# TRACER STUDY ON AIMST UNIVERSITY STUDENTS USING DATA MINING

A project submitted to the Faculty of Information Technology in partial fulfillment of the requirement for the degree Master of Science (Information Technology)

Universiti Utara Malaysia

by

### LOGA VIJAINDRAN DAMOTHARAN

@ Loga Vijaindran Damotharan, 2012. All rights reserved.



### KOLEJ SASTERA DAN SAINS (College of Arts and Sciences) Universiti Utara Malaysia

# PERAKUAN KERJA KERTAS PROJEK (Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa (I, the undersigned, certifies that)

# LOGA VIJAINDRAN A/L DAMOTHARAN (804762)

calon untuk Ijazah (candidate for the degree of) MSc. (Information Technology)

telah mengemukakan kertas projek yang bertajuk (has presented his/her project of the following title)

### TRACER STUDY ON AIMST UNIVERSITY STUDENTS USING DATA MINING

seperti yang tercatat di muka surat tajuk dan kulit kertas projek (as it appears on the title page and front cover of project)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan. (that this project is in acceptable form and content, and that a satisfactory knowledge of the field is covered by the project).

| Nama Penyelia Utama                     |                               |           |
|-----------------------------------------|-------------------------------|-----------|
| (Main Supervisor)                       | : ASSOC. PROF. FADZILAH SIRAJ |           |
| Tandatangan<br>(Signature)              | : Tarikh (Date) :             | 16/1/2012 |
| Nama Penyelia Kedua:<br>(Co-Supervisor) | MRS. NUR AZZAH ABU BAKAR      |           |
| Tandatangan<br>(Signature)              | : Tarikh (Date) :             | 19/1/2012 |
| Nama Penilai<br>(Name of Evaluator)     | : MISS JUHAIDA ABU BAKAR      |           |
| Tandatangan<br>(Signature)              | : Tarikh (Date) :             | 19/1/2012 |

### **PERMISSION TO USE**

In presenting this project in partial fulfillment of the requirements for a postgraduate degree from the Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholar purposes may be granted by my supervisor(s) or, in their absent, by the Dean of Centre for Graduate Studies. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and Universiti Utara Malaysia for any scholar use which may be made of any material from my project.

Request for permission to copy or make other use of the material in this project in whole or part should be addressed to:

Dean

**Centre for Graduate Studies** 

Universiti Utara Malaysia

06010 Sintok

Kedah Darul Aman

### ABSTRAK (BAHASA MALAYSIA)

Kajian pengesanan graduan merupakan salah satu pendekatan yang digunakan secara meluas di pelbagai bidang pengurusan terutamanya dalam bidang pengajian tinggi. Sedemikian, kajian seumpama adalah yang terkini serta amat efektif dalam kalangan para penyelidik untuk mendapatkan satu reka model yang menyimpulkan keberkesananan institusi pengajian tinggi dalam usaha melahirkan graduan-graduan yang berkualiti tinggi dan diterima masyarakat. Selain itu, kajian ini turut meramal bilangan graduan yang akan dilahirkan oleh sesebuah institusi pengajian tinggi berdasarkan data-data statistik yang sedia ada. Maka dengan cara yang sama, kajian pengesanan graduan untuk Universiti AIMST turut dijalankan dengan menganalisis datadata yang telah yang diperoleh dari bahagian kemasukan pelajar, Universiti AIMST untuk meramal bilangan siswazah yang akan menamatkan pengajian pada tahun-tahun akan datang berdasarkan bilangan para siswazah dari tahun-tahun sebelumnya. Set data yang diperolehi dari bahagian kemasukan pelajar Universiti AIMST merupakan set data mentah iaitu ianya mengandungi data – data yang hilang yang harus diperbaiki dahulu. Maka set data tersebut harus melalui pelbagai fasa dalam kaedah CRISP untuk memperbaiki data yang hilang dan seterusnya membolehkan ianya dapat digunakan dalam pelombongan data. Walaubagaimanapun, data tersebut harus melalui pra pemprosesan dalam fasa persediaan data dalam kaedah CRISP untuk menjadikan set data yang berkualiti serta boleh digunakan dalam pelombongan data.

**ACKNOWLEDGEMENT** 

I would like to express my sincere gratitude to my both supervisors, Associate Professor Fadzilah Siraj

and Puan Nor Azzah Abu Bakar for their invaluable guidance, encouragement and knowledge-sharing in

completing my project work.

Herewith I also would like to extend my appreciation to my late father Mr Damotharan Sarathy, who had

given me the education and support till his last breath.

Next would be my mom, Madam Ramu Damotharan for her sacrifice and continuous support throughout

my life.

This followed the most wonderful and important person in my entire life, who none other than my wife

Ms Bavani Loga Vijaindran who has been by my side in all my life achievements and undertakings.

Next is my loving son, Neesshant Loga Vijaindran who silently and patiently supported me in this career

achievement.

Also, my appreciation is to the management of AIMST University especially Students and Records

Division, Registry and School of General and Foundation Studies for trusting and allowing me to do the

tracer study.

Lastly, I would like to thank those who have supported me directly and indirectly to make this research a

success.

By:

Loga Vijaindran Damotharan

**School of Computing** 

College of Arts & Sciences

Universiti Utara Malaysia

2012.

iv

### **Table of Content**

| Permission   | to Use                    | i    |
|--------------|---------------------------|------|
| Abstract (E  | English)                  | ii   |
| Abstract (B  | Sahasa Malaysia)          | iii  |
| Acknowled    | lgement                   | iv   |
| List of Tab  | les                       | viii |
| List of Figu | ures                      | xi   |
|              |                           |      |
| CHAPTER      | 1: INTRODUCTION           | 1    |
| 1.1          | Problem Statement         | 3    |
| 1.2          | Research Questions        | 4    |
| 1.3          | Objectives                | 4    |
| 1.4          | Scope                     | 4    |
| 1.5          | Significance              | 5    |
| 1.6          | Summary                   | 5    |
|              |                           |      |
| СНАРТЕ       | R 2: LITERATURE REVIEW    | 6    |
| 2.1          | Tracer Study              | 6    |
| 2.2          | Data Mining               | 8    |
| 2.3          | Data Mining in Education  | 11   |
| 2.4          | Tracer Study in Education | 13   |
| 2.5          | Summary                   | 18   |

| CHAPTER 3: METHODOLOGY |                                          | 19 |
|------------------------|------------------------------------------|----|
| 3.1                    | Introduction                             | 19 |
| 3.2                    | Phase 1: Business Understanding          | 21 |
| 3.3                    | Phase 2: Data Understanding              | 22 |
| 3.4                    | Phase 3: Data Preparation                | 23 |
| 3.4.1                  | Mean Calculation Process                 | 27 |
| 3.5                    | Phase 4: Modeling                        | 28 |
| 3.6                    | Phase 5: Evaluation                      | 29 |
| 3.7                    | Phase 6: Deployment                      | 30 |
| 3.8                    | Summary                                  | 31 |
|                        |                                          |    |
| CHAPTER 4: 1           | RESULTS                                  | 32 |
| 4.1                    | DATA SUMMARY                             | 32 |
| 4.2                    | FREQUENCY ANALYSIS                       | 35 |
| 4.2.1                  | Gender                                   | 36 |
| 4.2.2                  | Race                                     | 37 |
| 4.2.3                  | State                                    | 38 |
| 4.2.4                  | Program Level                            | 39 |
| 4.2.5                  | Entry Requirement                        | 41 |
| 4.2.6                  | Financial Resources                      | 42 |
|                        |                                          |    |
| 4.3                    | CROSS TABULATION WITH RESPECT TO PROGRAM | 43 |
| 4.3.1                  | Gender                                   | 43 |
| 4.3.2                  | Race                                     | 50 |
| 4.3.3                  | Financial Resources                      | 58 |

|     | 4.3.4    | Entry Requirements | 65 |
|-----|----------|--------------------|----|
|     | 4.4      | Summary            | 70 |
| CH. | APTER 5: | CONCLUSIONS        | 71 |
| 6   | REFEI    | RENCES             | 73 |
| API | PENDIXES | $\mathbf{S}$       | 80 |

### List of Tables

| Table 2.1  | Cluster Characteristics between Variables                         | 13 |
|------------|-------------------------------------------------------------------|----|
| Table 3.1  | Data sets with missing values                                     | 24 |
| Table 3.2  | Data sets without missing values                                  | 24 |
| Table 3.3  | Mean Value to replace the Missing Values                          | 25 |
| Table 3.4  | Mean calculation for Bumiputera status                            | 27 |
| Table 4.1  | Students Profile                                                  | 34 |
| Table 4.2  | Datasets with missing values                                      | 35 |
| Table 4.3  | Cross Tabulation between Degree Courses with Gender               | 43 |
| Table 4.4  | Cross Tabulation between Diploma Courses with Gender              | 47 |
| Table 4.5  | Cross Tabulation between Degree Courses with Race                 | 50 |
| Table 4.6  | Cross Tabulation between Diploma Courses with Race                | 55 |
| Table 4.7  | Cross Tabulation between Degree Courses with Financial Resources  | 59 |
| Table 4.8  | Cross Tabulation between Diploma Courses with Financial Resources | 62 |
| Table 4.9  | Cross Tabulation between Degree Courses Entry Requirement         | 65 |
| Table 4.10 | Cross Tabulation between Diploma Courses Entry Requirement        | 69 |
| Table 4.11 | Correlation Coefficient                                           | 71 |
| Table 1    | Cross Tabulation between Courses and Gender                       | 80 |
| Table 2    | Cross Tabulation between Diploma and Gender                       | 80 |
| Table 3    | Cross Tabulation between Degree and Gender                        | 81 |
| Table 4    | Cross Tabulation between Courses and Race                         | 81 |
| Table 5    | Cross Tabulation between Diploma and Race                         | 82 |
| Table 6    | Cross Tabulation between Degree and Race                          | 82 |

| Table 7  | Frequency Analysis for Gender              | 83 |
|----------|--------------------------------------------|----|
| Table 8  | Frequency Analysis for Race                | 83 |
| Table 9  | Frequency Analysis for State               | 83 |
| Table 10 | Frequency Analysis for Bumiputera Status   | 84 |
| Table 11 | Frequency Analysis for Number of Semesters | 84 |
| Table 12 | Frequency Analysis for Intake Month/Year   | 85 |
| Table 13 | Frequency Analysis for Estimated Finishing | 85 |
| Table 14 | Frequency Analysis for Course Name         | 86 |
| Table 15 | Frequency Analysis for Course Type         | 87 |
| Table 16 | Frequency Analysis for Course Code         | 87 |
| Table 17 | Frequency Analysis for Study Scheme        | 88 |
| Table 18 | Frequency Analysis for Offering Method     | 88 |
| Table 19 | Frequency Analysis for Program Level       | 88 |
| Table 20 | Frequency Analysis for Requirement         | 88 |
| Table 21 | Frequency Analysis for OKU_Status          | 89 |
| Table 22 | Frequency Analysis for Handicapped Type    | 89 |
| Table 23 | Frequency Analysis for Financial Resources | 89 |
| Table 24 | Frequency Analysis for Student Status      | 89 |
| Table 25 | Frequency Analysis for Gender              | 90 |
| Table 26 | Frequency Analysis for Race                | 90 |
| Table 27 | Frequency Analysis for State               | 90 |
| Table 28 | Frequency Analysis for Bumiputera Status   | 91 |
| Table 29 | Frequency Analysis for Number of Semesters | 91 |

| Table 30 | Frequency Analysis for Intake Month/Year   | 92 |
|----------|--------------------------------------------|----|
| Table 31 | Frequency Analysis for Estimated Finishing | 92 |
| Table 32 | Frequency Analysis for Course Name         | 93 |
| Table 33 | Frequency Analysis for Course Type         | 94 |
| Table 34 | Frequency Analysis for Course Code         | 94 |
| Table 35 | Frequency Analysis for Study Scheme        | 94 |
| Table 36 | Frequency Analysis for Offering Method     | 95 |
| Table 37 | Frequency Analysis for Program Level       | 95 |
| Table 38 | Frequency Analysis for Requirement         | 95 |
| Table 39 | Frequency Analysis for OKU Status          | 96 |
| Table 40 | Frequency Analysis for Handicapped Type    | 96 |
| Table 41 | Frequency Analysis for Financial Resources | 96 |
| Table 42 | Frequency Analysis for Student Status      | 96 |

## List of Figures

| Figure 3.1  | Phases of the CRISP-DM Process Model                         | 20 |
|-------------|--------------------------------------------------------------|----|
| Figure 3.2  | Value label for Bumiputera status variable                   | 27 |
| Figure 4.1  | Population based on Gender                                   | 36 |
| Figure 4.2  | Population based on Race                                     | 37 |
| Figure 4.3  | Students breakdown based on States                           | 38 |
| Figure 4.4  | Students breakdown based on Degree Programs                  | 39 |
| Figure 4.5  | Students breakdown based on Diploma Programs                 | 40 |
| Figure 4.6  | Population based on Entry Requirement                        | 41 |
| Figure 4.7  | Population based on Financial Resources                      | 42 |
| Figure 4.8  | Cross tabulation Course_Name (Degree) with Gender            | 44 |
| Figure 4.9  | Male students with respect to the Degree courses             | 45 |
| Figure 4.10 | Female students with respect to the Degree courses           | 46 |
| Figure 4.11 | Cross tabulation Course_Name (Diploma) with Gender           | 48 |
| Figure 4.12 | Female students with respect to the Diploma courses          | 48 |
| Figure 4.13 | Male students with respect to the Diploma courses            | 49 |
| Figure 4.14 | Cross tabulation Course_Name (Degree) with Race              | 51 |
| Figure 4.15 | Distribution of Indian students undertaking Degree program   | 52 |
| Figure 4.16 | Distribution of Chinese students undertaking Degree program  | 52 |
| Figure 4.17 | Distribution of Malay students undertaking Degree program    | 54 |
| Figure 4.18 | Cross tabulation Course_Name (Diploma) with Race             | 55 |
| Figure 4.19 | Distribution of Indian students undertaking Diploma program  | 57 |
| Figure 4.20 | Distribution of Chinese students undertaking Diploma program | 57 |

| Figure 4.21 | Distribution of Malay students undertaking Diploma program      | 57 |
|-------------|-----------------------------------------------------------------|----|
| Figure 4.22 | Cross tabulation Course_Name (Degree) with Financial_Resources  | 60 |
| Figure 4.23 | PTPTN support with respect to Degree courses                    | 61 |
| Figure 4.24 | Personal support with respect to Degree courses                 | 62 |
| Figure 4.25 | Cross tabulation Course_Name (Diploma) with Financial_Resources | 63 |
| Figure 4.26 | PTPTN support with respect to Diploma                           | 64 |
| Figure 4.27 | Personal support with respect to Diploma                        | 64 |
| Figure 4.28 | Cross tabulation Course_Name (Degree) with Entry_Requirement    | 67 |
| Figure 4.29 | Cross tabulation Course_Name (Diploma) with Entry_Requirement   | 69 |

### **CHAPTER ONE**

### INTRODUCTION

Education has become an essential part of everyone's life in which it gives added values to each individual, in particular, those who excel in their studies. There are several reputable education providers namely that are playing a vital role in producing high performance graduates. Regardless of whether the institution is a public or a private institution, students' performance always is the major concern.

A small number of students are performing well in their institutions despite numerous efforts given by the education provider and the government. Only handfuls of students are able to obtain excellent results and awarded with Deans' List as well as other recognitions. According to Emmanuel (2007), students' performance can be influenced by factors such as gender, family background, attitudes, previous academic background, location as well as the type of the course they enrolled. This study investigates the relationship between these factors (attributes) against students' performance in tertiary education.

# The contents of the thesis is for internal user only

### 6. REFERENCES

- Al-Radaideh, Q. A., Al-Shawakfa, E. M. & Al-Najjar M. I. (2006). *Mining Student Data Using Decision Trees*, 1-5. International Arab Conference on Information Technology.
- Blood, D. (2010). Tracer Study Report: Winrock Moldova Entrepreneurship Grant and Training Programs. Retrieved from <a href="http://www.winrock.org.md/wp-content/uploads/2011/04/Moldova-Tracer-Study-Final-Report-FINAL-2.pdf">http://www.winrock.org.md/wp-content/uploads/2011/04/Moldova-Tracer-Study-Final-Report-FINAL-2.pdf</a>
- Bolaane, B., Chuma, J. M. & Toteng, B. & Molwane, O. B. (2010). *Tracer Study on the Employment Outcomes of the Vocational Training Graduate*. Retrieved from <a href="http://www.botswanalmo.org.bw/docs/Documents/BQTA.pdf">http://www.botswanalmo.org.bw/docs/Documents/BQTA.pdf</a>
- Cristian, M. M. (2010). Building Personalizes Interfaces by Data Mining Integration, 729-734. Proceedings of the International Multiconference on Computer Science and Information Technology.
- Devalari, N., Beikzadeh, M.R. & Phon-Amnuaisuk, S. (2005). Application of Enhanced Analysis Model for Data Mining Processes in Higher Educational System, F4B/1 F4B/6. 6<sup>th</sup> Annual International Conference: ITEHT, Juan Dolio, Dominican Republic.
- Ermeling, B. A., (2010). Tracing the Effects of Teacher Inquiry on Classroom Practice.

  Teaching and Teacher Education, 26, 377 388. University of California, Los Angeles, CA.
- Freitas, A. A. (2007). A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery, 61 93. Postgraduate Programmes in Computer Science, Pontificia Universidade, Brazil.

- Gargano, M. L., Raggad, B. G. (1999). Data Mining A Powerful Information Creating Tool, 15, 81 90. Pace University, New York City, New York, USA.
- Hao, X. & Li, M. (2008). Application of Improved Algorithm of Data Reduction to Knowledge Discovery of Information Security Management, 5, 526 530. Fifth International Conference on Fuzzy Systems and Knowledge Discovery.
- Harrell, F. E. Jr. (2001). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression and Survival Analysis. New York, NY: Springer-Verlag.
- He, C. & Chen, Q. (2010). The Method for Data Reduction Based on Evaluation of Attributes Significance, 1 4. Second International Workshop on Intelligent Systems and Applications (ISA).
- Hluchy, L., Habala, O., Ciglan, M. & Tran, V.D. (2008). *Mining and Integration of Environmental Data*, 247 252. IEEE International Conference on Computational Cybernetics.
- Huang, Y. (2009). Study of College Human Resources Data Mining Based on the SOM Algorithm, 1, 324 327. Asia Pacific Conference on Information Processing.
- Hyysalo, S. (2009). Learning for Learning Economy and Social Learning, 38, 726 73.

  Research Policy.
- Ibrahim, Z. & Rusli, D. (2007). Predicting Students' Academic Performance: comparing Artificial Neural Network, Decision Tree and Linear Regression, 1 6. 21st Annual SAS Malaysia Forum.
- Irawati, I. & Bastaman, B. (2011). Tracer study: Capturing the soft skills competency of FMUI'S medical graduates. Medicine & Health, 6 (1 Supplement). p. 100. ISSN 1823-2140.

- Jackson, J. (2002). Data Mining: A Conceptual Overview. Communications of the Association for Information System, 8, 267-296. Management Science Department, University of South Carolina.
- Jirapanthong, W. (2009). Classification Model for Selecting Undergraduate Programs, 89 95. Eighth International Symposium on Natural Language Processing.
- Jamir, A. (2008). The IDRC Tracer Study on NEPED 'Empowering Through Knowledge'. Retrieved from http://idlbnc.idrc.ca/dspace/bitstream/10625/40618/1/128922.pdf
- Kadzamira, E. C. (2003). Where has All the Education Gone in Malawi? Retrieved from <a href="http://www.queensu.ca/samp/migrationresources/Documents/MALAWI\_COMPLETE.pdf">http://www.queensu.ca/samp/migrationresources/Documents/MALAWI\_COMPLETE.pdf</a>
- Kishor, P. (2007). Tracer Study on Training Graduates of Media Centre Programme.

  Panos South Asia. Retrieved from

  <a href="http://www.bcoalliance.org/system/files/PSA+Media+Centre+Programme+Tracer+Study+Report-6+Feb+'07.pdf">http://www.bcoalliance.org/system/files/PSA+Media+Centre+Programme+Tracer+Study+Report-6+Feb+'07.pdf</a>
- Khemphila, A. & Boonjing, V. (2010). Comparing Performances of Logistics Regression, Decision Trees and Neural Networks for Classifying Heart Disease Patients, 193 198. International Conference on Computer Information Systems and Industrial Management Applications (CISIM).
- Kovacevic, A., Devedzic, V. & Pocajt, V. (2010). Using Data Mining to Improve Digital Library Services, 28, 829-843. The Electronic Library.
- Laokietkul, J., Utakrit, N. & Meesad, P. (2009). A Forecasting Model to Evaluate a Freshman's Ability to Succeed by Using Particular Full Scaled Class Association Rules (PFSCAR), 40 44. International Association of Computer Science and Information Technology Spring Conference.

- Latif, L. A. & Baharom, R. (2010). *OUM's Tracer Study: A Testimony to a Quality Open and Distance Education*, 2, No.1. ASEAN Journal of Open and Distance Learning. Centre for Student Management, OUM Malaysia.
- Li, L. & Zhang, K. (2009). A Privacy Preserving Clustering Technique Using Hybrid

  Data Transformation Method, 1502 1506. IEEE International Conference on

  Grey Systems and Intelligent Services. Nanjing, China.
- Mabila, T.E., Malatje, S.E., Bediako, A.A, Kazeni, M.M.M. & Mathabatha, S.S. (2006).

  The Role of Foundation Programmes in Science Education: The UNIFY

  Programme at the University of Limpopo, South Africa, 26, 295 304.

  International Journal of Education Development.
- Mayanja, K. M. (2002). Graduate Employment: Investing In The service Mandate of The African University. Symposium on the African Universities in the 21<sup>st</sup> Century. Retrieved from <a href="http://www.codesria.org/IMG/article\_PDF/article\_a580.pdf">http://www.codesria.org/IMG/article\_PDF/article\_a580.pdf</a>
- Mohamed, F. (2003). Interim Report on Alumni Tracer Study Programme, 1 5.

  Retrieved from 
  http://www.mche.edu.mv/assets/images/fmc/articles\_online/tracer\_fazna.pdf
- Millington, C. The Use of Tracer Studies for Enhancing Relevance and Marketability in Online and Distance Education. Barbados Community College. Retrieved from <a href="http://wikieducator.org/images/e/e1/PID">http://wikieducator.org/images/e/e1/PID</a> 424.pdf
- Minaei Bidgoli, B. (2004). Data Mining for A Web Based Educational System, PhD

  Thesis Report, Department of Computer Science and Engineering, Michigan State
  University.
- Nadali, A., Kakhky, E. N. & Nosratabadi, H. E. (2011). Evaluating the Success Level of Data Mining Projects Based on CRISP DM Methodology by a Fuzzy Expert System, 6, 161 165. Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

- Nghe, N. T., Janecek, P. & Haddawy, P. (2007). A Comparative Analysis of Techniques for Predicting Academic Performance, T2G-7 T2G-12. 37<sup>th</sup> ASEE/IEEE Frontiers in Education Conference.
- Norris, D.(2005). Bloor Research. Clementine Data Mining Workbench. Retrieved from <a href="http://www.spss.ch/upload./1114004551\_Clementine%209%20BloorReport%20LR.pdf">http://www.spss.ch/upload./1114004551\_Clementine%209%20BloorReport%20LR.pdf</a>
- Ogor, E. N. (2007). Student Academic Performance Monitoring and Evaluation Using Data Mining Techniques, 354 35. 4<sup>th</sup> Congress of Electronics, Robotics and Automotive Mechanics.
- Ooi, M. P. L., Chan, C., Lee, S.-L, Mohanan, A. A., Goh, L.Y. & Kuang, Y. C. (2009).

  Towards Identification of Latent Defects: Yield Mining Using Defect

  Characteristic Model and Clustering, 194 199. Monash University, Bandar

  Sunway, Petaling Jaya, Selangor.
- Parco, G. F. & Kanzler, A. (2005). Engineered Reed Bed Treatment System as a Low Cost Sanitation Option for the Philippines. Hands on Workshop on Sanitation and Wastewater Management.
- Rai, D., Gong, Y. & Beck, J. E. (2009). Using Dirichlet Priors to Improve Model Parameter Plausibility, 141 150. EDM Proceeding (2009).
- Rao, S. J. (2003). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression and Survival Analysis, 98(461), 257 258. Journal of American Statistical Association.
- Regmi, P. P., Mohanty, B. & Bista, S. (2006). *Tracer Study: Urban Environmental Management Graduates* 1998 2005. CIDA AIT Partnership Project. Urban Environment Management (UEM) Field of Study.

- Richardson, B. D., Davis, K. C. & Beach, M. D. (2008). Introducing Data Mining Techniques and Software Engineering to High School Science Students, F2D 1 F2D 6. 38<sup>th</sup> ASEE/IEEE Frontiers in Education Conference.
- Sapaat, M. A., Musthapha, A., Ahmad, J., Chamili, K. & Muhamad, R. (2011). A Data Mining Approach to Construct Graduates Employability Model in Malaysia, 1111

   1124. International Journal on New Computer Architectures and Their Applications. University Putra Malaysia, Malaysia.
- Servaas, V.D.B. (2008). How Effective are Poor Schools? Poverty and Educational Outcomes in South Africa, 34, 145 154. Studies in Educational Evaluation.
- Shongwe, M. & Ocholla, D. (2011). A Tracer Study of LIS graduates at the University of Zululand, 2000 2009, 1 14. Retrieved from <a href="http://uzulu.academia.edu/MzwandileShongwe/Papers/731208/A\_tracer\_study\_of\_LIS\_graduates\_at\_the\_University\_of\_Zululand\_2000-2009">http://uzulu.academia.edu/MzwandileShongwe/Papers/731208/A\_tracer\_study\_of\_LIS\_graduates\_at\_the\_University\_of\_Zululand\_2000-2009</a>
- Shrestha, B. Chapter XIII: Tracer Study of School Leavers. Study on Student Performance in SLC. SLC study Team.
- Siraj, F. & Abdoulha, M. A. (2009). Uncovering Hidden Information within University's Student Enrolment Data Using Data Mining, 413 418. 3<sup>rd</sup> Asia International Conference on Modelling & Simulation.
- Siraj, F. & Abdoulha, M. A. (2011). Mining Enrolment Data Using Descriptive and Predictive Approaches, Knowledge Oriented Applications in Data Mining, Kimito Funatsu (Ed.), ISBN: 978-953-307-154-1,53 72.
- Tovar, E. & Soto, O. (2010). The Use of Competences Assessment to Predict the Performance of First Year Students, F3J-1 F3J-4. 40<sup>th</sup> ASEE/IEEE Frontiers in Education Conference.

- Ugwuonah, G. E. & Omeje, K. C. (1998). Higher Education and the Demands of Manpower Development in the Nigerian Manufacturing Sector; An Empirical Study of Enugu and Anambra States. Institute of Development Studies, University of Nigeria, Enugu Campus, Nigeria.
- Vandamme, J. P., Meskens, N. & Superby, J. F (2007). *Predicting Academic Performance by Data Mining Methods*, 15, 405 419. Education Economics.
- Vlaardingerbroek, B., Dallal, K., Rizkallah, G. & Rabah, J. (2007). A Tracer Study of Lebanese Upper Secondary School Students, 27, 564 571. International Journal of Education Development.
- Wook, M., Yahaya, Y. H., Wahab, N., Isa, M. R. M., Awang, N. F. & Seong H. Y. (2009). Predicting NDUM Students' Academic Performance Using Data Mining Techniques, 357 361. Department of Computer Science, Faculty of Computer Science and Defence Technology, National Defence University of Malaysia, Malaysia, 2009.
- Yahya, M. & Siraj, F. (2011). Effect of Data Normalization Techniques on Data Mining.

  Applied Science Division, CAS, UUM.
- Zhang, N. & Lu, W. F. (2007). An Efficient Data Preprocessing Method for Mining Customer Survey Data, 573 578. Fifth IEEE International Conference on Industrial Informatics.