IMPLEMENTING SECURITY IN A CLIENT/SERVER WIRELESS LOCAL AREA NETWORK

CHONG YIN PENG 81950 COURSE:TZ6996

SCHOOL OF INFORMATION TECHNOLOGY
UNIVERSITI UTARA MALAYSIA
2003 - 2004

JABATAN HAL EHWAL AKADEMIK (Department of Academic Affairs) Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK (Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa (I, the undersigned, certify that)

CHONG YIN PENG.

calon untuk Ijazah (candidate for the degree of) MSc. (INFORMATION TECHNOLOGY)

telah mengemukakan kertas projek yang bertajuk (has presented his/her project paper of the following title)

IMPLEMENTING SECURITY IN A CLIENT/SERVER WIRELESS LOCAL AREA NETWORK.

seperti yang tercatat di muka surat tajuk dan kulit kertas projek (as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan.

(that the project paper acceptable in form and content, and that a satisfactory knowledge of the filed is covered by the project paper).

Nama Penyelia Utama (Name of Main Supervisor):

PUAN AZIZAH HAJI AHMAD.

Tandatangan (Signature)

86

Tarikh (Date)

23 June 2004

ACKNOWLEGMENTS

Many people supported me during the completion of this thesis with guidance, patience, criticism, helpful assistance and references. This thesis would have never been possible without them. I would like to firstly thank my supervisor Puan Azizah Haji Ahmad for her patience, guidance and encouragement. She was a wonderful supervisor whose assistance and motivation were greatly appreciated. Her diligence in supporting me and accommodation for my visits is highly valuedd.

I would also like to thank the Thesis Committee whom had critically reviewed my proceeding paper and guided me to present my writings and findings in a more procedural and effective way.

I also would like to thank my colleagues back at work for their patience and efforts in sharing their knowledge and skill in WLAN and IT Security to enable me to comprehend the subject more. The time spent to analyze each solution provided is greatly acknowledged.

Last but certainly not least, I would like to show my gratitude to my parents who have been generous with their encouragement throughout.

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a post graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in her absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or part thereof for financial gain shall not be allowed without written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman

LIST OF FIGURES

Page
Figure 2.1: Establishing Man-In-The-Middle Attack by C against A and B by
Poisoning ARP Cache
Figure 2.2: C executes a Man-In-The-Middle Attack against A and B Undetected
20
Figure 2.3: Scenario illustrating Enterprise Attack on Wired Hosts through a
Wireless Vulnerability
Figure 2.4: Scenario illustrating Enterprise Attack on Both Wireless Client and
Wired Client Through a Wireless Vulnerability
Figure 2.5: Scenario illustrating Enterprise Attack on Roaming Wireless Hosts on
Different Access Points
Figure 2.6: Scenario illustrating Enterprise Attack on Two Wireless Hosts on the
Same Access Point
Figure 3.1: Initial Insecure Design of WEP-enabled WLAN
Figure 4.1: Will there be a slowdown in Wireless Technology Deployment Due to
Security?40
Figure 4.2: Major Pitfall in Deployment
Figure 4.3: Biggest Threat to Developing Security In Wireless Network
Figure 4.4: Factors that Governs a Secure WLAN41
Figure 4.5: Final Secure WLAN solution: VPN-IPSec with 802.1X/EAP-TLS
enabled WLAN49
Figure 5.1: Structure of PPTP Packet of User Data
Figure 5.2: Structure of an L2TP Packet Of A User Data
Figure 5.3: Encryption of an L2TP Packet with IPSec ESP
Figure 5.4: Authentication-Protocol Configuration Option Format for EAP
Negotiation 721

Figure 5.5: EAP Packet Format	72
Figure 5.6: EAP Request and Response Packet Format	754
Figure 5.7: An EAP Success and Failure Packet Format	75
Figure 5.8: Content of MD5-Challenge Type-Field	76
igure 5.9: Wi-Fi Certified Logo	83
igure 5.10: Different Types of Encryption Achieve Varying Degrees of WLA	N
Privacy	90
igure 5.11: Hexadecimal Representation of Bit Patterns	932
igure 5.12: Indices for Bytes and Bits	93
igure 5.13: State Array Input and Output	94
igure 5.14: Key-Block-Round Combinations	97
igure 5.15: Pseudo Code for the Cipher	98
igure 5.16: The Effect Of The SubBytes () Transformation On The State	99
Figure 5.17: SubBytes () Applies the S-Box To Each Byte Of The State	99
Figure 5.18. S-Box: Substitution Values for the Byte xy (in Hexadecimal Formation)	at)
	100
Figure 5.19: ShiftRows () Cyclically Shifts the Last Three Rows In the State	101
Figure 5.20: The MixColumns () Transformation Which Operates On State	
Column-By-Column	102
Figure 5.21: AddRoundKey () XORs each column of the State with a word from	1
the key schedule.	103
Figure 5.22: Pseudo Code for Key Expansion	104
Figure 5.23: Pseudo Code for the Inverse Cipher	105
Figure 5.24: InvShiftRows () Cyclically Shifts the Last Three Rows In The Stat	e.
	105
Figure 5.25: Inverse S-box: Substitution Values for the Bytes xy In Hexadecim	al
Format.	106
Figure 5.26: Pseudo Code for the Equivalent Inverse Cipher	109

TABLE OF CONTENTS

CEDTIEICATION OF T	Page HESIS WORKi
	ii
	iii
	iv
	x
ABSTRACT (ENGLISH)) <u>xi</u>
CHAPTER ONE:INTRO	DUCTION1
1.1 The Context of	the Study1
1.1.1. Netstumbl	ing4
1.1.2. Network S	ecurity Needs Vary from One Consumer to Another 5
1.2 Problem Statem	ent6
1.3 Research Object	tive6
1.4 Significance of	the Study7
CHAPTER TWO: REVI	EW OF RELATED LITERATURE8
2.1. Wired Equavale	ent Protocol (WEP)8
2.1.1. IEEE 802.	11 Layers8
2.1.2. WEP in IE	EE 802.1110
2.1.3. Exploiting	Key stream Reuse to Read Encrypted Messages 11
2.1.4. Message A	Authentication15
2.2. Types Of Local	Area Network Attacks17
2.2.1. Types of A	Attack: Man-In-The-Middle18
	Strategy25
2.2.2.1. Dete	ction
2.2.2.2. Prev	ention
2.2.2.2.1.	Access Point Security 27
2.2.2.2.2.	Encryption and Authentication plus Possibly a Virtual
	Private Network 28

		2.2.2.2.3.	Establishment and Enforcement of Wireless Ne	twork
			Policy	30
		2.2.2.2.4.	Proactive Security with Intrusion Protection	31
		2.2.2.2.5.	Commercial Installation against Man-In-The-M	liddle
			Attack	32
CHA	PTER T	HREE: MET	THODOLOGY	35
3.	1. Rev	view of resea	rches use in WLAN	35
3.2	2. An	alysis of revi	ew by Goldberg et. al	35
3	3. Exp	pert opinion l	pased on interview	36
3.4	4 Find	lings from In	terview	38
CHA	PTER F	OUR: FIND	INGS	39
4.	1. Inte	erview		39
4.	2. Fiv	e Steps to De	eploy a Secure WLAN	41
	4.2.1.	Plan the Pi	lot Deployment	41
	4.2.2.	Secure the	WLAN	45
	4.2.3.	Install the	Wireless Equipment	50
	4.2.4.	Go Live		53
	4.2.5.	Assess the	Pilot and Widen the Wireless Network	54
CHA	PTER F	IVE: DISCU	JSSION	56
5.	1. WI	AN Security	Protocol/Technology	57
5.	1.1. Vir	tual Private l	Networking	57
	5.1.1.1.	Tunneling	Basic	58
	5.1.1.2.	Tunneling	Protocols and Basic Tunneling Requirements	59
	5.1.1.3.	Point-To-P	oint Protocol (PPP)	61
	5.1.1.	3.1 Poi	nt-To-Point Tunneling Protocol	64
	5.1.1.	3.2. Lay	ver Two Tunneling Protocol (L2TP)	65
	5.1.1.4.	Internet Pro	otocol Security (IPSec) Tunnel Mode	66
	5.1.1.5.	Tunnel Ty	pes	67
	5.1.2.	IP Security	(IPSec)	69
	513	Point To-P	Point (PPP) Extensible Authentication Protocol (F	AP) 71

5.1.4.	802.1X	with EAP-TLS	77
5.1	.4.1. 80	02.1X with PEAP	80
5.1.5.	Wi-Fi l	Protected Access (WPA)	81
5.1.6.	Wi-Fi l	Protected Access (WPA) and Temporary Key Integr	ity
	Protoco	ol (TKIP)	87
5.1.7.	Advanc	ced Encryption Standard (AES)	90
5.1	.7.1. Ir	put and Output	91
5.1	.7.2. M	Iathematical Preliminaries of AES Algorithm	95
5.1	.7.3. A	Igorithm Specification	96
5	.1.7.3.1.	Cipher	97
	5.1.7.3.1.1	SubBytes () Transformation	98
	5.1.7.3.1.2	ShiftRows () Transformation	100
	5.1.7.3.1.3	MixColumns () Transformation	101
	5.1.7.3.1.4	AddRoundKey () Transformation	102
	5.1.7.3.1.5	Key Expansion	103
5	5.1.7.3.2.	Inverse Cipher	104
	5.1.7.3.2.1	InvShiftRows () Transformation	105
	5.1.7.3.2.2	InvSubBytes () Transformation	106
	5.1.7.3.2.3	InvMixColumns () Transformation	106
	5.1.7.3.2.4	Inverse of AddRoundKey () Transformation.	107
	5.1.7.3.2.5	Equivalent Inverse Cipher	107
5.1	.7.4. In	nplementation Issues	109
5	5.1.7.4.1.	Key Length Requirements	109
5	5.1.7.4.2.	Key Restrictions	109
5	5.1.7.4.3.	Parameterization of Key Length, Block Size and Re	ound
		Number	109
5	5.1.7.4.4.	Complementary Software/Hardware	110
5	5.1.7.4.5.	Implementation Suggestions regarding Various	
		Platforms	110
2	Microsoft F	nterprise WLAN Deployment	110

5.2.1.	Security Solution: 802.1X for WLAN	111
5.2.2.	Infrastructure Solution	114
5.2.3.	WLAN Pilot Deployment and Results	118
5.2.4.	OTG Key Learning from WLAN Pilot Deployment	119
CHAPT	ER SIX: CONCLUSION	123
6.1.	Technology	123 <u>3</u>
6.2. I	People	125
6.3. I	Process	125
Reference		xi
Appendix .		xiiii
A. Inter	view with Network Engineer on Secure WLAN Deployment	xiv

ABSTRAK

Rangkaian network komputer telah menjejak ribuan langkah sejak kelahiran Wireless Local Area Network (WLAN). Faedah yang dicapai dari teknologi ini terdiri daripada kepuasan pekerja dan peningkatan productiviti secara keseluruhan setelah WLAN diimplikaskan. Namun, keselamatan masih lagi penting, biarpun kurang difahami dalam dunia teknologi maklumat. Pada tahun 2001, penyelidik melaporkan kelemahan dalam protokol IEEE 802.11b 'Wired Equivalent Privacy' (WEP). Cadangan langkah-langkah penyelesaian dari IEEE 802.11, IETF, Wi-Fi Alliance and OEMs dikaji untuk keselamatan dalam teknologi tanpa wayar. Suatu dasar WLAN yang menggunakan WEP dibina untuk mengawal keselamatan, dibina. Isu-isu sekuriti dalam WLAN yang dibentangkan oleh Network Computing pada 2002, digunakan untuk membentuk soalan-soalan temuduga dengan jurutera rangkaian untuk mengetahui isu keselamatan dan ancaman semasa implementasi WLAN. Tiga faktor utama menyumbang kepada suatu WLAN yang kuat. Teknologi merupakan faktor yang pertama. Integrasi antara WEP dengan Virtual Private Networking (VPN) dan IPSec, di sampingan 802.1X/EAP dan RADIUS pelayan, serta pangkalan data pengurusan yang berpusat dan polisi keselamatan, amat digalakkan untuk mengukuhkan sekuriti keseluruhan dan membolehkan capaian dihalang di pelbagai lapisan rangkaian. Di samping teknologi, manusia dan proses merupakan faktor-faktor bagi pengawalan keselamatan rangkaian di WLAN. Pekerja sepatutnya kerap menghadiri latihan dalam Polisi Keselamatan Teknologi Maklumat (IT), serta diberi kuasa untuk mengimplimentasikan Polisi Keselamatan IT, kerana ini tanggungjawab semua pekerja. Adalah menjadi mandat untuk membangunkan polisi keselamatan IT bagi mengawal semua dan teknik terbaik bagi meneruskan pengawalan keselamatan di syarikat setiap masa.

ABSTRACT (ENGLISH)

Computer network evolves with birth of Wireless Local Area Network (WLAN). Tangible benefits such as increase employee satisfaction and productivity drive enterprise WLANs adoption. However, security remains the most significant, but least understood in information technology. In the year 2001, academic researchers reported vulnerability in IEEE 802.11b Wired Equivalent Privacy (WEP) protocol. Solutions from IEEE 802.11, IETF, Wi-Fi Alliance and OEMs are studied for secure wireless solutions. A baseline WLAN which is solely secured by WEP is established. Concerns and security issues related to WLAN polled by Network Computing in 2002 is used to formulate the interview questions. Interviews with network engineers reviewed security issues and threats during enterprise WLAN deployment. Deploying and maintaining a secure WLAN is governed by three factors. The first factor is technology. Integration of WEP with Virtual Private Networking (VPN) and IPSec, plus 802.1X coupled with EAP and RADIUS server, on existing centralized administration database and security policy, are recommended to be handled layers to strengthen overall security and enable block access at multiple layers of the network. Besides technology, people and process also dictate security in WLAN. Employees should be trained constantly on IT Security Policy and empowered to enforce IT Security, as security is every employee's responsibility. It is a mandate to establish an IS Security Policy to regulate all process and best known methods to continuously maintain security of the enterprise.

CHAPTER ONE:INTRODUCTION

1.1. The Context of the Study

Wireless Local Area Networks (WLAN) are now in use in essentially every application amenable to implementation on a local area network. Five key application areas of WLANs, which provides networking functionality essentially identical to that on wire, but without the need to be tethered to the wall:

- Vertical applications these continue to remain an important area of use for WLANs, typically involving data collection, bar codes, and industrial automation solutions. This is commonly exploited in warehouses and even in the cashier who diligently input the price of your purchase items in the shopping mall.
- The enterprise the major growth area for WLANs over the past few years, microcellular-based WLANs allow roaming across a floor, building, campus, and even between facilities.
- 3. Small business smaller firms without dedicated network management and operations staff can benefit from the simplicity and ease-of-use inherent in wireless LANs.
- 4. The residence/home office homes are often much more difficult to wire than businesses, so wireless LANs in the home are rapidly growing in popularity and the mobility especially appeals to anyone who brings a notebook computer home from the office.
- 5. Public spaces one of the hot growth areas for WLANs over the next few years will be their deployment in "hot spots" within high-traffic public spaces airports, hotels, convention centers, and even coffee shops. In fact,

The contents of the thesis is for internal user only

Reference

- 1. LAN/MAN Standards Committee of the IEEE Computer Society. (1999). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications High-speed Physical Layer in the 5 GHz Band IEEE Standard 802.11, 1997 Edition.
- 2. Goldberg, Ian., Rorisov, Nikita. & Wagner, David. (2001). *Intercepting Mobile Communications: The Insecurity of 802.11*. http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html.
- 3. Arbaugh, William A., Shankar, Narendar., Wan, Y.C. Justin.. (2001). Your 802.11 Wireless Network has No Clothes. Department of Computer Science, University of Maryland, College Park, Maryland 20742 USA.
- 4. Lough, Daniel L., Blankenship, T. Keith. & Krizman. Kevin J. A Short Tutorial on Wireless LANs and IEEE 802.11. The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0111 USA.
- 5. Federal Information Processing Standards Publication 197. (November, 2001). Announcing the Advanced Encryption Standard (AES).
- 6. Posey, Brien M. (August, 2003). WPA Wireless Security Offers Multiple Advantages Over WEP. TechRepublic. http://techrepublic.com.com/5102-6265-5060773.html.
- 7. informIT. Wireless Security. http://www.informit.com
- 8. Fleck, Bob. & Dimov, Jordan. Wireless Access Points and ARP Poisoning: Wireless Vulnerabilities That Expose the Wired Network. Cigital Inc.. http://www.cigitallabs.com/resources/papers/download/arppoison.pdf.
- 9. AirDefense Inc.. (2002). 5 Practical Steps to Secure Your Wireless LAN.
- 10. Packet Cisco Systems Users Magazine. (First Quarter 2003). Securing Wireless.
- 11. Intel Corporation. (2000). *IEEE 802.11b High Rate Wireless Local Area Networks*. http://www.intel.com/ebusiness/wireless
- 12. Intel Corporation. (December 2002). 54 Mbps IEEE 802.11 Wireless LAN at 2.4 GHz. http://www.intel.com/ebusiness/wireless.
- 13. Intel Corporation. (January 2003). VPN and WEP: Wireless 802.11b Security in a Corporate Environment. http://www.intel.com/ebusiness/wireless.
- 14. Intel Corporation. (February 2003). Intel Building Blocks for Wireless LAN Security. http://www.intel.com/ebusiness/wireless.
- 15. CIO Custom Publishing. (2003). Securing Wireless Networks Intel IT's Successful Journey. http://www.intel.com/ebusiness/wireless

- 16. Microsoft Corporation. (1999). Virtual Private Networking in Windows 2000: An Overview.
- 17. Microsoft Corporation. (2002). Mobility: Empowering People through Wireless Networks. http://www.microsoft.com/technet/itsolutions/msit/security/secwlan.asp.
- 18. Microsoft Corporation. (2003). Planning Guide 2 Deciding on a Secure Wireless Networking Strategy. http://www.microsoft.com/technet/security/prodtech/win2003/pkiwire/plan/s wlanpg2.asp.
- 19. Microsoft Corporation. (2003). Planning Guide 3 Secure Wireless LAN Solution Architecture. http://www.microsoft.com/technet/security/prodtech/win2003/pkiwire/plan/s wlanpg3.asp.
- 20. Larry J. Blunk. & John R. Vollbrecht., (March 1998). RFC 2284. PPP Extensible Authentication Protocol (EAP). The Internet Society And The Internet Engineering Task Force.
- 21. Wi-Fi Alliance. (rev. 10/31/2002). Overview Wi-Fi Protected Access.
- 22. Wi-Fi Alliance. (rev. 2/6/2003). Securing Wi-Fi Wireless Networks with Today's Technology.
- 23. Wi-Fi Alliance. (rev. 2/6/2003). Enterprise Solutions for Wireless LAN Security.
- 24. Wi-Fi Alliance. (rev. 4/29/2003). Wi-Fi Protected Access: Strong, standards-based, interoperable security for today's Wi-Fi networks