AUTOMATIC TEST CASE GENERATION FROM UML ACTIVITY

DIAGRAM USING ACTIVITY PATH

Yasir Dawood Salman Almulham

UNIVERSITI UTARA MALAYSIA 2010

https://core.ac.uk/display/268138007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTOMATIC TEST CASE GENERATION FROM UML ACTIVITY
DIAGRAM USING ACTIVITY PATH

A project submitted to Dean of Postgraduate Studies and Research Office in
partial fulfillment of the requirement for the degree
Master of Science
Information Technology (IT)

Universiti Utara Malaysia

By

Yasir Dawood Salman Almulham

Yasir Dawood Salman Almulham

All Rights Reserved 2010 ©

KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangah, memperakukan bahawa
(I, the undersigned, certifies that)

YASIR DAWOOD SALMAN ALMULHAM
(802400)

calon untuk [jazah
(candidate for the degree of) MSe. (Information Technology)

telah mengemukakan kertas projek yang bertajuk
(has presented his/ her project of the following title)

AUTOMATIC TEST CASE GENERATION FROM
ACTIVITY DIAGRAM USING ACTIVITY PATH

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmmu dengan memuaskan.
(that this project is in acceptable form and content, and that a satisfactory
knowledge of the field is covered by the project).

Nama Penyelia
(Name of Supervisor) : DR. NOR LAILY HASHIM

1

(A arikh (Date) : 10/‘0/‘ o

Tandatangan
(Signature)

Nama Penilai
(Name of Evaluator) : MDM. R MD. REJAB

Tandatangan M
(Signature) : arikh (Date) : [5// 97// 0

PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a
postgraduate degree from the Universiti Utara Malaysia, [agree that the University
Library may make it freely available for inspection. I further agree that permission for
copying of this project in any manner in whole or in part, for scholarly purposes may be
granted by my supervisor or in their absence by the Dean of the Postgraduate Studies and
Research. It is understood that any copying or publication or use of this project or parts
thereof for financial gain shall not be allowed without my written permission. It is also
understood that due recognition shall be given to me and to Universiti Utara Malaysia for

any scholarly use which may be made of any material from my project.

Requests for permission to copy or to make other use of materials in this project,

in whole or in part, should be addressed to

Dean of Postgraduate Studies and Research
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman

Malaysia

Abstract

The most important part of the testing attempt is the test case generation. As a modeling
language, Unified Modeling Language (UML) is the most generally used to describe
design specifications and analysis by both academic and industry. Therefore, UML
becomes the sources of Test Case Generation. Test cases are usually generated from the
requirement, and UML activity diagram illustrates the sequential control flows of
activities what make it possible to generate test cases for activity diagrams. This research
proposes an approach to automatically generate test cases directly from UML activity
diagram using activity graph. Therefore, this research will create an algorithm and
implement it on a prototype using the UML activity diagram as an input to generate the
test cases. The result of all these test cases will be compared to the result that has been

generated manually to evaluate the usability and reliability of the proposed algorithm.

I

ACKNOWLEDGEMENTS

First, I would like to express my appreciation to Allah, the most merciful and, the most
compassionate, who has granted me the ability and willing to start and complete this
study. I do pray to His Greatness to inspire and enable me to continue the work for the
benefits of humanity.

After that, my most profound thankfulness goes to my supervisor Dr. Nor Laily Hashim
for her scientifically proven and creativity encouraging guidance and great support in this
study.

Last, I wish to thank my Father, Mother who were always there for me by giving

everything they have, my brothers and sisters for their love and support.

Thank you UUM.

Yasir Dawood Salman

September 19, 2010

11

TABLE OF CONTENTS

PERMISSIONTO USE ...

ABSTRACT ... e

LISTOF FIGURES ...ttt

LIST OF TABLES ... et e

CHAPTER ONE : INTRODUCTION

LT INtrOUCHION. .. c.e ettt et et et e e eie et e e e e reeeas
1.2 Problem Statement..........oovuiiiiii i
1.3 Research QUeStiONS. ...c..oviniiie it
1.4 Research ObJectiVes.......ovvviiiiiiiiii i
1.5 Scopeof Research.............ooooiiii
1.6 Significance Of Study........cooiiiiiiii e

1.7 Organization of the report...........ooooiiiiiiiiiiiii

CHAPTER TWO : LITERATURE REVIEW
2.1 INErOAUCHION «ouvvitintet ettt et e
2.2 Software Quality ASSUTANCEoeovviniiiiniiniiiiiiiiiiieriieee e

2.3 Validation and Verificationovveeietieiiiiiiiie ittt iei i i e iiiaiieeeeaeens

2.4 UML Activity Diagram..........coouvuiiiiiiiiiiieiriiee e 8
2.5 ACtiVIty Graph ...coouiiiiiiiii s 10
2.6 Test Case GeNeration.veuiueunineiiiiiiii e ee e et e e 12
2.7 General testing methodsovviiiiiiiiiiiiii i 13
2.8 Other model-based testing teChniques.ocvvveiiiiiiiiiiiiiiiinenneinnn., 14
2.8.1 Labelled Transition System..........c.coevuvuiriieneninieninennnnenen.. 14
2.8.2 Input/output Explicit Activity Diagram 15

2.9 SUMMATY...oviii e 10

CHAPTER THREE: METHODOLOGY

3.1 Awareness of Problem............ooocoiiiiiiiiiiii 18
3.2 SUGEESHION. . .cvuiviiiiiiiiiiiit it eeereeieseneee 19
3.3 DeVElOPMENL. ...\ttt e 19
3.4 Evaluation....o.ooeiiuiiiiiiiirie e, 21
3.5 ConCIUSION. ..ttt e 22

3.0 SUMIMATY. ...ovitiiitiii i 22

CHAPTER FOUR : ALGORITHM FOR GENERATING TEST CASE AND TESTING
RESULTS

4.1 Algorithm for Generating Test Casesooeviiriiiiiiiiiiiiiiiiiaainn, 23
4.2 Result And TeSHIE «.uuveviniitiiiiieiiaeiiarineeineanieene e vesnnnesnsisseee 27

4.2.1 Automatic generate for the test case from the login activity diagram .. 27

4.2.2 Automatic generate for the test case from the download assignment

activity diagramcoooiiiiiiiiii s 31

4.2.3 Automatic generate for the test case from the change password

ACtIVILY dIAGIAIM ..e.vuinitiiniii e e e e 34

4.2.4 Automatic generate for the test case from the “search” activity

dIAGIamL. ...oinniiiii e G4

CHAPTER FIVE : CONCLUSION

5.1 Findings and Results.............coociiiiiiiiiiiii e 49
5.2 LAMItation.....c.oceuieeninniitieieiii e ceeeeeeieernesesieeneeeeneees 49
5.3 Future WOork.oooveveiiii i eeeeeeseneneseennaeenene 90

5 CONCIISION. .+« et e e ettt et e er e eaerer et et e eeessierveessesessssssssnensennees I

VI

LIST OF FIGURES
2.1 Simple Activity Diagram for login screen
2.2 Activity Graph for login screen.
3.1 The General Methodology of Designing Research
3.2 Gantt chart
3.3 Prototyping based methodology
4.1 Activity Graph for login screen.
4.2 Activity Diagram for “Login”
4.3 Activity Diagram for “Login” with node number.
4.4 The program result for the “login” activity diagram.
4.5 Activity Diagram for “Download Assignment”
4.6 Activity Diagram for “Download Assignment” with node number.
4.7 The program result for the “Download Assignment” activity diagram.
4.8 Activity Diagram for “Change Password”
4.9 Activity Diagram for “Change Password” with node number.
4.10 The program result for the “Change Password” activity diagram.
4.11 Activity Diagram for “Forum Search”
4.12 Activity Diagram for “Forum Search” with node number.

4.13 The program result for the “Forum Search” activity diagram.

VII

LIST OF TABLES
4.1 The generated test cases for “Login”
4.2 The generated test cases for “Download Assignment”
4.3 The generated test cases for “Change Password”

4.4 The generated test cases for “Forum Search”

VIII

CHAPTER ONE

INTRODUCTION

1.1Introduction

The new paradigm to develop the software is to use a Model-driven approach (France
et al, 2006). Among the advantages behind it is the increasing of efficiency with its
supporting in many domains like solution, development, and business problems. In
the development of the model-driven software, Unified Modelling Language (UML)
has become the industry standard for object oriented software development, also
UML diagrams are effective enough to hold most of functioning phase (Usman &
Nadeem, 2009).

One of the important challenges in software testing is the test cases generation. It is
especially complicated when a system contains simultaneously executing participants,
since a system like that can show different responses depending on the simultaneous
occurrence conditions. A UML activity diagram is a suitable modelling language for
describing interactions between system objects given that an activity diagram can be
conveniently used to capture business processes, workflows and interaction scenarios
(Kim et al, 2007).

There are many programs and applications with different purposes and types which
have been used everywhere. Test case generation is one of the most important

elements for the testing efforts for programs and applications (Linzhang et al, 2004).

The contents of
the thesis is for
internal user
only

REFERENCES

Alalfi, M., Cordy, J., & Dean, T. (2009). Automated Reverse Engineering of UML
Sequence Diagrams for Dynamic Web Applications. IEEE Computer Society, 2877-
294.

Albert, E., Gomez-Zamalloa, M., & Puebla, G. (2010). PET: A Partial Evaluation-based
Test Case Generation Tool for Java Bytecode. ACM, 25-28.

Alshammari, S. A. (2010). Generating Test Cases for LearningZone. Thesis, UUM .

Anneliese, A., Jeff, O., & Roger, A. (2005). Testing Web Applications by Modeling with
FSMs. Software Systems and Modeling, 1-28.

Bourhfir, C., Aboulhamid, E., Dssouli, R., & Rico, N. (2001). A test case generation
approach for conformance testing of SDL systems. ScienceDirect Computer
Communications, 24 (2-4), 319-333,

Boutekkouk, F., Benmohammed, M., Bilavam, S., & Auguin, M. (2009). UML for
Modelling and Performance Estimation of Embedded Systems. Journal Of Object
Technology, 8 (2), 95-118.

Canevet, C., Gilmore, S., Hillston, J., Kloul, L., & Stevens, P. (2004). Analysing UML
2.0 activity diagrams in the software performance engineering process. ACM, 74-
78.

Cartaxo, E., Neto, F., & Machado, P. (2007). Test Case Generation by means of UML
Sequence Diagrams and Labeled Transition Systems. IEEE, 1292-1297.

Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., & Li, X. (2009). UML Activity Diagram-
Based Automatic Test Case Generation For Java Programs. The Computer Journal,

52 (5), 545-556 .

52

Filippo, R., & Paolo, T. (2001). Analysis and Testing of Web Applications. IEEE, 25-34.

Fisher, M., Cao, M., Rothermel, G., Cook, C. R., & Burmett, M. M. (2002). Automated
Test Case Generation for Spreadsheets. 4CM, 141-153 .

France, R., Ghosh, S., Dinh-Trong, T., & Solberg, A. (2006). Model-driven development
using UML 2.0: promises and pitfalls. JEEE, 39 (2), 59 - 66.

Fraser, G., & Wotawa, F. (2007). Test-Case Generation and Coverage Analysis for
Nondeterministic Systems Using Model-Checkers. IEEE, 45-50.

Heumann, J. (2001). Generating Test Cases From Use Cases. Retrieved 5 July, 2010,
from:
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/
GeneratingTestCasesFromUseCasesJune01.pdf

Hoffmann, V., Lichter, H., Nyflen, A., & Walter, A. (2009). Towards the Integration of
UML- and textual Use Case Modeling. Journal of Object Technology, 8 (3), 85-
100.

Javed, A., Strooper, P., & Watson, G. (2007). Automated Generation of Test Cases Using
Model-Driven Architecture. /JEEE, 3-9.

Kaner, C. (2003). What Is a Good Test Case? Retrieved July 8, 2010, from:

www kaner.com/pdfs/GoodTest.pdf

Kang, M., Wang, L., & Taguchi, K. (2004). Modelling Mobile Agent Applications in

UML2.0 Activity Diagrams. Retrieved 14 August, 2010, from:

www.auml.org/auml/supplements/UML2-AD.pdf

53

Kansomkeat, S., & Rivepiboon, W. (2003). Automated-Generating Test Case Using
UML Statechart Diagrams. South African Institute for Computer Scientists and
Information Technologists, 47 (1), 296-300.

Kim, H,, Kang, S., Baik, J., & Ko, 1. (2007). Test Cases Generation from UML Activity
Diagrams. IFEE, 556-561.

Kunduy, D., & Samanta, D. (2009). A Novel Approach to Generate Test Cases from UML
Activity Diagrams. Journal of Object Technology, 8 (3), 65-83.

Kuo, F. (2009). An indepth study of mirror adaptive random testing. /EEE, 51-58.

Li, X., Cui, M,, Pei, Y., Zhao, J., & Zheng, G. (2001). Timing Analysis of UML Activity
Diagrams. Springer-Verlag, 62-75.

Lilly, R, & G, U. (2010). Reliable Mining of Automatically Generated Test Cases from
Software Requirements Specification. International Journal of Computer Science
Issues, 87-91.

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., & Guoliang, Z. (2004).
Generating Test Cases from UML Activity Diagram based on Gray-Box Method.
IEEE, 284-291.

Ma, C., Wu, J., Zhang, T., Zhang, Y., & Cai, X. (2008). Automatic Test Case Generation
for BPEL Using Stream X-Machine. International Journal of u- and e- Service, 27-
36.

Manar, A., James, C., & Thomas, D. (2009). Automated Reverse Engineering of UML
Sequence Diagrams for Dynamic Web Applications. /[EEFE, 287-294.

Mingsong, C., Xiaokang, Q., & Xuandong, L. (2006). Automatic Test Case Generation

for UML Activity Diagrams. ACM, 2 - § .

54

Niere, J., Wadsack, J., & Ziindorf, A. (2003). Recovering UML Diagrams from Java
Code using Patterns. In Proceedings of the 2nd workshop on Soft Computing
Applied to Software, Enschede, The Netherlands.

Pfaller, C., & Pister, M. (2008). Combining Structural and Functional Test Case
Generation. Software Engineering, 229-241.

Raamesh, L., & Uma, G. V. (2010). Reliable Mining of Automatically Generated Test
Cases from Software Requirements Specification. International Journal of
Computer Science, 87-91.

Riebisch, M., Philippow, 1., & Gétze, M. (2002). UML-Based Statistical Test Case
Generation. Springer-Verlag, 394-411.

Robert, A., Maksimchuk, R., Engle, M., Young, B., Conallen, J., & Houston, K. (2007).
Object-Oriented Analysis and Design with Applications. New York: Random
House.

Royce, W. (1970). Managing the Development of Large Software Systems. IEEE, 328-
338.

Ryser, J., & Glinz, M. (2005). Using Dependency Charts to Improve Scenario-Based
Testing. Elsevier Science, 85-97.

Seifert, D. (2008). Test Case Generation from UML State Machines. Scientific Commons,
1-11.

Sujana, J., Claire, M., & John, K. (2007). An Interaction Visualisation Tool for a
Learning Management System. ACM, 326-331.

Tsai, W. T., Wei, X., Chen, Y., Paul, R., & Xiao, B. (2005). Swiss Cheese Test Case

Generation for Web Services Testing. Oxford University Press, 2691-2698.

55

Usman, M., & Nadeem, A. (2009). Automatic Generation of Java Code from UML
Diagrams using UIECTOR. International Journal of Software Engineering and Its
Applications, 21-38.

Vaishnavi, V., & Kuechler, W. (20 January , 2004). Design Research in Information
Systems. Retrieved 16 August , 2009, from: http://desrist.org/design-research-in-
information-systems

Yan, J., Li, Z., Yuan, Y., Sun, W., & Zhang, J. (2006). BPEL4AWS Unit Testing: Test
Case Generation Using a Concurrent Path Analysis Approach. /[EEE,6 (1), 75-84.

Yongyan, Z., Jiong, Z., & Paul, K. (2007). An Automatic Test Case Generation
Framework for Web Services. Journal of Sofiware, 64-77.

Yuan, X., & Memon, A. M. (2010). Generating Event Sequence-Based Test Cases Using

GUI Run-Time State Feedback. /EEE,36 (1), 1-16.

56

