Remote Network Monitoring System (RNMS)

A thesis submitted to the College of Arts and Sciences in full Fulfillment of the requirement for the degree of Master of Science University Utara Malaysia

By Mohanad Naser Al-Hasanat

© 2009, Mohanad

GRADUATE SCHOOL UNIVERSITI UTARA MALAYSIA

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean of Graduate School Universiti Utara Malaysia 06010 UUM Sintok Kedah Darul Aman. Dedicated to my father Naser Al-Hasanat, my mother, my brothers,

my sísters, and to you my beloved wife ...

ABSTRACT

Nowadays, computer networks become very complex. Thousands of nodes distributed in various places. Within this complexity, it has become impossible task to monitor large networks by human effort only. Thus, there are urgent needs to find convenient solutions to help networks managers in managing and monitoring their networks.

This study presents a monitoring system, named Remote Network Monitoring System (RNMS). The proposed system empowered the networks mangers to remotely monitor their network's computers. Therefore, a web-based monitoring system has been designed using UML models, and then the system has been developed using ASP.Net with VB.Net scripts. The proposed system is based on SNMP (Simple Network Management Protocol). The SNMP provides efficacious means to access the remote agent's MIB's (Management Information Base) objects. Furthermore, this study has evaluated and tested the RNMS using the verification test (unit, integration, and system testing), and the validation test (user acceptance test) based on TAM (Technology Acceptance Model).

ACKNOWLEDGEMENTS

First of all, I would like to thank Allah, for having made everything possible by giving me strength and courage to do this work.

Special thanks to my supervisor Mr. Amran Ahmad for his time, patience, and supporting during the development of this project, it has been an honor for me to work with him.

Finally, I would like to extend my thanks to my family and friends.

TABLE OF CONTENTS

	Page
PERMISSION TO USE	Ι
DEDICATION	II
ABSTRACT	III
ACKNOWLEDGEMENTS	IV
TABEL OF CONTANT	V
LIST OF TABLE	VIII
LIST OF FIGURES	IX
LIST OF ABBREVIATIONS	Х

CHAPTER ONE : INTRODUCTION

1.1 Introduction	1
1.2 Background	1
1.3 Problem statement	4
1.4 Objective	5
1.5 Expected Contribution	6
1.6 Scope of the Study	6
1.7 Structure of the Thesis	6
1.8 Summary	8

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction	9
2.2 Network Management	9
2.2.1 FCAPS Model: The ABC of Network Management	12
2.2.1.1 F is for Fault	12
2.2.1.2 C is for Configuration	15
2.2.1.3 A is for Accounting	18
2.2.1.4 P is for Performance	19
2.2.1.5 S is for Security	20
2.3 SNMP	23
2.3.1 SNMP-Based Managements Model Components	25
2.3.1.1 Management Station	26
2.3.1.2 Management Agent	26
2.3.1.3 Network Management Protocol	26
2.3.1.4 Management Information Base (MIB)	28
2.3.1.4.1 MIB-II	30
2.3.2 SNMP Basic Operation	31
2.4 Three-Tier Architecture	32
2.5 Chapter Summary	34

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction	35
------------------	----

3.2 RNMS Operational Framework	36
3.2.1 Awareness of Problem and Planning	38
3.2.2 Problem Analysis	38
3.2.1.1 Review Literatures	39
3.2.2.2 Define the Framework	40
3.2.3 Design Phase	40
3.2.3.1 System Architecture	40
3.2.3.2 System Requirement Design	42
3.2.3.3 Hardware Specification	43
3.2.3.4 Software Specification	44
3.2.4 Implementation Phase	44
3.2.4.1 Identify the Problem	45
3.2.4.2 Develop Initial Prototype	46
3.2.4.2.1 Implement and Use Prototype	49
3.2.4.2.2 Reverse and Enhance Prototype	50
3.2.4.3 Build the Final System	50
3.2.5 Testing and Evaluation	50
3.2.5.1 Testing	50
3.2.5.2 User Acceptance Test	51
3.2.6 Finalizing and Document the System	51
3.3 Summary	52

CHAPTER FOUR: RNMS DESIGN

4.1 Introduction	53
4.2 RNMS Requirements	53
4.2.1 Functional Requirements	54
4.2.2 Non Functional Requirements	56
4.2.3 RNMS USE CASE DIAGRAM	57
4.2.4 USE CASE Specifications	58
4.2.4.1 USE CASE View General Information	58
4.2.5 RNMS Activity Diagrams	60
4.2.6 RNMS Sequence Diagrams	61
4.2.7 RNMS Class Diagram	63
4.2.8 RNMS Interfaces Design	63
4.3 Summary	64

CHAPTER FIVE: RNMS EVALUATION

5.1 Introduction	65
5.2 RNMS Verification Test	65
5.2.1 RNMS Unit Test	66
5.2.2 RNMS Integration Test	67
5.2.3 RNMS System Test	71
5.3 RNMS Validation Test	72
5.3.1 Instrument	73

5.3.2 Participants and Data Collection	74
5.3.3 Data Analysis	74
5.3.4 Results	75
5.3.4.1 PU Descriptive Statistics	75
5.3.4.2 PEU Descriptive Statistics	76
4.3.5 Discussion	77
5.3 Summary	77

CHAPTER SIX:CONCLUSION

6.1 Introduction	79
6.2 Achievements	79
6.3 RNMS Strengths	80
6.4 RNMS Limitations	81
6.5 Future Works	81
6.6 Summary	82
References	83
APPENDIX A	87
APPENDIX B	95
APPENDIX C	100
APPENDIX D	151
APPENDIX E	156
APPENDIX F	158

LIST OF TABLES

Table1.1: Mr. Halim and Mr.Zainol's Interview summarized	4
Table2.1: Security Threats and Assets	22
Table3.1: Hardware Development Specification	43
Table4.1: RNMS Functional Requirements	55
Table4.2: RNMS Non Functional Requirements	57
Table5.1: RNMS Black Box testing (integration test)	70
Table5.2: RNMS System Testing Summarized	72
Table5.3: RNMS Usefulness Descriptive Statistics	75
Table5.4: RNMS PEU Descriptive Statistics	76

LIST OF FIGURES

Figure 2.1: Symptom, Root Cause, and Repair Action	14
Figure2.2: SNMP-Based Management Model	26
Figure2.3: TCP/IP communication model and SNMP	27
Figure2.4: MIB-II Objects Groups	30
Figure 2.5: Wireless Application Protocol (WAP) network architecture	26
Figure2.6: Three Tiers Architecture	33
Figure3.1: Project Operational Framework	37
Figure3.2: The proposed RNMS architecture	41
Figure3.3: The prototyping approach	46
Figure4.1: RNMS USE CASE Diagram	57
Figure4.2: View General PC Information	58
Figure4.3: View PC details activity diagram	61
Figure4.4: View PC details Sequence diagram	62
Figure4.5: RNMS Class Diagram	63
Figure4.6: RNMS Home Page	64

List of Abbreviations

RNMS	Remote Network Management System
SNMP	Simple Network Management Protocol
MIB	Management Information Base
MIB-II	Management Information Base II
FCAPS	Fault, Configuration, Accounting, Performance, and Security
NMS	Network Management Station
UUM	University Utara Malaysia
LAN	Local Area Network
WAN	wide Area Network
TCP/IP	Transmission Control Protocol/Internet Protocol
IETF	Internet Engineering Task Force
RMON	Remote Monitoring
RFC	Request for Comments
SNMPv1	Simple Network Management Protocol Version1
SNMPv2	Simple Network Management Protocol Version2
SNMPv3	Simple Network Management Protocol Version3
UDP	User Datagram Protocol
IP	Internet Protocol
OSI	Open System Interconnection
OID	Object Identifier
CPU	Central Processing Unit
MAC	Media Access Control address
UML	Unified Modeling Language
TAM	Technology Acceptance Model
PU	Preserved Usefulness
PEU	Preserved Ease of Use
SPSS	Statistical Package for the Social Sciences

CHAPTER ONE

INTRODUCTION

1.1 Introduction

This chapter provides a quick glance about the study; the background of the study, problem statement, objectives, expected contribution, scope of the study, research framework, and structure of thesis.

1.2 Background

In today's complex networked environments, where a network can range in size from a few nodes to thousands of nodes the way in how you monitor and manage your network devices is very important issue. This growing networks environment has to be managed in an effective way to derive the maximum benefit out of it. Network management comes for this reason it trades with controlling and monitoring the network devices in order to ensure its undisturbed and efficient operation.

The contents of the thesis is for internal user only

References:

- Prabhu S, & Venkat R. (2007). High Availability for Network Management Applications. *IEEE*
- Raouf B., & Andreas P., (2001). Projection FCAPS to Active Network. IEEE.
- Douglas M., & Schmidt, K. (2001). *Essential SNMP*: O'Reilly.
- Fábio Luiz Leite Jr, André Gomes de Sousa, Cláudio de Souza Baptista, Camilo Porto Nunes, Elvis Rodrigues da Silva, Damião Ribeiro de Almeida, et al. (2005).
 Migratool: Towards a Web-Based Spatial Database Migration Tool. *IEEE*.
- Rong-Ceng Leou, & Zwe-Lee Gaing. (2002). A Web-Based Load Flow Simulation of Power Systems. *IEEE*.
- Alexander clemm. (2007). *Network Management Fundamentals.* Indianapolis: Cisco Press.
- Zhang Yongjun, & Jiang Dingfu. (2008). Web-Based Network Management System Revolving About Database. *IEEE*.
- Hwa-chun lin, & chien-hsing wang. (1999). Distributed network management by http-based remote invocation. *IEEE*.
- FLEXTORONICS. (2005). FACPS [Electronic Version] from http://stockrt.homelinux.com:8080/ger/fcapswp.pdf.
- Prabhu S, & Venkat R. (2007). High Availability for Network Management Applications. *IEEE*.
- Mouhammd Al-Kasassbeh, & Mo Adda. (2009). Network fault detection with Wiener filter-based agent. *Journal of Network and Computer Applications*.
- Laxman Sahasrabuddhe, S. Ramamurthy, & Biswanath Mukherjee. (2002). Fault Management in IP-Over-WDM Networks: WDM Protection Versus IP Restoration. *IEEE*.
- Kinga, & R. Huntb. (2000). Protocols and architecture for managing TCP/IP network infrastructures. *Computer Communications*.

- Gary Audin, & Fiona Lodge. (2006). FCAPS: A Model For VOIP/IPT Management. BUSINESS COMMUNICATIONS REVIEW.
- William Stallings. (1993). *SNMP, SNMP2, and CMIP the practical Guids to Network Management Standards* (5th ed.): Addison-Wesley Publishing Company.
- Raouf Boutaba, & Andreas Polyrakis. (2001). Projecting FCAPS to Active Networks. *IEEE*.
- Yuan Zhang, Gaochao Xu, & Xiaozhong Geng. (2008). Security Threats in Active Networks. *IEEE*.
- Douglas M., & Schmidt, K. (2001). Essential SNMP: O'Reilly
- J. Case, M. Fedor, M. Schoffstall, & J. Davin. (1990). A Simple Network Management Protocol (SNMP) [Electronic Version]. *RFC1157*.
- CISCO Systems. Simple Network Management Protocol (SNMP) [Electronic Version]. *Internetworking Technology Handbook* Retrieved September 23, 2009 from http://www.cisco.com/en/US/docs/internetworking/technology/handbook/SNM P.pdf.
- Wenxian Zeng, & Yue Wang. (2009). Design and Implementation of Server Monitoring System Based on SNMP. *IEEE*.
- M. Sarram, M. ghasemzadeh, & V. Aghaei. (2008). Remote Control and Overall Administration of Computer Networks, Using Short Message Service. *IEEE*.
- Amatzia Bent-Artzi, Asheem Chandna, & Unni Warrier. (1991). Network Management of TCP/IP Networks: Present and Future. *IEEE*.
- Zhen-qi WANG, Yue WANG, & Guangqiang SHAO. (2009). Research and Design of Network Servers Monitoring System Based on SNMP. *IEEE*.
- F.G. Hatefi, & F. Golshani. (1999). A new framework for secure network management. *Computer Communications*.

- Matthias Wiesmann, P'eter Urb'an, & Xavier D'efago. (2006). An SNMP based failure detection service. *IEEE*.
- K. McCloghrie. (1991).Management Information Base for Network Management of TCP/IP-based internets:MIB-II. *RFC1213*
- Vaishnavi, V. and Kuechler, W. (2004). "Design Research in Information Systems," January 20, 2004; last revision on February 20, Retrieved July 10, 2009, from <u>http://www.isworld.org/Researchdesign/drisISworld.htm</u>
- Naumann, Justus D., and A. Milton Jenkins. "Prototyping: The New Paradigm for Systems Development." MIS Quarterly , 6, No. 3 (1982),29-44.
- V. Scott Gordon, & James M. Bieman. (1995). Rapid Prototyping: Lessons Learned. *IEEE*.
- Knight,L., Steinbach,T.,Kellen,V.,(2001). System Development Methodologies for Web Enabled E-Business: A Customization Paradigm. Retrieved January 16, 2005, from <u>http://www.kellen.net/SysDev.htm</u>
- Sommerville, I. (2007). *Software engineering*. International computer science series. Boston: Pearson/Addison-Wesley.
- Bahrami, A. (2000). Object Oriented System Development Using Unified Modeling Language. Boston: McGraw-Hill Book Company.
- Donald C. Gause, & Gerald Weinberg. (1989). *Classic Book Review: Exploring Requirements: Quality Before Design*: Dorset House.
- Simon Bennett, Steve McRobb, & Ray Farmer. (2006). *Object-Oriented System Analysis and Design* (3rd ed.). Berkshire: MCGraw-Hill Education.
- Dennis, A., Wixom, H., & Tegarden, D. (2005). *System analysis and design with UML version 2.0: an object-oriented approach with UML, 2nd edition*. Hoboken, NJ: John Wiley and Sons, Inc.
- Dmitry E. Tananko, Sharad Kumar, & John Paulson. (2009). Reliability Growth of Mobile Gun System during Production Verification Test. *IEEE*.

Preston Pierce. (1995). Software Verification & Validation. IEEE.

Doron Drusinsky, James Bret Michael, Thomas W. Otani, & Man-Tak Shing. (2005). Validating UML Statechart-Based Assertions Libraries for Improved Reliability and Assurance. *IEEE*.

Beydeda, S. (2005). Self-testability in Unit Testing. IEEE.

- Bin Xu. (2009). Towards Efficient Collaborative Component-based Software Unit Testing via Extend E-CARGO Model-based A ctivity Dependence Identification. *IEEE*.
- Board, I. S. (1986). IEEE Standard for Software Unit Testing. IEEE.
- Ursula Linnenkugel, & Monika Mullerburg. (1990). Test Data Selection Criteria for (Software) Integration Testing. *IEEE*.
- Ma Liangli, Wang Houxiang, & Li Yongjie. (2007). A Reference Model of Grouped-Metadata Object and a Change Model based on it Appling for Componentbased Software Integration Testing. *IEEE*.
- Tafline Murnane, & Karl Reed. (2001). On the Effectiveness of Mutation Analysis as a Black Box Testing Technique. *IEEE*.
- Harrine Freeman. (2002). software testing. IEEE.
- Samvel K. Shoukourian, Armen G. Kostanian, Valery A. Margarian, & Ayman A. Ashour. (1995). An Approach for System Tests Design and Its Application. *IEEE*.
- William Money. (2004). Application og the Technology Acceptance Model to Knowledge Management System. *IEEE*.
- Alireza Talebpour, Sona Bairamzadeh, & Seyed Sabah Vajdi. (2009). Extending the Technology Acceptance Model for Internet Banking:A Case Study of Iran. *IEEE*.
- Salvador Bueno, & Jose L. Salmeron. (2006). TAM-based success modeling in ERP. *Interacting with Computers.*