A PROPOSED ENERGY EFFICIENT MEDIUM ACCESS CONTROL PROTOCOL FOR WIRELESS SENSOR NETWORKS

YASSER KAREEM HUMMADI AL-RIKABI

UNIVERSITI UTARA MALAYSIA 2014

A Proposed Energy Efficient Medium Access Control Protocol for Wireless Sensor Networks

A dissertation submitted to Dean of Research and Postgraduate Studies
Office

In partial Fulfillment of the requirement for the degree

Master of Science (Information Technology)

Universiti Utara Malaysia

By

Yasser Kareem Hummadi AL-Rikabi

Permission to Use

In presenting this dissertation in fulfilment of the requirements for a Master of Science in Information Technology (MSc. IT) from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this dissertation in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my dissertation.

Requests for permission to copy or to make other use of materials in this dissertation, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Abstrak

Nod-nod Rangkaian Sensor Tanpa Wayar (WSN) digunakan secara meluas dalam pelbagai sector. Nod-nod ini walaubagaimananpun berdepan dengan pelbagai masalah pengoperasian khususnya pelanggaran paket data, nod terlindung dan lain-lain yang memberikan impak besar ke atas jangka hayat bateri. Nod-nod WSN amat bergantung ke atas jangkahayat baterinya dan penambahan kuasa bateri nod-nod ini adalah sukar kerana nod-nod kerapkali tersusun dalam keadaan ad-hoc. Oleh demikian, kuasa bateri dalam nod-nod WSN menjadi factor penting dalam kebolehgunaannya. Satu pendekatan untuk menjimatkan penggunaan kuasa ialah merekabentuk protokol Medium Access Control (MAC). Kajian terdahulu telah dijalankan untuk mengatasi masalah yang memberi kesan ke atas jangkahayat bateri. Disertasi ini bertujuan merekabentuk protokol MAC hybrid, Energy Efficient MAC (EE-MAC) untuk mengatasi masalah yang berkaiatan penggunaan kuasa oleh nod-nod WSN. EE-MAC mengurangkan masalah idle-listening serta mempercepatkan penghantaran data sekaligus menjimatkan kuasa. EE-MAC dibangunkan menggunakan simulator ns-2. Keberkesanan protokol ini disahkan menggunakan model matematik serta dibandingkan dengan piawaian IEEE 802.11 Power Saving Mode (PSM). Simulasi yang dijalankan menunjukkan protokol yang dicadangkan mencapai prestasi yang lebih baik berbanding IEEE 802.11 PSM.

Abstract

Wireless Sensor Network (WSN) nodes are broadly used in various sectors nowadays. WSN nodes experience a lot of problems that impact on battery life for sensor node such as, overhearing, collision, hidden node, idle listening, schedule drifts, and high latency. Moreover, WSN nodes are strongly dependent on its limited battery power, and replenishing it again is difficult as nodes are organized in an ad-hoc manner. Energy consumption is the most vital factor to determine the life of a sensor network because sensor nodes are driven by low battery resources. An approach to conserve energy in WSN nodes is to carefully design its Medium Access Control (MAC) protocol. Several previous work has been carried out to mitigate many problems that impact on battery life for sensor node such as overhearing, collision, and hidden node. This dissertation attempts to design, a hybrid Energy-Efficient MAC (EE-MAC) protocol to address the energy issues that are related to WSN nodes. This protocol aims to reduce idle listening times as well as lowering the latency time thus reducing the energy consumption. The proposed protocol has been developed and analysed using the ns-2 simulator. A mathematical model was used to verify and prove the efficiency of the proposed protocol. We have compared our proposed EE-MAC protocol with the existing contention-based IEEE 802.11 PSM protocol. The simulation results illustrate EE-MAC has achieved better energy conservation than the IEEE 802.11 PSM protocol.

Keywords: EE-MAC, WSN, Medium Access Control, Energy-efficiency, ns-2, IEEE 802.11 PSM.

Acknowledgement

"In the name of Allah the Most Beneficent and Most Merciful"

All praises and thanks to the Almighty, Allah (SWT), who helped me to finish this dissertation. Allah gave me the opportunity, strength and the ability to complete my study for Master degree after a long continuous work. I would like to express my gratitude and special appreciation to my supervisors, Mr. Suwannit Chareen Chit and Dr. Mohd. Hasbullah Omar, who have been tremendous mentor for me. I would like to thank you both for encouraging and advising in both research as well as my career have been priceless.

I sincerely thank my evaluators, Dr. Mohd Nizam Omar and Dr. Shahrudin bin Awang Nor, and thanks to Dr. Norliza Binti Katuk, Dr. Faudziah Binti Ahmad, and other committee members, for graciously reviewing this work and giving me valuable suggestion and comments for my work. I am indebted and thankful to all Malaysian people who are very friendly and make us feel that we are not strangers in Malaysia.

Last but not least, the words cannot express my gratitude to my family, especially my dear father who is my teacher, friend, philosopher all in one who supported me in all ups and downs. My mother for her infallible love and support emotionally, my twin soul dear brother Mohammed Abu-jaafar and my other dear brothers, Ali, Hussain, Abbas, Hassan and sisters. The patience and understanding shown by my wife and my sons Sajjad and Muntadhar during these years is greatly appreciated. Words cannot describe their constant love, care, concern, patience, throughout the two years of my study abroad. I am forever thankful, grateful, and indebted to all of them.

I dedicate the accomplishment of this dissertation to my dear father my affectionate mother, and to the twin of my spirit, my dear brother Mohammed.

"Thank you UUM"

Yasser AL-Rikabi

Table of Contents

Permission to Use	i
Abstrak	ii
Abstract	iii
Acknowledgement	iiv
Table of Contents	v
List of Tables	vii
List of Figures	viii
List of Appendices	ix
List of Abbreviations	x
CHAPTER ONE	
1.0 Introduction	1
1.1 Background	3
1.2 Problem Statement	5
1.3 Research Questions	7
1.4 Research Objectives	7
1.5 Motivation	7
1.6 Contributions	8
1.7 Scope	9
CHAPTER TWO	10
2.0 Introduction	10
2.1 Medium Access Control Protocol	10
2.1.1 Contention-Based Protocols	11
2.1.2 Scheduled-Based Protocols	12
2.1.3 Hybrid-Based Protocols	12
2.1.3.1 Zebra-MAC (Z-MAC) Protocol	13
2.1.3.2 Wireless Sensor MAC (WiseMAC) Protocol	15
2.1.3.3 Crankshaft Protocol	18

2.1.3.4 Asynchronous Scheduled MAC (AS-MAC) Protocol	20
2.2 Related Studies	26
2.3 Primary Causes of Energy Wastage in WSN	31
2.4 Conclusion	33
CHAPTER THREE	34
3.0 Introduction	34
3.1 Understand the protocols and design (EE-MAC) protocol	36
3.2 Implement (EE-MAC) protocol and analysis	36
3.2.1 Pseudo Code.	38
3.2.2 Mechanism of the EE-MAC Procedure work	40
3.3 Evaluation	42
3.4 Summary	43
CHAPTER FOUR	44
4.0 Introduction	44
4.1 Simulation Setup and Parameters	44
4.2 Performance Metrics	46
4.3 Design Energy Efficient MAC (EE-MAC) Protocol	48
4.3.1 Scheduling.	49
CHAPTER FIVE	53
5.0 Introduction	53
5.1 Analysis Performance Results of EE-MAC Protocol	53
5.2 EE-MAC Performance Evaluation	57
5.3 Energy Saving	62
5.4 Discussion of Results	65
CHAPTER SIX	67
6.0 Conclusion	67
6.1 Research Contributions	68
6.2 Future Work	688
REFERENCES	69

List of Tables

Table 2.1: Advantages and disadvantages of hybrid MAC protocols	24
Table 2.2: Summary of related research studies.	32
Table 3.1: The mechanism of the EE-MAC procedure work	40
Table 4.1: Simulation parameters and setup.	45
Table 5.1: Simulation results of EE-MAC and IEEE 802.11 PSM protocols	56

List of Figures

Figure 1.1: A Typical Wireless Sensor Node and Its Architecture	4
Figure 2.1: The WiseMAC concept.	17
Figure 2.2: Contention and Message Exchange in Crankshaft	19
Figure 2.3: Initialization phase finding its offset.	21
Figure 2.4: Communication at Hello time.	22
Figure 2.5: Communication at wakeup time.	23
Figure 3.1: Methods and the main outcomes encapsulated in the research framework	35
Figure 3.2: Algorithmic form of EE-MAC procedure.	37
Figure 4.1: The EE-MAC Procedure.	50
Figure 4.2: The EE-MAC scheduling procedure.	52
Figure 5.1: Implementation of Sensor node for EE-MAC protocol	54
Figure 5.2: Implementation of Sensor node for IEEE 802.11 PSM protocol	55
Figure 5.3: Packets delivery ratio for EE-MAC and IEEE 802.11 PSM	58
Figure 5.4: Dropping Ratio for EE-MAC and IEEE 802.11 PSM	59
Figure 5.5: Throughput for EE-MAC and IEEE 802.11 PSM	60
Figure 5.6: Jitter for EE-MAC and IEEE 802.11 PSM.	61
Figure 5.7: Average Energy Consumption for EE-MAC and IEEE 802.11 PSM	63
Figure 5.8: Normalized routing overheads for EE-MAC and IEEE 802.11 PSM	64

List of Appendices

Appendix A The Snapshots to Implement Sensor node for Hybrid (EE-MAC) Protocol	74
Appendix B The Snapshots to Implement Sensor node for IEEE 802.11 PSM protocol	.80

List of Abbreviations

ACK Acknowledgment

AS-MAC Asynchronous Scheduled MAC

B-MAC Berkeley-MAC

CCA Clear Channel Assessment

CSMA/CD Carrier Sense Multiple Access/ Collision Detection

CSMA/CA Carries Sense Multiple Access/Collision Avoidance

DRAND Distributed Randomized

EB-MAC Event Based MAC

ECN Explicit Congestion Notification

EE-MAC Energy Efficient MAC

HCL High Contention Level

LCL Low Contention Level

LPL Low Power Listening

MAC Medium Access Control

μ**OS** Micro Operating System

P-MAC Pattern-MAC

PSM Power save Mode

RSS Received Signal Strength

TDMA Time Division Multiple Access

WiseMAC Wireless Sensor MAC

WSN Wireless Sensor Network

Z-MAC Zebra-MAC

CHAPTER ONE

INTRODUCTION

1.0 Introduction

Wireless Sensor Network (WSN) nodes are compact-sized, low-power autonomous devices with wireless communication capabilities that are widely used in various real world applications today. Advancement in technology world wide witness applications of WSN nodes in various pace of life, such as military, health care, environmental issues and many more which needs monitoring. These nodes are basically used in various sectors which need close monitoring, hence deployed in a sensor field to measure environmental conditions such as temperature, pressure, humidity, movement, etc. WSN nodes are powered by limited power sources and often exhibit strong dependency on battery life making replenishment an arduous or impossible task as most nodes are positioned in an ad-hoc manner. Energy in WSN node, though often insufficient and limited in supply, is the most important parameter that determines the WSN lifetime. In designing a WSN energy efficiency is required, and the radio is distinguished as a main source of the power consumption in sensor nodes (Jang, Lim, & Sichitiu, 2013).

In WSN operation, energy can be dissipated by either "useful" or "wasteful" means. For example, as a part of useful operation, node requires energy to transmit or receive data messages, and processes query requests through which energy is consumed. On the contrary, energy consumption by means of overhearing, retransmitting due to rough environment, handling with the redundant broadcast overhead messages, as well as idle listening to the media are wasteful energy

The contents of the thesis is for internal user only

REFERENCES

- Ahn, G. S., Hong, S. G., Miluzzo, E., Campbell, A. T., & Cuomo, F. (2006). Funneling-MAC: a localized, sink-oriented MAC for boosting fidelity in sensor networks. In *Proceedings of the 4th international conference on Embedded networked sensor systems* (pp. 293-306). ACM.
- Anwar, A., & Lavagno, L. (2010). Energy and Throughput Optimization of a Zigbee-Compatible MAC Protocol for wireless sensor networks. In *Communication Systems Networks and Digital Signal Processing (CSNDSP)*, 2010 7th International Symposium (pp. 305-310). IEEE.
- Aslam, S., Farooq, F., & Sarwar, S. (2009). Power consumption in wireless sensor networks.

 In *Proceedings of the 7th International Conference on Frontiers of Information Technology* (p. 14). ACM.
- Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). MAC essentials for wireless sensor networks. *Communications Surveys & Tutorials, IEEE*, 12(2), 222-248.
- Cano, C., Bellalta, B., Sfairopoulou, A., & Barceló, J. (2009). A low power listening MAC with scheduled wake up after transmissions for WSNs. *Communications Letters, IEEE*, 13(4), 221-223.
- Chao, C. M., & Lee, Y. W. (2010). A quorum-based energy-saving MAC protocol design for wireless sensor networks. Vehicular Technology, IEEE Transactions on, 59(2), 813-822.
- Chhabra, G. S., & Sharma, D. (2011). Cluster-tree based data gathering in wireless sensor network. *International Journal of Soft Computing and Engineering*, 1(1), 27-31.

- Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. *Communications Magazine*, *IEEE*, 44(4), 115-121.
- Dubey, S., & Agrawal, C. (2013). A survey of data collection techniques in wireless sensor network. *International Journal of Advances in Engineering* & *Technology*, 6(4).
- Dutta, P., Dawson-Haggerty, S., Chen, Y., Liang, C. J. M., & Terzis, A. (2010). Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless. In *Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems* (pp. 1-14). ACM.
- El-Hoiydi, A., Decotignie, J. D., Enz, C., & Le Roux, E. (2003). Wisemac, an ultra low power mac protocol for the wisenet wireless sensor network. In *Proceedings of the 1st international conference on Embedded networked sensor systems* (pp. 302-303). ACM.
- El-Hoiydi, A., & Decotignie, J. D. (2004). WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. In *Algorithmic Aspects of Wireless Sensor Networks* (pp. 18-31). Springer Berlin Heidelberg.
- Halkes, G. P., & Langendoen, K. G. (2007). Crankshaft: An energy-efficient MAC-protocol for dense wireless sensor networks. In *Wireless Sensor Networks* (pp. 228-244). Springer Berlin Heidelberg.
- Hurni, P., & Braun, T. (2008). Increasing throughput for WiseMAC. In Wireless on Demand Network Systems and Services, 2008. WONS 2008. Fifth Annual Conference on (pp. 105-108). IEEE.
- Jang, B., Lim, J. B., & Sichitiu, M. L. (2013). An asynchronous scheduled MAC protocol for wireless sensor networks. *Computer Networks*, 57(1), 85-98.

- Kaan, B., & Yang, Y. (2008). A technical survey on medium access control and routing protocols in wireless sensor networks for the active aircraft. Technical report, EP/F004532/1, UK.
- Klein, A. (2012). Preamble-Based Medium Access in Wireless Sensor Networks.

 INTECH: Open scince.
- Liu, Z., & Elhanany, I. (2006). RL-MAC: a QoS-aware reinforcement learning based MAC protocol for wireless sensor networks. In *Networking, Sensing and Control, ICNSC'06. Proceedings of the 2006 IEEE International Conference* (pp. 768-773). IEEE.
- Merhi, Z., Elgamel, M., & Bayoumi, M. (2009). EB-MAC: An event based medium access control for wireless sensor networks. In *Pervasive Computing and Communications*, *PerCom 2009*. *IEEE International Conference on* (pp. 1-6). IEEE.
- Oppenheimer, P. (2004). *Top-down network design* (2nd ed.). Asia: Cisco Press.
- Pramanik, M., & Sharma, K. (2013). A Comparative Study on AS-MAC and Crankshaft: The MAC Layer Protocols for Wireless Sensor Network. *International Journal of Computer Applications*, 70(14), 13-16.
- Rhee, I., Warrier, A., Aia, M., Min, J., & Sichitiu, M. L. (2008). Z-MAC: a hybrid MAC for wireless sensor networks. *IEEE/ACM Transactions on Networking* (TON), 16(3), 511-524.
- Rhee, I., Warrier, A., Min, J., & Xu, L. (2006). DRAND: distributed randomized TDMA scheduling for wireless ad-hoc networks. In *Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing* (pp. 190-201). ACM.

- Rhee, I., Warrier, A., & Xu, L. (2004). Randomized dining philosophers to TDMA scheduling in wireless sensor networks. Technical report, Computer Science Department, North Carolina State University, Raleigh, NC.
- Riaz, M. N., Qureshi, M. N., & Mahboob, (2013), A. Energy Efficient MAC Protocols

 For Wireless Sensor Networks: A Survey. International Journal of Scientific &

 Engineering Research (IJSER), (Vol. 4), 1859-1879.
- Roy, A., & Sarma, N. (2010). Energy saving in MAC layer of wireless sensor networks: a survey. In *National Workshop in Design and Analysis of Algorithm (NWDAA), Tezpur University, India* (Vol. 96).
- Saharan, K., & Pande, H. (2013). A survey on energy efficient asynchronous wisemac protocol for wireless sensor networks. *International Journal of Advances in Engineering & Technology*, 6(3), 1123-1131.
- Shinghal, K. S. H. I. T. I. J., Noor, A. R. T. I., Srivastava, N. E. E. L. A. M., & Singh,
 R. A. G. H. U. V. I. R. (2011). Power measurements of Wireless Sensor
 Network node. *Int. J. Comput. Eng. Sci.(IJCES)*, 1, 8-13.
- Udayakumar, P., Vyas, R., & Vyas, O. P. (2013). Energy Efficient Election protocol for wireless sensor networks. In *Circuits, Power and Computing Technologies* (ICCPCT), 2013 International Conference on (pp. 1028-1033). IEEE.
- Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling. In *Proceedings of the 4th international conference on Embedded networked sensor systems* (pp. 321-334). ACM.
- Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey.

 *Computer networks, 52(12), 2292-2330.

- Younis, M., & Nadeem, T. (2006). Energy efficient MAC protocols for wireless sensor networks. Wireless Ad-Hoc and Sensor Networks. Kluwer Academic Publishers. Maryland: USA.
- Zheng, T., Radhakrishnan, S., & Sarangan, V. (2005). PMAC: an adaptive energy-efficient MAC protocol for wireless sensor networks. In *Parallel and Distributed Processing Symposium*, 2005. *Proceedings*. 19th IEEE International (pp. 8-pp). IEEE.