FINGERPRINT TEMPLATE SECURITY: A PROPOSED FRAMEWORK FOR ENHANCING FINGERPRINT AUTHENTICATION SYSTEM USING FRAGILE IMAGE WATERMARKING TECHNIQUE

View metadata, citation and similar papers at core.ac.uk

brought to you by CORE

provided by Universiti Utara Malaysia: UUM eThese

IMAN HAZWAM BIN ABD. HALIM

UNIVERSITI UTARA MALAYSIA 2007

JABATAN HAL EHWAL AKADEMIK (DEPARTMENT OF ACADEMIC AFFAIRS) UNIVERSITI UTARA MALAYSIA

PERAKUAN KERJA/TESIS (Certification of Thesis Work)

Kami, yang bertandatangan, memperakukan bahawa (We, the undersigned, certify that)

IMAN HAZWAM BIN ABD. HALIM

calon untuk Ijazah (candidate for the degree of)

SARJANA SAINS (TEKNOLOGI MAKLUMAT)

telah mengemukakan tesis/disertasinya yang bertajuk (has presented his/her thesis work of the following title)

FINGERPRINT TEMPLATE SECURITY: A PROPOSED FRAMEWORK FOR ENHANCING FINGERPRINT AUTHENTICATION SYSTEM USING FRAGILE IMAGE WATERMARKING TECHNIQUE

seperti yang tercatat di muka surat tajuk dan kulit tesis/disertasi (as it appears on the title page and front cover of thesis work)

bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan, dan liputan bidang ilmu yang memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada : 22 November 2007

(that the thesis/dissertation is acceptable in form and content, and that a satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate through an oral examination held on

Pengerusi Viva : Prof. Madya Dr. Norshuhada Tandatangan:
(Chairman for Viva) Shiratuddin (Signature)

Pemeriksa Luar : Prof. Madya Dr. Azman Tandatangan: (External Examiner) Samsudin (Signature)

Pemeriksa Dalaman : Encik Mohd. Hasbullah Omar Tandatangan: (Internal Examiner) (Signature)

Penyelia Utama : <u>Dr. Azman Yasin</u> Tandatangan: <u>(Signature)</u>

Dekan, Fakulti : Prof. Madya Dr. Suhaidi Hassan Tandatangan:
Teknologi Maklumat
(Dean, Faculty of (Signature)

Information Technology)

Tarikh (Date) : 22 NOVEMBER 2007

FINGERPRINT TEMPLATE SECURITY: A PROPOSED FRAMEWORK FOR ENHANCING FINGERPRINT AUTHENTICATION SYSTEM USING FRAGILE IMAGE WATERMARKING TECHNIQUE

This dissertation is submitted to the Centre for Graduate Studies

To fulfill the requirement of

Master of Science (Information Technology)

Universiti Utara Malaysia

By Iman Hazwam Bin Abd. Halim

PERMISSION TO USE

In presenting this thesis as major requirements for a post-graduate degree from Universiti Utara Malaysia. I agree that the University Library may take it freely available for inspection after being submitted for a year. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in his absence, by the Director of Centre for Graduate Studies. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use, which may be made of any material from my thesis.

Request for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Director Centre for Graduate Studies Universiti Utara Malaysia 06010 UUM Sintok Kedah Darul Aman

ABSTRAK

Pada masa sekarang, penggunaan media digital yang semakin meluas telah menyebabkan bertambahnya aktiviti peniruan digital dan pemusnahan data terutama sekali kepada sistem biometrik. Penyelidikan ini akan mempersembahkan sebuah konsep iaitu teknik penyembunyian maklumat dan di mana salah satu daripada sub kawasannya dikenali sebagai "fragile image watermarking". Sementara teknik di dalam sistem biometrik menawarkan kaedah yang boleh dipercayai untuk mengenali identiti seseorang individu, penyelidikan terhadap keselamatan dan kejituan data biometrik telah dikaji. Penyelidikan ini telah menyarankan sebuah rangka kerja yang akan mangaplikasikan teknik penyembunyian maklumat ke dalam sistem biometrik. Sebuah teknik penanaman maklumat ke dalam data cap jari telah digunakan untuk menyembunyikan data maklumat tambahan ke dalam imej cap jari. Maklumat yang telah disembunyikan tersebut boleh diekstrak semula tanpa merujuk kepada imej yang asal. Carta dan jadual telah dipersembahkan di dalam penyelidikan ini dimana ia menunjukkan perbezaan kualiti imej yang telah ditanam dengan maklumat tambahan berbanding dengan imej cap jari asal. Perbandingan keputusan prestasi sistem biometrik menggunakan kedua-dua jenis imej juga dipersembahkan. Penyelidikan ini boleh digunakan untuk proses pengenalpastian imej terutama sekali untuk mengesan sama ada imej telah diubah dengan manggunakan pelbagai jenis pemprosesan imej seperti penambahan 'noise' dan juga pengkaburan imej.

ABSTRACT

The wide use of digital media in these recent days has led to an increase of digital piracy and tampering especially for biometric identification system. This research presents the concept of information hiding and one of its sub areas is called fragile image watermarking. While the biometrics techniques offer a reliable method for personal identification, the problem of security and integrity of the biometrics data is studied. This research had proposed an architectural framework that will apply information hiding method into biometric identification system. A fingerprint watermarking method has been used to hide additional information into fingerprint images by changing the least significant bit value of a random chosen pixel of the image. The embedded information can be extracted without referencing to the original image. Table and charts are presented to show the image quality of the watermarked fingerprint images comparing to the unwatermarked (original) images. The performance of the biometric identification system when using both kinds of images is also presented. The watermark payload that can be embedded into one image is then analyzed. This study can be use for image authentication especially to detect whether the image has been tampered by image processing intention such as noise addition and blurring.

ACKNOWLEDGEMENTS

In the name of ALLAH, the most merciful and grateful, My fullest gratitude goes to:

Ministry of Science, Technology and Innovation (MOSTI), for the financial support given to carry out the research.

Universiti Utara Malaysia for all the resources and facilities provided.

My supervisors, Dr. Azman Bin Yasin and Mr. Roshidi Bin Din for their support and guidance.

My beloved parents, Mr. Abd. Halim Bin Othman and Pn. Siti Hawa Binti Sarman for their love and support since the beginning of my studies and all of my siblings for their encouragement.

My dearly and lovely wife, Norita Binti Romli, for her love, patience, and understanding.

My beautiful little daughter, Nur Hawani Haifa.

My research colleagues who gave me all the support in one-way to another during the research process.

Finally to the people who are keen to knowledge, perhaps this thesis contributes to the body of knowledge and enriches the information hereto.

LIST OF CONTENTS

PERI	MISSION TO USE	ii
ABSTRACT (BAHASA MALAYSIA)		
	TRACT (ENGLISH)	iv
ACKNOWLEDGEMENT v		
	OF CONTENT	vi
		ix
THE OF PLATFIE		X
	OF ABBREVIATIONS	xii
CHA	PTER 1 INTRODUCTION	
1.1	Motivation	2
1.2	Problem Statement	4
1.3	Research Questions	6
1.4	Research Objectives	6
1.5	Research Scope	7.
1.6	Research Methodology	8
1.7	Research Contribution	8
1.8	Thesis organization	9
1.9	Summary	10
	PTER 2 LITERATURE REVIEW	
2.1	Introduction	11
2.2	Information Hiding	11
		13
2.2.2	Applications of Information Hiding	13
2.2.3	Information Hiding Techniques for Still Images	16
2.2.4	Selecting Image File Type for Information Hiding	24
2.3	Digital Image Watermarking	29
2.3.1	General Framework of Digital Watermarking	30
2.3.2	Fragile Image Watermarking	33
2.3.3	Fragile Image Watermarking Features	34
2.3.4	Applications of Fragile Image Watermarks	37
2.4	Biometrics Systems	38
2.4.1	Grand Challenges In Biometric System	40
2.4.2	Fingerprint Biometric System	45
2.4.3	Attacks on Fingerprint Biometric System	47
2.5	Current Approach of Fingerprint Image Watermarking	49
2.6	Summary	50

СНА	PTER 3 RESEARCH METHODOLOGY	
3.1	Research Definition.	5
3.2		5
3.3	-	5
3.4		5
		5
		5
		5
		6
		6
3.5		6
3.3	Summary	0
CHA	PTER 4 DESIGN AND IMPLEMENTATION	
4.1	Design of the Proposed Framework	6
4.1.1	Fingerprint Enrollment Process	6:
4.1.2	Watermark Encoding Process	6
		6
		6
4.2		69
4.2.1		7(
		7
	· ·	74
		70
4.3		7
CITAI	DTED 5 TEGT DEGLIT CAND ANALYGIC	
	PTER 5 TEST, RESULTS AND ANALYSIS	~
5.1		78
5.2		78
		78
5.2.2	Performance Testing of Watermarked Fingerprint Templates with Fingerprint Verification System	82
5.3	0 1	84
5.4	Results and Analysis Performance of Watermarked Data in Fingerprint	•
	•	86
5.5	·	89
5.6		92
CHA	PTER 6 CONCLUSIONS AND RECOMMENDATIONS	
6.1		93
6.2		9:
	8 1	9:
6.2.2	Proposed Framework of Applied Watermarking Technique in Fingerprint	
		95
6.3		96
		96
5.3.2	Drawbacks of the Research	97

5.4 Recommended Future Work	97
REFERENCES	98
APPENDICES	
Appendix A: Fingerprint Image Templates	102
Appendix B: Fingerprint Verification Using Verifinger 4.2 Algorithm Software	
(Between Original and Watermarked Images)	103
Appendix C: Fingerprint Verification Using Verifinger 4.2 Algorithm Software	
(Between Two Original Images)	104
Appendix D: PSNR vs Watermark Payload	112
Appendix E: Published and Submitted Papers	116

MACH TO A

LIST OF TABLES

Table 2.1	Comparison table of image file formats and data hiding technique	
	based on hidden message capacity	32
Table 2.2	Comparison table of image file formats and data hiding technique	
	based on undetectability	33
Table 2.3	Comparison table of image file formats and data hiding technique	
	based on robustness.	33
Table 3.1	VeriFinger 4.2 algoritm's technical specifications	58
Table 5.1	The MSE and PSNR of watermarked images compared to original	
	images	84
Table 5.2	Fingerprint verification output process between original and	
	watermarked images	86
Table 5.3	Fingerprint verification output process between two original	
	images	87
Tables 6.1	Research questions and answers in the research	94

LIST OF FIGURES

Figure 1.1	Scope of the Research	7
Figure 2.1	Information hiding domain	12
Figure 2.2	The General Scenario for Information Hiding	12
Figure 2.3	Data Masking Process	20
Figure 2.4	DCT Encoding Process	21
Figure 2.5	DCT Decoding Process	21
Figure 2.6	Basic encoding systems of data hiding using spread spectrum	
	techniques	23
Figure 2.7	Decoding process of data hiding using spread spectrum	
	techniques	24
Figure 2.8	Typical orientation of the pixel storage within a TIFF image	25
Figure 2.9	Schematic observations of three parameters in data hiding	
	techniques	27
Figure 2.10	Watermark Encoder	31
Figure 2.11	Watermark Decoder	32
Figure 2.12	Watermark embedding process	33
Figure 2.13	Watermark detection process	34
Figure 2.14	Block diagram of enrollment, verification and identification	
	process in biometric system	39
Figure 2.15	Challenges in Biometric System	41
Figure 2.16	General framework of fingerprint biometric system	46

Figure 2.17	Eight possible attacks on fingerprint biometric system	47
Figure 3.1	The General Methodology of Design Research	53
Figure 3.2	Verifinger 4.2 Software	56
Figure 3.3	Imark System Tool	59
Figure 4.1	General Model of Fingerprint Verification System	63
Figure 4.2	Proposed Framework of Applying Information Hiding into	
	Fingerprint Verification System	64
Figure 4.3	Fingerprint enrollment process.	65
Figure 4.4	The watermark encoding process.	66
Figure 4.5	Watermark Decoding Process	67
Figure 4.6	The Fingerprint Verification process	68
Figure 4.7	Verifinger 4.2 Fingerprint Enrollment interface	71
Figure 4.8	Watermark process using IMark system	72
Figure 4.9	Watermark embedding process	73
Figure 4.10	Watermark decoding process using Imark System	75
Figure 4.11	Fingerprint verification with Verifinger 4.2	76
Figure 5.1	Original fingerprint image and the watermarked data	79
Figure 5.2	Watermarked image and the extracted watermark data	80
Figure 5.3	The matching output of Fingerprint Verification System	
	(Verifinger4.2)	82
Figure 5.4	Comparison of image similarity between original and	
	watermarked fingerprint images	88
Figure 5.5	PSNR vs. Watermark Payload of 22351.bmp	89

Figure 5.6	PSNR vs. Watermark Payload of 27511.bmp	90
Figure 5.7	PSNR vs. Watermark Payload of 29481.bmp	90
Figure 5.8	PSNR vs. Watermark Payload of 21951.bmp	91
Figure 5.9	PSNR vs. Watermark Payload of 29911.bmp	91

LIST OF ABBREVIATIONS

*.BMP

- File Extension for Bitmap Images

*.GIF

- File Extension For Graphic Interchange Format

*.JPEG

- File Extension for Joint Photographic Expert Group

*.TIFF

- File Extension For Tagged Image File Format

dB

- Decibels

DCT

- Discrete-Cosine Transform

dpi

- Dot Per Inch

ID

- Identification Card

LSB

- Least Significant Bit

MRI

- Magnetic Resonance Imaging

MSE

- Mean Squared Error

NRD

- National Registration Department of Malaysia

PSNR

- Peak Signal to Noise Ratio

RGB

- Red, Green and Blue Pixels

WSQ

- Wavelet Scalar Quantization

CHAPTER 1

INTRODUCTION

The digital information revolution has brought about great changes in our society and our lives. The development of digital information has also generated new challenges and new opportunities for innovation. These come along with powerful software, new devices, such as digital camera and camcorder, high quality scanners and printers, and biometric recognition devices.

The era has reached the limit where consumers worldwide are able to create, manipulate and enjoy the multimedia data without any restriction. Internet and wireless network offer universal channels to deliver and to exchange various types of digital information. The gap between the information and the users nowadays are ranged for only about one click.

Despite the rapid growth of the digital information domain, the security and fair use of the multimedia data, as well as the fast delivery of multimedia content to a variety of end users or devices are important and yet challenging topics.

The contents of the thesis is for internal user only

4. Conclusions

A fragile image watermarking method for fingerprint images, in which we entered additional information into fingerprints, is described. The watermark data, which consist of the identification number, can be used in authenticating the host fingerprint image. The results show that the image quality if the fingerprint images are not being affected when proposed watermarking method is implemented. The performance on the recognition or retrieval accuracy of a personal identification system is also not affected when watermarked fingerprint images are used in the system. This proposed method hopefully can be used for image authentication to identify whether the image has been tampered by various image processing attacks such as noise addition and cropping.

References:

C. K Yang, C. S. Huang (2004) "A Novel Watermarking Techniques For Tampering Detection in Digital Images"

Electronic Letters on Computer Vision and Image Analysis 3, (pp. 1-12).

- E. Lin, E. Delp. (1999) "A review of fragile image watermarking," Proceedings of Multimedia and Security Workshop (ACM Multimedia 99), Orlando.
- Fridrich, J. (1998). "Applications of Data Hiding in Digital Images."

 Tutorial for the ISPACS'98 Conference in Melbourne, Australia.
- Geruta, K. René, R. (2001). "Information Hiding On Wavelet Based Schemes under Consideration of Jpeg2000."

University of Rostock, Department of Computer Science, Institute of Computer Graphics.

- J. Fridrich, (1998), "Applications of Data Hiding in Digital Images", Tutorial for the ISPACS'98 Conference in Melbourne, Australia.
- K. J. Anil And Umut Uludag. (2002). "Hiding Fingerprint Minutiae in Images." Computer Science and Engineering Department, USA.
- L.M. Marvel, C.G. Boncelet, Jr., and C.T. Retter, (1998), "Spread Spectrum Image Steganography", submitted to the IEEE Transaction on Image Processing.
- M. Yeung, F. Mintzer. (1998) "Invisible Watermarking for image verification." Journal of Electronic Imaging, vol. 7, no.3 pp. 578-591.
- N. Johnson and S. Jajodia (1998), "Exploring Steganography: Seeing the Unseen", IEEE Computer, pp. 26-34.
- T.L. Eugene and J.D. Edward, (1999) "A Review of Data Hiding in Digital Images", Video and Image Processing Laboratory (VIPER).
- W Bender, D. Gruhl, N. Morimoto, and A. Lu, (1996), "Techniques for data hiding," *IBM Systems Journal*, Vol. 35, No. 3 and 4, pp. 313-336.