AUTOMATIC TEST CASE GENERATION FROM UML ACTIVITY

DIAGRAM USING ACTIVITY PATH

Yasir Dawood Salman Almulham

UNIVERSITI UTARA MALAYSIA 2010


https://core.ac.uk/display/268138007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTOMATIC TEST CASE GENERATION FROM UML ACTIVITY
DIAGRAM USING ACTIVITY PATH

A project submitted to Dean of Postgraduate Studies and Research Office in
partial fulfillment of the requirement for the degree
Master of Science
Information Technology (IT)

Universiti Utara Malaysia

By

Yasir Dawood Salman Almulham

Yasir Dawood Salman Almulham

All Rights Reserved 2010 ©



KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangah, memperakukan bahawa
(I, the undersigned, certifies that)

YASIR DAWOOD SALMAN ALMULHAM
(802400)

calon untuk [jazah
(candidate for the degree of) MSe. (Information Technology)

telah mengemukakan kertas projek yang bertajuk
(has presented his/ her project of the following title)

AUTOMATIC TEST CASE GENERATION FROM
ACTIVITY DIAGRAM USING ACTIVITY PATH

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmmu dengan memuaskan.
(that this project is in acceptable form and content, and that a satisfactory
knowledge of the field is covered by the project).

Nama Penyelia
(Name of Supervisor) : DR. NOR LAILY HASHIM

1

(A arikh (Date) : 10/‘0/‘ o

Tandatangan
(Signature)

Nama Penilai
(Name of Evaluator) : MDM. R MD. REJAB

Tandatangan M
(Signature) : arikh (Date) : [ 5// 97// 0




PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a
postgraduate degree from the Universiti Utara Malaysia, [ agree that the University
Library may make it freely available for inspection. I further agree that permission for
copying of this project in any manner in whole or in part, for scholarly purposes may be
granted by my supervisor or in their absence by the Dean of the Postgraduate Studies and
Research. It is understood that any copying or publication or use of this project or parts
thereof for financial gain shall not be allowed without my written permission. It is also
understood that due recognition shall be given to me and to Universiti Utara Malaysia for

any scholarly use which may be made of any material from my project.

Requests for permission to copy or to make other use of materials in this project,

in whole or in part, should be addressed to

Dean of Postgraduate Studies and Research
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman

Malaysia



Abstract

The most important part of the testing attempt is the test case generation. As a modeling
language, Unified Modeling Language (UML) is the most generally used to describe
design specifications and analysis by both academic and industry. Therefore, UML
becomes the sources of Test Case Generation. Test cases are usually generated from the
requirement, and UML activity diagram illustrates the sequential control flows of
activities what make it possible to generate test cases for activity diagrams. This research
proposes an approach to automatically generate test cases directly from UML activity
diagram using activity graph. Therefore, this research will create an algorithm and
implement it on a prototype using the UML activity diagram as an input to generate the
test cases. The result of all these test cases will be compared to the result that has been

generated manually to evaluate the usability and reliability of the proposed algorithm.
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CHAPTER ONE

INTRODUCTION

1.1Introduction

The new paradigm to develop the software is to use a Model-driven approach (France
et al, 2006). Among the advantages behind it is the increasing of efficiency with its
supporting in many domains like solution, development, and business problems. In
the development of the model-driven software, Unified Modelling Language (UML)
has become the industry standard for object oriented software development, also
UML diagrams are effective enough to hold most of functioning phase (Usman &
Nadeem, 2009).

One of the important challenges in software testing is the test cases generation. It is
especially complicated when a system contains simultaneously executing participants,
since a system like that can show different responses depending on the simultaneous
occurrence conditions. A UML activity diagram is a suitable modelling language for
describing interactions between system objects given that an activity diagram can be
conveniently used to capture business processes, workflows and interaction scenarios
(Kim et al, 2007).

There are many programs and applications with different purposes and types which
have been used everywhere. Test case generation is one of the most important

elements for the testing efforts for programs and applications (Linzhang et al, 2004).
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