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ABSTRAK (BAHASA MELAYU)

Walaupun banyak penyelidikan telah dijalankan selama hampir lebih dari 20 tahun,
masalah buffer overflow masih lagi berlaku hingga sekarang. Kajian ini mengambil
peluang untuk menganalisé buffer overflow jenis stack-based yang merupakan satu jenis
buffer overflow yang dominan. Satu demonstrasi eksperimen dalam persekitaran terkawal
dijalankan untuk menunjukkan bagaimana dan kenapa masalah ini berlaku. Sepanjang
demonstrasi ini, syarat-syarat utama kenapa dan bagaimana eksploitasi ini berlaku
dikenalpasti, dianalisa dan didokumenkan. Hasil kajian ringkas ini menunjukkan bahawa
terdapat banyak lagi yang boleh dilakukan terutamanya pada peringkat penulisan kod
untuk mengelakkan masalah buffer overflow ini sebelum kerosakan berlaku, yang
selalunya selepas produk perisian telah dijual. Dalam hal ini ianya sudah tentu membazir
banyak sumber seperti kos, tenaga manusia dan masa. Hasilnya, beberapa cadangan yang
praktikal telah kemukakan di mana ianya sesuai untuk perlaksanaan dan penyelidikan
seterusnya. Selain dari itu, hasil kajian ini juga’penting untuk dijadikan asas dalam
merekabentuk dan melaksana kaedah atau mekanisma baru untuk mengesan dan

mengelak masalah buffer overflow.
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ABSTRACT

It is interesting to know that a buffer overflow problem still exist today despite of many
researches have been conducted in a period of more than 20 years. This study takes an
opportunity to analyze one of the dominant buffer overflow problem type, a stack-based
buffer overflow. A controlled experimental demonstration has been carried out to emulate
a stack-based buffer overflow exploit. During the process, main conditions why and how
the exploit happens will be identified, analyzed and documented. The findings showed
that more works can be done at the coding stage to prevent the problem before the
damage (exploit) occurs whiéh normally happen after the software product has been
distributed. In this case more resources have been wasted such as cost, man-hour and
time. Hence, several practical suggestioné with its own advantageous have been
highlightéd for further research and implementation. In addition, the findings should be
very useful inputs in designing and ixﬁplementing new buffer overflow detection and

prevention mechanisms.
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CHAPTER ONE
INTRODUCTION

Almost 20 years after the first publicized buffer overflow vulnerability and exploit used by
Morris worm in November, 1988 [1] then followed by Code Red worm in July 2001 [2] and
Slammer worm [3] in January 2003, the buffer overflow still one of the top vulnerability,
proven to have a severe effect, which has been exploited successfully. Since then, the buffer
overflow vulnerable exploited again and again which cover a wide range of computer
application, library, operating system (kernel and embedded system as well) and networking,.
There are many hardware and software based techniques and tools that have been proposed
and developed to detect and protect from buffer overflow vulnerable. However this
vulnerable still happen and based on the trend it look likes this problem will continue to
happen.

It is publicly known that the buffer overflow happens when there is no bound checking on
the used buffer in programs. In the plain source codes, this no bound checking is a normal
for unsafe programming language that dominated by C and C++ for a set of the standard
library functions. Unfortunately, C and C++ are the languages that most widely used for
critical applications such as kernel, Operating System (OS), database engine and device
driver.

A buffer is small and reusable temporary data storage during the program execution.
Normally it is declared as sized array data type in C and C++ programs though it is not
limited to the declared sized array because other unsafe standard C and C++ functions used
for string and character manipulation such as strcat () and gets() also resembled
similar characteristics. Without bound checking, input size that bigger than the declared size
of the array will overwrite other adjacent data in memory and corrupting them. From the
programmer point of view, the problem is, when we declared a sized array in a program, we
normally already expected or pre-calculated the maximum number of input. However, we

cannot accurately determine the maximum number of input from user and other application
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Hopefully, by having a better understanding on how and why the stack-based buffer
overflow vulnerability and exploit, programmer that using C or other similar 'unsafe
language’ can avoid this problem at the earliest stage of their task in developing a program.
Having a good knowledge where the buffer overflow vulnerability is possible to happen in
the application development for example, will obviously contribute something that can
improve the product’s quality, saving cost, man-hour and time. This is also supposed to be
beneficial for other languages that use C as their base code so that the buffer overflow

problem does not inherited and propagated.
5.2 Related Future Work

The information provided in this part is actually extracted from the Finding and Discussion
section. One future research that can be done is to find the relationship between the program
size and speed when we add extra code for buffer overflow protection. This should be
specific to buffer overflow codes and should be critical for large program. The effectiveness
of the prior secure coding knowledge or training also could be measured when the topics of
secure C/C++ coding included in C/C++ syllabus or suitable secure coding training is
conducted. This also can be applied when implementing a comprehensive exception
handling in C/C++ programming.

Another interesting thing to explore is to enhance the C/C++ editor or compiler with
educational info of the buffer overflow problem such as through the intellisense feature.
Research can be done to gauge the effectiveness of the implementation on reducing the
buffer overflow problem.

This project does not emphasize on the compile and runtime detection and prevention
solution other than implementing a comprehensive exception handling because of the many
researches (mostly funded) have been carried out as discussed in the Literature Review
section. Although it is out of programmer’s control, this does not mean it is not important.
For example, the convention used for C function call, the way how the stack frame
constructed and destroyed (also how the processor support the mechanism through its

execution environment) may be reviewed and changed to the better and safer ways.
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