: A particular notation was

used to represent the design

Q.M3.3.1: Appropriate tools were

used for bug tracking

Q.M3.3.2: Appropriate programming

language was used

Q.M3.4.1: Appropriate tools were

used to facilitate testing activities

Q.M3.4.2: Appropriate techniques or

methods were followed for the

implemented tests

Q.M3.5.1: Appropriate tools were

used to facilitate the planning

activities

Tailorability Q.M4.1.1: Is the development of web

application performed using the

integration of XP and Scrum

Q.M4.1.2: Is the using of the web

design method and the measurement

mechanism performed with affecting

the process performance

Q.M4.1.3: Is the integration of Scrum,

XP and GOMM easy to be performed

in your organization

Flexibility Q.M5.1.1: Is any team member can

vary the process performance for a

specific need

Q.M5.1.2:Is this variation performed

without requiring affecting the

process it self

Compatibility Q.M6.1.1:Is the development of web

application performed by interact with

more than one process

Q.M6.1.2:Is this interact done easily

and clear

Accessibility Q.M7.1.1:Is there a strategic

established for training in the

organization

Q.M7.1.2:Is the determine of the

training is the responsibility of the

organization

Q.M7.1.3: Is there training tactical

plan in the organization

Q.M7.1.4: is there a record of the

organization training

Q.M7.1.5: Is there any way to assess

the organization training

Q.M7.1.6: Is the process practitioner

296

can access the process electronically

not by hard copy in training

Q.M7.1.7: Is the process described

graphically not textually

Applicability Q.M8.1.1: Is there a define process

for each project from start up until

end

Q.M8.1.2:Is there a measurement

program used for estimate and plan

the project activity

Q.M8.1.3:Is the project managed

based to a specific plan

Q.M8.1.4:Is there a contribute

product, measures, and experience for

the future project

Changeability Q.M9.1.1: is there a way to Determine

requirement change Sources and

Categories.

Q.M9.1.2: is there a strategy

Established for requirement change

Q.M9.1.3: is there a way to Evaluate,

Categorize, and Prioritize these

changes

Q.M9.1.4: is the team Develop and

implement change management Plans

Supportability Q.M10.1.1: Is there an agreement

establish and maintain between the

supplier and the organization for

supporting the any item.

Q.M10.1.2: Is the selection of the

suppliers based on their ability of

satisfying a specific requirement

Q.M10.1.3: Is the acquired product

from the supplier evaluated from the

organization before accepting it

Q.M10.1.4: Is the organization ensure

that the agreement satisfied before

accepting the acquired product

- If there are too many metrics, what type of metrics do you find important

during the process? Please prioritize the goals of web application product

(Process, Cost, Time, Quality, Productivity and Practice), and the process

quality factors (Changeability, Applicability, Accessibility,

Compatibility, Flexibility, Tailorability, Accuracy, Consistency and

Completeness) according to their importance to the organization.

297

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

- Do you have any recommended metrics to improve the monitoring of

web application product and process quality factors?

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

1.3 Practices

This component consists of two types of practices, XP practices and Scrum practices.

Nine cores XP practices were used in this methodology, namely: Collective

ownership, TDD, Refactoring, Coding standards, Small release, Continuous

integration, Metaphor, Simple design and Pair programming. In addition, four Scrum

practices were included: first planning meeting Iteration review meeting, Daily

meeting and Iteration planning meeting.

a) Are the nine XP practices feasible to be used together in the development

phase?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Is the use of the four Scrum meetings feasible to be used?

298

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Do the XP and Scrum practices are comprehensive to fulfill the application of

agile principles?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.4 Tools

Many tools such as requirement repository, case tool, rational rose and TDD are

suggested to support the development process.

a) Are the tools suggested feasible and clear?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.5 Team

The team structure of the proposed methodology consists of seven persons, including

the customer. Each member has a specific role and responsibility. The members are

master, one product owner, two programmers, one tester, customer and GOMM

member.

a) Are the roles and responsibilities of the team comprehensive and feasible?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

299

…………………………………………………………………………………

…………………………………………………………………………………

b) Are roles and responsibilities of the team correct and clear?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Can one person (GOMM member) perform the measurement process?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.6 General overview

a) After reviewing the proposed methodology do you find extended based

strategy steps for creating the methodology is clear and correct?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) After reviewing the proposed methodology do you find the components

feasible to be used for SSF?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Are the components consistent and well organized?

300

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

d) Please state any suggestion or improvement that you may have.

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

301

Appendix E

Domain expert questionnaire

Reviewing the Proposed New Monitoring Oriented Agile Based Web

Application Development Methodology for Small Software Firms (D

PHD Student: Moath Husni Altarawneh

School of Computing

College of Arts and Sciences

Universiti Utara Malaysia

Kedah, Malaysia
Tarawneh80@yahoo.com

The research aims to propose a new monitoring oriented agile based web application

development methodology for small software firms. One of the objectives of this

research is to verify the components of the methodology. This could be achieved

through an expert review. Your answers to the following questions will serve as

useful feedback on the methodology's comprehensiveness, understandability and

feasibility. Your kind cooperation and participation in answering the questions is

highly appreciated and will be treated as strictly confidential.

==

The new methodology consists of five (5) components: activities, methods, practices,

tools and team structure.

You are required to give answers related to each component.

1. Activities and methods

The proposed methodology process consists of two sides: development and

measurement. Development process performed based on the combined XP and

Scrum method and web design prototype. A measurement process performed based

on the goal oriented monitoring method (GOMM).

mailto:Tarawneh80@yahoo.com

302

1.1 Development activities: planning, development and integration

a) Are the activities of the development process correct, clear and feasible?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Do the activities cover all the stages of building Web applications?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Are the web design method steps correct, clear and feasible?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

d) Is it feasible to use the planning phase to perform the web design method?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

e) Are the requirement repository activities (save, reuse and trace requirements.)

clear and correct?

303

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.2 Measurement activities: planning, definition and feedback

a) Are the measurement activities correct and clear?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Are the measurement activities feasible to be used for SSF?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Do the measurement activities cover all stages of building Web applications?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

d) Please fill up the following table to determine the metric correctness,

clearness and feasibility. Use "√” for YES and leave the space blank for

NO.

304

Metric type Metric Correct Clear Feasible

Process

activities

M1.1.1.1: Number of product backlog

items completed to date / Total Number

of requirements planned.

M1.2.1.1: Number of LOC completed

to date / Total Number of SLOC

planned.

M1.2.1.2: Number of Web Pages to date

/ Total Number of Web Page planned.

M1.2.1.3: Total Number of internal

links / Number of Web pages.

M1.3.1.1: Number of test completed to

date / Total Number of test planned.

M1.3.1.2 number of testing line of code

/ total number lines of code

Practices PM1.1.1: Number of iteration planning

meetings per one application.

PM1.2.1: Number of daily meetings per

one application?

PM1.3.1: Number of review meetings

done per one application?

PM 2.1.1: Number of programmers.

PM2.2.1: Number of tests completed to

date /Total Number of tests planned.

PM2.2.2: Number of testing line of

code / total number lines of code.

PM2.3.1: Number of lines of duplicated

code removed / total line of code per

iteration.

PM2.4.1: Adherence of coding standard

(High, Low).

PM3.1.1: (Number of LOC of the first

release - the LOC of the next release) /

total NLOC

PM 3.2.1: Total number of line of code

added, removed and updated) / total line

of code of the previous iteration.

PM3.3.1: (Number of LOC of the

current release - total LOC) / Total LOC

PM3.4.1: Number of meetings between

development team and the client?

PM3.5.1Number of team members who

made changes in the code.

Productivity M2.1.1: Number of LOC for staff in

month.

Cost M3.1.1: Dollar cost related to fix post to

release problems.

M3.2.1: Number of dollars spent to date

for activity i /Number of dollars

305

estimated for activity.

M3.3.1Number of total dollars spent to

date / Number of total dollars estimated.

Quality M4.1.1: Severity classification for each

detected failure (fatal, major, minor and

other).

M4.2.1: Number of iteration i defects /

metric for size in sprint i(LOC).

M4.3.1: Number of pre-release defects

of in iteration / (Number of pre-release

+ post-release defects).

M4.4.1: Number of defects / execution

time.

M4.5.1: Effort in hours for locating

each fault.

M4.5.2: Efforts in hours for fixing the

fault.

M4.6.1 No. of page links/ total number

of internal links (navigability)

M4.6.2 Response time

M4.6.3 Memory space

M4.7.1dynamic pages/ total no. of

pages (changeability) should be low

M4.7.2 dynamic testing LOC/ total

LOC testability should be low

M4.7.3 1/ no of direct links (stability)

should be high

Time M5.1.1: Number SLOC of reusing code

/ Number of SLOC completed to date.

M5.1.2: Number of reuse Web pages /

total Web Pages number.

M5.2.1: Elapsed time / estimated time.

e) Please fill up the following table to determine the metric correctness,

clearness, ease of use and applicability. Use "√” for YES and leave the space

blank for NO.

Metric type Metric no Correct Clear Feasible

Completeness Q.M1.1.1: Customers or P.O

were available on-site for face-

to-face discussions during

requirement elicitation

Q.M1.1.2: The scope of

project were identified at the

beginning of project to create

initial prioritized stack of

requirements

Q.M1.1.3:The requirements

were validated by customers in

review meetings by using

306

prototype/release

Q.M1.1.4: Requirements were

prioritized and can be

reprioritized by customers

throughout the development

Q.M1.1.5The development

team was enabled to re-

estimate the time and velocity

of user stories

Q.M1.1.6:The requirements

were written on cards in short

statement

Q.M1.2.1:Model storming was

performed (architecture,

interface, data structure and

algorithm)

Q.M1.2.2: The architecture

designs were produced

Q.M1.2.3: The interface

designs were produced

Q.M1.2.4: The data structure

was produced

Q.M1.2.5:The algorithms were

produced

Q.M1.2.6:Iteration modelling

was performed at beginning of

each iterations

Q.M1.2.7:The designs were

documented

Q.M1.3.1: Reuse of software

components was encouraged

Q.M1.3.2: Detailed

explanations on the functions

and variables were included in

the code

Q.M1.3.3:The code was

produced and integrated to

system baseline iteratively and

incrementally

Q.M1.3.4:The software was

delivered frequently with

increments of features

Q.M1.3.5:Customer involved

with the team for giving

immediate feedbacks

Q.M1.3.6:The features with

high priority were delivered

first

Q.M1.3.7:The software was

deployed gradually in real

307

environment

Q.M1.3.8: The deliverable

documentation were produced

late

Q.M1.4.1: Tests were

automated

Q.M1.4.2: Tests were

performed continuously

throughout the development

Q.M1.4.3: Frequent

integration tests were

performed

Q.M1.4.4: Unit tests were

performed to ensure that all

requirements were fulfilled

Q.M1.4.5: User interfaces

were tested

Q.M1.4.6: Database regression

testing were performed

Q.M1.4.7: Customer wrote the

user acceptance tests

according to stories/features

Q.M1.4.8: Acceptance tests

were used to validate and

verify user’s requirements

Q.M1.4.9: Results of the tests

were documented

Q.M1.4.10: Results from

automated tests were

compared to manual tests

Q.M1.5.1: The project was

started with a clear scope,

goals and objectives

Q.M1.5.2: Planning for the

project was performed

collaboratively with team

members

Q.M1.5.3: The current

progress of iteration/sprint was

revealed to everyone on sprint

burn down chart

Q.M1.5.4: Customer and end-

user involvement were

monitored in project activity

Q.M1.5.5: The project plan

was documented for in-hand

problems

Consistency Q.M2.1.1: Appropriate

procedure is used to handle

frequently changing

308

requirements

Q.M2.1.2: The requirements

were documented by

following a particular standard

Q.M2.2.1: Appropriate

procedure was used to handle

frequently changing designs

Q.M2.2.2: The design was

documented by following a

particular standard

Q.M2.2.3: Software designs

were refactored frequently

Q.M2.2.4: Metaphor was used

for determining architecture of

the system

Q.M2.3.1: Appropriate

procedure was used to ensure

that the code were developed

based on the requirements and

design

Q.M2.3.2: Appropriate

procedure was used to handle

frequently changing code

Q.M2.3.3: Appropriate

procedure was used to deliver

the software releases to

customers

Q.M2.3.4: Appropriate code

integration strategy was

followed

Q.M2.3.5: Appropriate

coding/ interface/ database

standards were followed

Q.M2.3.6: Team members had

authority to make changes at

any part of the code

Q.M2.3.7: Pair programming

was performed

Q.M2.3.8: Failing unit tests

were developed before the

code was written (TDD)

Q.M2.3.9: Rigorous code and

database refactoring were

implemented

Q.M2.3.10: Code integration

strategy was established and

revised

Q.M2.4.1: The testing results

were documented by

following a particular standard

309

Q.M2.4.2: Appropriate

procedure was followed for

implementing automated tests

Q.M2.4.3: Appropriate

procedure was followed for

implementing integration tests

Q.M2.4.4: Appropriate

procedure was followed for

implementing interface tests

Q.M2.4.5: Appropriate

procedure was followed for

implementing user acceptance

tests

Q.M2.4.6: Appropriate

procedure was followed for

implementing database

regression tests

M.Q2.5.1: Appropriate

procedure was used to plan the

project (estimation and work

breakdown)

M.Q2.5.2: The project plan

was documented by following

a particular standard

M.Q2.5.3: Release meetings

were conducted at the

beginning of project and each

release to create release plan

M.Q2.5.4: Iteration meetings

were conducted at the

beginning of each iterations to

plan the iteration

M.Q2.5.5: Daily stand-up

meetings were conducted for

daily plan

M.Q2.5.6: Continuous review

meetings were conducted at

end of each iterations to

demonstrate the latest version

of software

M.Q2.5.7: Retrospectives

were conducted at end of each

iteration

 Accuracy Q.M3.1.1: The requirements

were gathered using a

particular method

Q.M3.1.2: Appropriate tools

were used to facilitate

requirement gathering

activities

310

Q.M3.1.3: A particular

notation was used to represent

the requirements

Q.M3.2.1: Software was

designed by following a

particular method

Q.M3.2.2: Appropriate tools

were used to facilitate design

activities

Q.M3.2.3: A particular

notation was used to represent

the design

Q.M3.3.1: Appropriate tools

were used for bug tracking

Q.M3.3.2: Appropriate

programming language was

used

Q.M3.4.1: Appropriate tools

were used to facilitate testing

activities

Q.M3.4.2: Appropriate

techniques or methods were

followed for the implemented

tests

Q.M3.5.1: Appropriate tools

were used to facilitate the

planning activities

Tailorability Q.M4.1.1: Is the development

of web application performed

using the integration of XP

and Scrum

Q.M4.1.2: Is the using of the

web design method and the

measurement mechanism

performed with affecting the

process performance

Q.M4.1.3: Is the integration of

Scrum, XP and GOMM easy

to be performed in your

organization

Flexibility Q.M5.1.1: Is any team

member can vary the process

performance for a specific

need

Q.M5.1.2:Is this variation

performed without requiring

affecting the process it self

Compatibility Q.M6.1.1:Is the development

of web application performed

by interact with more than one

311

process

Q.M6.1.2:Is this interact done

easily and clear

Accessibility Q.M7.1.1:Is there a strategic

established for training in the

organization

Q.M7.1.2:Is the determine of

the training is the

responsibility of the

organization

Q.M7.1.3: Is there training

tactical plan in the

organization

Q.M7.1.4: is there a record of

the organization training

Q.M7.1.5: Is there any way to

assess the training

organization

Q.M7.1.6: Is the process

practitioner can access the

process electronically, not by

hard copy in training

Q.M7.1.7: Is the process

described graphically not

textually

Applicability Q.M8.1.1: Is there a define

process for each project from

start up until the end

Q.M8.1.2:Is there a

measurement program used for

estimate and plan the project

activity

Q.M8.1.3:Is the project

managed based on a specific

plan

Q.M8.1.4:Is there a contribute

product, measures, and

experience for the future

project

Changeability Q.M9.1.1: is there a way to

Determine requirement change

Sources and Categories.

Q.M9.1.2: is there a strategy

Established for requirement

change

Q.M9.1.3: is there a way to

Evaluate, Categorize, and

Prioritize these changes

Q.M9.1.4: is the team Develop

312

and implement change

management Plans

Supportability Q.M10.1.1: Is there an

agreement establish and

maintain between the supplier

and the organization for

supporting the any item.

Q.M10.1.2: Is the selection of

the suppliers based on their

ability of satisfying a specific

requirements

Q.M10.1.3: Is the acquired

product from the supplier

evaluated from the

organization before accepting

it

Q.M10.1.4: Is the organization

ensure that the agreement

satisfied before accepting the

acquired product

- Can these metric be applied during the development process without

consuming time?

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

- If there are too many metrics, what type of metrics do you find important

during the process? Please prioritize the goals of web application product

(Process, Cost, Time, Quality, Productivity and Practice), and the process

quality factors (Changeability, Applicability, Accessibility,

Compatibility, Flexibility, Tailorability, Accuracy, Consistency and

Completeness) according to their importance to the organization.

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

313

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

- Is the time of applying these metrics during development appropriate?

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

- Do you have any recommended metrics to improve the monitoring of

web application product and process quality factors?

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

1.3 Practices

This component consists of two types of practices, XP practices and Scrum practices.

Nine cores XP practices were used in this methodology, namely: Collective

ownership, TDD, Refactoring, Coding standards, Small release, Continuous

integration, Metaphor, Simple design and Pair programming. In addition, four Scrum

practices were included: first planning meeting Iteration review meeting, Daily

meeting and Iteration planning meeting.

a) Are the nine XP practices feasible to be used together in the development phase?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Is the use of the four Scrum meetings feasible?

314

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.4 Tools

Many tools such as requirement repository, case tool, rational rose and TDD are

suggested to support the development process.

a) Are the tools suggested feasible and clear?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.5 Team

The team structure of the proposed methodology consists of seven persons, including

the customer. Each member has a specific role and responsibility. The members are

master, one product owner, two programmers, one tester, customer and GOMM

member.

a) Are the roles and responsibilities of the team comprehensive and feasible?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Are roles and responsibilities of the team correct and clear?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Can one person (GOMM member) do the measurement process?

315

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.6 General overview

a) After reviewing the proposed methodology do you find the components

feasible to be used for SSF?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

b) Are the components consistent and well organized?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) Please state any suggestion or improvement that you may have.

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………

316

Appendix F

Questions Objective, Content and Source

Sections Objectives Questions Contents Sources

I: Respondents

background

To assess the qualification of

respondents

1 Position in company Baharom(2006), El-Sheikh and

Tarawneh(2007).

2 Positions activities El-Sheikh and Tarawneh (2007)

3 Years of experience Baharom (2006), El-Sheikh and

Tarawneh (2007) .

II: Organisation

background

To study the organizations

background

1 Type of organization Baharom (2006).

2 Sector of organization (yes or no) Baharom (2006).

3 Organization size El-Sheikh and Tarawneh, (2007)

III: Development and

measurement practices

To investigate the software

development practices in small

software firms

1 Application type

2 Philosophy type

3 Development method used Baharom (2006).

4 Development methods that developers

familiar with

5 Prototyping method used (yes or no)

6 Type of prototyping Baharom (2006).

7 Requirement collection method Baharom (2006).

8 Requirement analysis method Baharom (2006).

317

9 Requirement specification notation Baharom (2006).

10 Programming language Baharom (2006).

11 Testing type Baharom (2006).

12 Testing process stage Baharom (2006).

13 Reasons of not using any method

14 Encourage software reuse Baharom (2006).

15 Software reuse type Baharom (2006).

16 Quality assurance activities El-Sheikh and Tarawneh, (2007)

17 Who perform quality assurance? El-Sheikh and Tarawneh, (2007)

To investigate the software

measurement practices in small

software firms

18 Performing measurement yes or no

19 Measurement stage

20 Metrics type

21 Measurement method

22 Why not using measurement

III: Web application

development and

measurement practices

To investigate the current web

application development and

measurement practices in small

software firms

1 Time pressure El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

2 Process role and responsibilities El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

3 Minimum design and quick prototype El-Sheikh and Tarawneh (2007)

4 Each project has manager El-Sheikh and Tarawneh, (2007),

McDonald and Welland (2001a)

5 Budget estimation El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

6 Requirement source(user or manager) El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

7 Design notation El-Sheikh and Tarawneh (2007),

McDonaldand Welland (2001a)

318

8 Testing case generated based on the

requirement specifications

El-Sheikh& andTarawneh

(2007), McDonald and Welland

(2001a)

9 Testing process carried out by the

development team

El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

10 Quality management and standard El-Sheikh& andTarawneh,

(2007), McDonald and Welland

(2001a)

11 Testing conducted by user under the guidance

of quality assurance member

El-Sheikh& and Tarawneh

(2007), McDonald and Welland

(2001a)

12 Change management El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

13 Change control functions for each project El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

14 Web application Estimation size procedure

(LOC)

El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

15 Effort, size and cost procedure or method El-Sheikh and Tarawneh (2007),

McDonald and Welland (2001a)

16 Training program El-Sheikh and Tarawneh (2007),

McDonald & Welland (2001a)

17 Awareness of web application state of the art El-Sheikh and Tarawneh (2007),

McDonald & Welland (2001a)

319

Appendix G

 Practices

Development Practices

The new methodology concentrates on the development practices that emphasis on

building high quality Web application in small software firms. Thus, these practices

should take into account Web application characteristics and small software firm

limitations. As a result set of recommended development practices must take place

during the development process:

 Use an iterative development process for small teams to cope with time

pressure and requirement changing environment (Scrum).

 Use the Scrum product backlog for collecting the requirements.

 Use a simple (conceptual) design method that extracted from the current Web

design methods.

 Use several XP development practices to ensure short life cycle, respond to

change, test all Web application components and simple design. These

practices are categorized into two types: core practices and supported

practices.

Core XP Practices: these practices called core because they used from all previous

studies that combine between XP and Scrum. These practices are:

 Pair Programming: This practice consists in having two programmers

working simultaneously on the same computer.

 TDD: All implemented features must be covered by unit tests, which

must all be always satisfied, in an effort to eliminate unit-level and

regression bugs during development.

 Refactoring: aims to simplify the implemented code by removing

ambiguity and redundancy, improving communication and adding

flexibility.

 Coding standards: following the Coding standard practice allows

programmers to interpret of the executed code in an easy way.

320

Supported XP practices: this type of practices found to be very important to fulfill

all the agile principles and need to be integrated in the proposed methodology to

ensure that the process still agile. These practices are:

 Continuous Integration: After a new feature is implemented or the code is

adjusted, and all tests are successfully executed, a new release should be

created reflecting all the changes.

 Metaphor: System is created by a set of Metaphors between the client and

programmers, who allow describing features to be implemented, by

creating a common vision of the client and the technical team on how the

product should work.

 Small release: system version released daily, but at least monthly.

 Simple Design: The architecture and the code (including the unit tests)

should be as simple as possible. No need for complexity and extra

coding.

 Collective Ownership: Each team member is encouraged to perform all

necessary changes in the code. Thus, all team members are owners of the

code. This practice avoids unnecessary waits for third party changes in

the code.

Management Practices

These practices were extracted from the previous studies and described as a core

Scrum practices to be used in the combination method. These practices are:

 Scrum Master: is responsible to ensure that project is performed according to

the practices, rules and values of Scrum on one hand. On the other hand,

ensure that project progress as planned.

 First planning meeting: The first planning meeting is performed just once per

the Web application. The master, the PO and the DT select a set of items of

the Product Backlog to be implemented during the development process. At

this meeting, the simple design method should be created to be composed

into tasks to be performed by the DT. These tasks will integrate the iteration

backlog.

 Daily Do (iteration) meeting: this meeting will be held daily by the DT,

lasting 15 minutes or less. These meetings aim to analyze the progress of the

project and the unexpected issues that may delay the project, by identifying

321

the work undertaken since the last meeting and the work to be performed

until the next one.

 Do (Iteration) planning meeting: this meeting conducted by the master,

development team and PO to determine the selected requirements for the next

iteration.

 Do (Iteration) Review Meeting: a review meeting is held at the end of each

iteration. This meeting will be attended by all master, PO and DT. Full

explanations of all new release features are performed. Results related to this

iteration will be presented to the management.

 Measurement Practices

This set of practices is to ensure that the measurement program is performed in the

right way in order to monitor the quality of product and process. These practices are:

 The measurement mechanism should measure all the development process

phases and practices.

 A measurement mechanism should be goal oriented.

 The measurement mechanism should use qualitative and quantitative metrics.

 GOMM defines particular goals, refine these goals into questions and provide

metrics to answer the desired questions.

 Goals prioritizing practice: Development team should priorities the

measurement goals based on the organization and user demands.

 Two developers assign as GOMM members for performing the measurement

process (one for collecting the data and the other for analyze the results and

print the feedback report).

 Self-preparing data: Each team member should prepare the data he owns for

the GOMM member to accelerate the data collection process.

322

Appendix H

Tools

Phase Tool name Aim

Planning phase User story Collecting requirements

Web design prototype Support the design phase

Requirement repository Reuse any existing code or model

for the next iteration

Development phase Rational rose Supporting the analysis activity

Code base Saving the code

ArgoUWE Supporting the design

Casper SJ Supporting the testing

Burn down chart tool Supporting the daily meeting and

Do (iteration) review meeting

Task board Support the daily and Do

(iteration) review meetings

Integration and

maintenance phase

Requirement repository Save the increment to the

repository and trace the

requirement status

Burn down chart task board Declaring the final version of web

application

323

Appendix I

Quantitative metric check list

Phase Activity Metric # Inputs Calculation Remarks Outputs Data owner

Plan Identifying the

product backlog

items

 - #Product backlog
items,

- Estimated LOC
- Estimated cost
- Estimated time
- Estimated #of Web

pages

F. Prioritize the items

G. Split the

items

H. Estimate the

items

PM1.1.1 - # of Do items

number

of Do items

number

 Master and

PO

Do Design M1.2.1.3 - #of internal links

- #of web pages

#of internal links /

#of web pages

#Internal links: total number of internal

links, not including dynamically generated

links.

 Programmer

M4.6.1 - # of page links

- Total # of links

of page links /

Total # of links

0.3 That means this page 30% navigable.

M4.7.1 - # of dynamic pages

- Total # of pages

of dynamic

pages / total # of

pages (low)

0.5 This reflects the changeability of the

product it means its 50% changeable and it

should be low. The low changeability is,

324

the better.

M4.7.3 - # of direct links 1/# of direct links 0.5 means that this product is 50% stable

and should be and should be high.

M5.1.2 - #of reused web

pages

- Total #of web pages

#of reused web

pages/Total #of

web pages

0.44 means that 44% of the web pages in

this product were reused from previous

applications.

Code M1.2.1.1 - LOC completed to

date

- Total LOC

LOC completed to

date / Total LOC

0.70 means that the progress of the coding

is 70 %.

 Programmer

M1.2.1.2 - # of web pages to

date

- Total # of web

pages

of web pages to

date /Total # of

web pages

0.55 means that 55 % of the webpages

were created by the team.

M4.5.1 - Effort in hour for

locating each fault

Effort in hour for

locating each fault

4 means it takes 4 hours to locate the fault.

M4.5.2 - Effort in hour for

fixing each fault

Effort in hour for

fixing each fault

3 mean it takes three hours to fix the

specific fault.

M5.1.1 - # of reused LOC

- Total LOC

of reused LOC /

Total LOC

0.35 means that the team reused 35% of

their code.

M2.1.1 - # of KLOC for the

programmer in the

month

of KLOC for the

programmer in the

month

30 means the programmer has produced

30000 lines of code monthly.

PM3.5.1 - # of team members

who made changes

on the code

of team members

who made changes

on the code

2 means two members have the power to

change the code.

325

Test M1.3.1.1 - # of test completed to

date

- Total # of planned

test

of test completed

to date / Total # of

planned test

0.45 means that 45% of the planned tests

were completed.

 Tester

PM2.1.1 - #of duplicated LOC

removed

- Total LOC

#of duplicated LOC

removed / Total

LOC

0.30 means that 30% of the code is

removed as duplicated code. That means

the ratio should be low to get quality code.

Daily reviewing M1.1.1.1 - # of product

backlog items

completed to date

- Total # of product

backlog planned

of product

backlog items

completed to date /

Total # of product

backlog planned

0.7 means that 70% of the product item

completed based on the planned no. of

items.

 PO

M3.2.1 - # of dollars spent

for each activity

- # of dollars

estimated for the

activity

of dollars spent

for each activity /

of dollars

estimated for the

activity

300/500 means that 60% of the budget of

the this activity was consumed.

M3.3.1 - Total # of Dollars

spent

- Estimated cost in

dollars

Total # of Dollars

spent /Estimated

cost in dollars

600/1000 means that 60% of the budget

consumed.

M5.3.1 - # of completed

product backlog

items

- Total # of product

backlog items

of completed

product backlog

items / Total # of

items

0.5 means that 50% of the items were

completed.

326

PM1.2.1 - # of daily meeting # of daily meeting

per one application

15 mean the meeting conducted 15 times.

Iteration reviewing M3.1.1 - Dollars spent to fix

post to release

problems

Dollars spent to fix

post to release

problems

100 Master

M4.2.1 - # of Do defects

- LOC for the DO

of Do defects /

LOC for the DO

Should close to zero for the better

execution.

M4.3.1 - # of pre-release

defect of the DO

- # of post-release

defects of the DO

of pre-release

defect of the DO/

of pre-release+

post-release defects

of the DO

The result will be ranged from 0 to 1, and

the perfect result should be nearer to 1

because that means the post defects were

reduced.

M4.4.2 - Mean time to find

defect

Mean time to find

defect

If it =200, means that one failure can be

expected every 200 time units

M4.4.3 - Mean time between

two defects

Mean time

between two

defects

30 indicates that once the failure occurs,

the next failure is expected to occur only

after 30 hours.

M4.4.4 - Mean time to

recover

Mean time to

recover

The average time it takes to track the errors

causing the failure & to fix them.

M5.2.1 - Elapsed time

- Estimated time

Elapsed time /

Estimated time

0.3 means that the product consumed the

30 % of the time

PM1.3.1 - # of review meeting # of review

meeting per one

application

5 means that reeving meeting conducted I

this application 5 times.

PM3.4.1 - # of meeting

between DT and

client

of meeting

between DT and

client

4 means the team conducted 5 meetings

with client.

 M4.4.1 - # of defects # of defects / 0.04 means that the defects occurs 4 times

327

- Execution time Execution time in 100 units of time.

Act Save the increment

to the repository

PM3.1.1 - LOC of the first

release

- LOC of the current

release

- Total LOC

(LOC of the first

release - LOC of

the current release)

/ Total LOC

Reflects the small release practices and it

should be low for example -0.02 means

this release smaller the previous with 2%.

 PO

Integrate with the

system

PM3.2.1 - LOC added,

removed and

updated

- LOC of the iteration

LOC added,

removed and

updated / LOC of

the iteration

This percent is good to be nearer to 100%

as it indicates that the continuous

integration used in the process.

 Programmer

PM3.3.1 - # of LOC of the

current release

- Total LOC

of LOC of the

current release –

Total LOC

2000 means that the difference LOC

between the total and current LOC is 2000.

Final release - Tester

328

Appendix J

Qualitative metrics

Completeness metrics

Activities Metrics 0 1 2 3 4 Data

owner

Requirement

completeness

Q.M1.1.1: Customers or P.O was available on-site for face-

to-face discussions during the requirement elicitation

 PO

Q.M1.1.2: The scope of project was identified at the

beginning of a project to create initial prioritized product

backlog items

Q.M1.1.3:The requirements were validated by customers in

review meetings by using prototype/release

Q.M1.1.4: Requirements were prioritized and can be

reprioritized by customers throughout the development

Q.M1.1.5: The development team was enabled to re-estimate

the time and velocity of user stories

Q.M1.1.6:The requirements were written on cards in a short

statement

Design

completeness

Q.M1.2.1:Model storming was performed (architecture,

interface, data structure and algorithm)

 Programmer

Q.M1.2.2: The architecture designs were produced

Q.M1.2.3: The interface designs were produced

Q.M1.2.4: The data structure was produced

Q.M1.2.5:The algorithms were produced

Q.M1.2.6:Iteration modeling was performed at the beginning

of each iteration

Q.M1.2.7:The designs were documented

Coding

completeness

Q.M1.3.1: Reuse of software components was encouraged Programmer

Q.M1.3.2: Detailed explanations of the functions and

variables were included in the code

Q.M1.3.3:The code was produced and integrated to system

baseline iteratively and incrementally

Q.M1.3.4: Web application was delivered frequently with

increments of features

Q.M1.3.5:Customer involved with the team for giving

immediate feedbacks

Q.M1.3.6:The features with high priority were delivered first

Q.M1.3.7: Web application was deployed gradually in real

environment

Q.M1.3.8: The deliverable documentation was produced late

Testing

completeness

Q.M1.4.1: Tests were automated Tester

Q.M1.4.2: Tests were performed continuously throughout the

development

Q.M1.4.3: Frequent integration tests were performed

329

Q.M1.4.4: Unit tests were performed to ensure that all

requirements were fulfilled

Q.M1.4.5: User interfaces were tested

Q.M1.4.6: Database regression testing was performed

Q.M1.4.7: Customer (P.O) wrote the user acceptance tests

according to stories/features

Q.M1.4.8: Acceptance tests were used to validate and verify

user’s requirements

Q.M1.4.9: Results of the tests were documented

Q.M1.4.10: Results from the automated tests were compared

to the manual tests

Project

management

completeness

Q.M1.5.1: The project was started with a clear scope, goals

and objectives

 Master

Q.M1.5.2: Planning for the project was performed

collaboratively with team members

Q.M1.5.3: The current progress of iteration was revealed to

everyone on iteration burn down chart

Q.M1.5.4: Customer and end-user involvement were

monitored in project activity

Q.M1.5.5: The project plan was documented

Consistency metrics

Activities Metrics 0 1 2 3 4 Data owner

Requirement

consistency

Q.M2.1.1: Appropriate procedure is used to handle frequently

changing requirements

 PO

Q.M2.1.2: The requirements were documented by following a

particular standard

Design

consistency

Q.M2.2.1: Appropriate procedure was used to handle

frequently changing designs

 Programmer

Q.M2.2.2: The design was documented by following a

particular standard

Q.M2.2.3: Web application designs were refactored

frequently

Q.M2.2.4: Metaphor was used for determining the

architecture of the system

Coding

consistency

Q.M2.3.1: Appropriate procedure was used to ensure that the

code was developed based on the requirements and design

 Programmer

Q.M2.3.2: Appropriate procedure was used to handle

frequently changing code

Q.M2.3.3: Appropriate procedure was used to deliver the Web

application releases to customers

Q.M2.3.4: Appropriate code integration strategy was followed

Q.M2.3.5: Appropriate coding/ interface/ database standards

were followed

Q.M2.3.6: Team members had authority to make changes in

any part of the code

Q.M2.3.7: Pair programming was performed

330

Q.M2.3.8: Failing unit tests were developed before the code

was written (TDD)

Q.M2.3.9: Rigorous code and database refactoring were

implemented

Q.M2.3.10: Code integration strategy was established and

revised

Testing

consistency

Q.M2.4.1: The testing results were documented by following

a particular standard

 Tester

Q.M2.4.2: Appropriate procedure was followed for

implementing automated tests

Q.M2.4.3: Appropriate procedure was followed for

implementing integration tests

Q.M2.4.4: Appropriate procedure was followed for

implementing interface tests

Q.M2.4.5: Appropriate procedure was followed for

implementing user acceptance tests

Q.M2.4.6: Appropriate procedure was followed for

implementing database regression tests

Project

management

consistency

Q.M 2.5.1: Appropriate procedure was used to plan the

project (estimation and work breakdown)

 Master

Q.M 2.5.2: The project plan was documented by following a

particular standard

Q.M 2.5.3: Release meetings were conducted at the beginning

of the project and each release to create release plan

Q.M 2.5.4: Iteration meetings were conducted at the

beginning of each iteration to plan the iteration

Q.M 2.5.5: Daily stand-up meetings were conducted for daily

plan

Q.M 2.5.6: Continuous review meetings were conducted at

the end of each iteration to demonstrate the latest version of

the Web application

Q.M 2.5.7: Retrospectives were conducted at the end of each

iteration

Accuracy metrics

Activities Metrics 0 1 2 3 4 Data owner

Requirement

accuracy

Q.M3.1.1: Requirements were gathered using customer card PO

Q.M3.1.2: Appropriate tools were used to facilitate

requirements gathering activities

Q.M3.1.3: A particular notation was used to represent the

requirements

Design

accuracy

Q.M3.2.1: Web application was designed by following Web

design method steps

 Programmer

Q.M3.2.2: Appropriate tools were used to facilitate design

activities

Q.M3.2.3: A particular notation was used to represent the

design

Coding Q.M3.3.1: Appropriate tools were used for bug tracking Programmer

331

accuracy Q.M3.3.2: Appropriate programming language was used

Testing

accuracy

Q.M3.4.1: Appropriate tools were used to facilitate testing

activities

 Tester

Q.M3.4.2: Appropriate techniques or methods were followed

for the implemented tests

Project

management

accuracy

Q.M3.5.1: Appropriate tools were used to facilitate the

planning activities

 Master

Tailorability metrics

Metrics 0 1 2 3 4 Data owner

Q.M4.1.1: Is the development of the Web application performed using

the integration of the XP and Scrum?

 Master

Q.M4.1.2: Is the using of the Web design method and measurement

process performed without affecting the process performance?

Q.M4.1.3: Is the integration of the Scrum, XP and GOMM easy to be

performed in the organization?

Flexibility metrics

Metrics 0 1 2 3 4 Data owner

Q.M5.1.1: Is any team member can vary the process performance for a

specific need?

 Master

Q.M5.1.2: Is this variation performed without requiring affecting the

process itself?

Compatibility metrics

Metrics 0 1 2 3 4 Data owner

Q.M6.1.1: Is the development of Web application performed by

interacting with measurement and development process.

 Master

Q.M6.1.2:Is this interaction between the team and the process done

easily and clearly

Accessibility metrics

Metrics 0 1 2 3 4 Data owner

Q.M7.1.1: Is there a strategic established for training in the

organization?

 Master

Q.M7.1.2: Is determining of the training is the responsibility of the

organization?

Q.M7.1.3: Is there any training and tactical plan in the organization?

Q.M7.1.4: Is there a record of the training organization?

Q.M7.1.5: Is there any way to assess the training organization?

Q.M7.1.6: Is the process practitioner able to access the training process

electronically, not by hard copy?

Q.M7.1.7: Is the process described graphically not textually?

332

Applicability metrics

Metrics 0 1 2 3 4 Data owner

Q.M8.1.1: Is there a defined process for each project from start up until

the end?

 PO

Q.M8.1.2: Is there a measurement mechanism used to estimate and plan

the project activities?

Q.M8.1.3: Is the project managed based on a specific plan?

Q.M8.1.4: Is the contributed product, modules, code and measures saved

to be used for the future project?

Changeability metrics

Metrics 0 1 2 3 4 Data owner

Q.M9.1.1: is there a way to determine the change requirement sources

and categories?

 PO

Q.M9.1.2: Is there a strategy established for change requirement?

Q.M9.1.3: Is there a way to evaluate, categorize, and prioritize these

changes?

Q.M9.1.4: Is the team going to develop and implement change

management plans?

Supportability metrics

Metrics 0 1 2 3 4 Data owner

Q.M10.1.1: Is there an agreement established and maintained between the

supplier and the organization for supporting any item?

 PO

Q.M10.1.2: Is the selection of the suppliers based on their ability of satisfying a

specific requirement?

Q.M10.1.3: Is the acquired product from the supplier evaluated from the

organization before accepting it?

Q.M10.1.4: Is the organization ensures that the agreement satisfied before

accepting the acquired product?

333

Appendix K

Validation form

Note: Please give a score from 1 to 5 for the following items where, 1 = strongly

disagree, 2 = disagree, 3=don’t know, 4 = agree and 5 = strongly agree.

Gain Satisfaction

Items 1 2 3 4 5

Decision support satisfaction: is the MOGWD methodology helps the

management to take a well-defined decision based on the process and product

monitoring?

Comparison with the current development method: is the MOGWD

methodology better than the old development that you used in terms of the

structure and achieve results?

Clarity (clear and illuminate the process): Is the MOGWD process clear to the

development team, where each phase clearly presents the required inputs, outputs,

methods or practices, and activities?

Task Appropriateness: is the phases and activities that presented in the MOGWD

methodology appropriate for developing and monitoring web application in your

company, and is the flow of the process presented in a systematic and effective

way?

Interface Satisfaction

Items 1 2 3 4 5

Internally consistent: the MOGWD methodology is internally consistent?

Organization (well organized): the components of MOGWD methodology well

organized and structured that makes the process is easy to perform?.

Appropriate for audience: is the MOGWD methodology appropriate for the

audience. Those audiences are referred to the development and the monitoring

team in the Small Software firms?

Presentation: is the results presented by performing the MOGWD process

produced in a readable and useful format?

Task Support Satisfaction

Items 1 2 3 4 5

Ability to produce expected results: is the MOGWD methodology able to

produce expected results?

Completeness (adequate or sufficient): is the MOGWD methodology adequate

and sufficient for developing web application in your organization.

Ease of implementation: is the process of the MOGWD methodology easy to

implement?

334

Perceived Usefulness

Items 1 2 3 4 5

Using MOGWD methodology enables you to accomplish your tasks more quickly.

Using MOGWD methodology improve the performance of your work

Using MOGWD methodology makes performing your tasks easier

MOGWD methodology is useful to your work

Using MOGWD methodology increases your productivity

Perceived ease of use

Items 1 2 3 4 5

Learning the MOGWD methodology is easy for you

Do you find it easy to use MOGWD methodology to do what want to do

The MOGWD methodology is flexible to interact with

Your interactions with the MOGWD methodology clear and understandable

It is easy for you to become skillful in using MOGWD methodology

The MOGWD methodology is easy to use

335

Appendix L

MO-PT

The main page of the MO-PT consists of three tabs and one button as shown Figure

1.

Figure 1. Main page

The home tab returns the user to the main page, the overview tab gives a summary

about the MOGWD methodology and the contact tab gives information about the

author. On the other hand, the start button leads to the login page. Each user of the

MO-PT has authentication to access the system based on his identity. The tool gives

each development team member a specific user name and password.

The users of the MO-PT are master, product owner, programmer and tester. The tool

starts working after the master logged in as shown in Figure 2.

336

Figure 2. Login page

After login the team member will enter the data for the metrics that he/she

responsible for. The MO-PT clarifies the team member and the data that he is

responsible to enter as shown in Table 1.

Table 1.Team member activities in MO-PT

Phase Activity The data
Type of data The team

member

involved Quantitative Qualitative

Plan
Planning

meeting

Requirement completeness √

PO

Requirement consistency √

Requirement accuracy √

Applicability √

Changeability √

Supportability √

Do

Design

Design quantitative

metrics

√

Programmer Design completeness √

Design consistency √

Design accuracy √

Code

Code quantitative metrics √

Programmer
Code completeness √

Code consistency √

Code accuracy √

Testing

Testing quantitative

metrics

√

Tester

Testing completeness √

337

Testing consistency √

Testing accuracy √

Daily reviewing
Daily reviewing

quantitative metrics

√
PO

Iteration review

meeting

Project management,

quantitative metrics

√

Master

Project management

completeness

 √

Project management

consistency

 √

Project management

accuracy

 √

Tailorability √

Flexibility √

Compatibility √

Accessibility √

Act

Save the

increment

Save the increment

quantitative metrics

√

PO
Integrate the

increment

Integrate the increment

Quantitative metrics

√

Based on the above table, each team member knew the data that he owns and at what

time he should enter into the system during the development of the system.

Plan phase

As mentioned before, MO-PT will be used to support the monitoring process. The

master will be the administrator of the MO-PT and he will be assisted by the GOMM

member. In the plan phase, master is responsible for the following activities: create a

new project, start new iteration, iteration reviewing, activate the current activities

and view report as shown in Figure 3.

338

Figure 3. Master page

 Create new project

After the first planning meeting, the master required to access the MO-PT and create

the project on the system. This will be done by clicking on create new project tab

and enter the important information related to the project. The information includes:

project title, number of backlog items, estimated LOC, estimated cost, estimated

time, estimated number of pages, estimated total number of tests. Then click the save

button.

 Start a new iteration

 The master will start the iteration after the iteration planning meeting. After creating

the project on the system the master should start a new iteration by entering the

required information for the iteration, such as: the number Do items, estimated Do

budget and estimated Do time (see Figure 4).

339

Figure 4. Start new iteration

 Iteration reviewing

 The master also required to enter his own data regarding to the quantitative and

qualitative metrics in the iteration reviewing activity.

 Activate the current activities

 The master also responsible for activating the current activity, for example, if the

master activates the test activity, thus only the tester can enter the data at the current

situation while the PO cannot enter the data of the next activity (daily reviewing)

because it is not active yet, which useful to ensure the sequence of the activities (see

Figure 5).

340

Figure 5. Activate the current activity

 View report

After the iteration or the project ends, the master can view the report for the

iteration and the project to the management. The report includes the results of

performing the quantitative and qualitative metrics during the development process.

After creating the iteration, the master activates planning activity. Consequently, the

PO entered the data that he owns on the system as shown in Figure 6.

341

Figure 6. Planning activity data collection (PO)

 After finishing the plan phase, the Do phase begins.

Do phase

This phase consists of several activities such as: design, code, test, daily meeting and

reviewing meeting.

 Design

During the design activity, the GOMM member helped the programmer to enter the

design data after he logged into the MO-PT system (see Figure 7).

342

Figure 7. Design activity data collection (programmer)

 Code

After the code activity finished, the GOMM member helped the programmer to enter

the code data after he logged into the MO-PT system (see Figure 8).

343

Figure 8. Code activity data collection (programmer)

 Test

The tester logged in to the MO-PT system and entered the required data for testing

with the guidance of the GOMM member (see Figure 9).

344

Figure 9. Test activity data collection (tester)

 Daily reviewing

PO entered the required data at the last daily meeting (see Figure 10).

345

Figure 10. Daily reviewing activity data collection (PO)

 Iteration reviewing meeting

This meeting also provides a time for the GOMM team members to help the master to

enter the required data (see Figure 11).

346

Figure 11. Do reviewing activity data collection (Master)

Check phase

After completing the data collection the analysis of the data will be performed by

MO-PT. The results of the analysis will be presented in the act phase.

Act phase

This phase includes the following activities:

 Save the increment

The PO entered the required data for monitoring this activity as shown in Figure 12.

347

Figure 12. Save the increment activity data collection (PO)

 Integrate with the system

The programmer is also required to enter the data for monitoring in this activity as

shown in Figure 13.

348

Figure 13. Integrate with the system activity data collection (programmer)

 View report

After the development activities the monitoring report will be presented. The

GOMM asked the master to print the report from his page on the MO-PT by clicking

on view report in the iteration page (see Figure 14).

Figure 14. View report

Based on the figure, each iteration has a monitoring report. Each report consists of

quantitative metrics and qualitative metrics results. The report includes the indicators

and action of improvement if needed for each metric.

If any metric has the indicator “need to improve”, the MO-PT shows the action

button beside the indicator. By clicking on that action button, a pop up message will

be shown telling the team the action that should be taken (see Figure 15).

349

Figure 15. Action message

	Copyright Page
	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Overview
	1.2 Background study
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Research Scope
	1.7 Research Contribution
	1.8 Significance of this Research
	1.9 Organization of Chapters

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Related studies on SSF
	2.2.1 SSF characteristics and problems
	2.2.2 Studies on the practices in SSF

	2.3 Existing development methods
	2.3.1 XP and Scrum analysis
	2.3.1.1 The Development Process
	2.3.1.2 Project Management
	2.3.1.3 Requirements
	2.3.1.4 Testing
	2.3.1.5 Design
	2.3.1.6 Team Structure
	2.3.1.7 Comparison Results

	2.3.2 Web Design Methods
	2.3.2.1 Web application Common Design Steps

	2.4 Software Measurements
	2.4.1 Measurement Methods
	2.4.1.1 Measurement Methods Evaluation

	2.4.2 Measurement Mechanism Purposes
	2.4.2.1 Benefits of Using Monitoring
	2.4.2.2 Measurement mechanism critical success factors
	2.4.2.3 Development process quality factors

	2.5 Criteria of a good methodology for Web applications in SSF
	2.6 Validation methods
	2.6.1 Validation factors

	2.7 Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Design Approach
	3.3 Research Methodology
	3.3.1 Theoretical study
	3.3.2 Survey
	3.3.3 Methodology Construction
	3.3.4 Methodology Evaluation

	3.4 Summary

	CHAPTER FOUR: SURVEY
	4.1 Introduction
	4.2 Questionnaire Structure
	4.3 Respondent’s Background
	4.3.1 Organization Background
	4.3.2 Software Development and Measurement Practices
	4.3.3 Web application development and measurement practices

	4.4 Questionnaire Validation
	4.4.1 Construct Validity
	4.4.2 Content Validity

	4.5 Identify Respondents and Sampling Type
	4.6 Questionnaire Distribution and Data Collection
	4.7 Analysis and Results
	4.7.1 Demographic Data
	4.7.1.1 Respondents Background
	4.7.1.2 Organization background

	4.7.2 Current Software Development and Measurement Practices
	4.7.2.1 Software Development Practices
	4.7.2.2 Software Measurement Practices

	4.7.3 Web Application Development and Measurement Practices
	4.7.4 Discussion of Findings
	4.7.5 Summary

	CHAPTER FIVE: METHODOLOGY CONSTRUCTION
	5.1 Introduction
	5.2 The Extended Agile Method
	5.3 The overview of MOGWD methodology
	5.4 MOGWD Methodology
	5.4.1 Plan Phase
	5.4.1.1 Management Planning
	5.4.1.2 Development planning
	5.4.1.3 Monitoring planning

	5.4.2 Do (iteration)
	5.4.3 Check
	5.4.4 Act

	5.5 Summary

	CHAPTER SIX: METHODOLOGY EVALUATION
	6.1 Introduction
	6.2 Verification based on the experts review
	6.2.1 Results of Round one
	6.2.1.1 Answers and suggestions related comprehensive criterion
	6.2.1.2 Answers and suggestions related understandability criterion
	6.2.1.3 Answers and suggestions related feasibility criterion
	6.2.1.4 Answers and suggestions related to the general overview part.

	6.2.2 Results of round two
	6.2.2.1 Process and Methods Modifications
	6.2.2.2 Tools Modification
	6.2.2.3 Team structure Modifications
	6.2.2.4 General overview modifications

	6.2.3 Results of Round Three

	6.3 Validation based on case study and yardstick method
	6.3.1 Validation based on the case study method
	6.3.1.1 Case Study: Developing the CMS Web application by Firm “A”
	6.3.1.1.1 Plan
	6.3.1.1.2 Do phase
	6.3.1.1.3 Check phase
	6.3.1.1.4 Act phase

	6.3.1.2 Validation results

	6.3.2 Validation based on the yardstick method

	6.4 Summary

	CHAPTER SEVEN: CONCLUSION
	7.1 Introduction
	7.2 Overview of Results
	7.2.1 Theoretical study
	7.2.2 Survey
	7.2.2.1 SSF Characteristics
	7.2.2.2 Development issues
	7.2.2.3 Measurement issues
	7.2.2.4 The current Web applications development and measurement practices

	7.2.3 Methodology Construction
	7.2.4 Methodology Evaluation
	7.2.4.1 Verification
	7.2.4.2 Validation

	7.3 Research contributions
	7.3.1 MOGWD methodology
	7.3.2 Extended Agile method with Web design method
	7.3.3 GOMM
	7.3.4 Survey results

	7.4 Limitations of the Research
	7.4.1 Lack of the Related Researches
	7.4.2 Limited Scope in the Evaluation Processes

	7.5 Future Work
	7.5.1 Add more quality factors for the process
	7.5.2 Using other Agile Practices or methods for the Extended Agile method
	7.5.3 Extend the MOGWD to include other Key process areas

	7.6 Summary

	REFERENCES
	Appendix

