ANALYZING THE STACK-BASED BUFFER OVERFLOW
PROBLEM

AHMAD NAZRI BIN ZAINOL

=

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by Universiti Utara Malaysia: UUM eTheses

- UNIVERSITI UTARA MALAYSIA 2008

https://core.ac.uk/display/268136924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ANALYZING THE STACK-BASED BUFFER OVERFLOW
PROBLEM

A thesis submitted to the
Division of Applied Sciences, College of Arts and Sciences
in partial fulfillment of the requirements for the degree of
Master of Science (Information and Communication Technology),
Universiti Utara Malaysia

By
Ahmad Nazri Bin Zainol

Nov. 2008 © All rights reserved

KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(1, the undersigned, certify that)

AHMAD NAZRI ZAINOL
(87998)

calon untuk Jjazah

(candidate for the degree of) MSc. (Information Communication Technology)

telah mengemukakan kertas pi‘ojek yang bertajuk ;
(has presented his/ her project paper of the following title)

ANALYZING THE STACK-BASED BUFFER OVERFLOW

PROBLEM

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
{as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari seg1 bentuk serta kandungan
dan nieliputi bidang ilmi dengan memuaskan. =
“and that a satisfactory

Ithai the pm}ed paper dwtable in -ﬁ”m and S
knowlecige of the field is covered by the project paper)

Nama Penyelia Utama -
(Name of Main Supervisor}. ASSOC PROF. HATIM MOHAMED TAHIR

(Signature) GHAMED TAMIR

Pensyarah
Bidang Sains Gunaan
Kolej Sastera & Sains

Tarikh ‘ (1[d .&@verslﬁ Utara Malaysia

(Date)

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a postgraduate
degree from Universiti Utara Malaysia, I agree that the university library may make it
freely available for inspection. I further agree that permission for copying of this thesis in
any manner, in whole or in part, for scholarly purpose may be granted by my supervisor
or, in her absgnce by the Assistant Vice Chancellor of the College of Arts and Sciences. It
is understood that any copying or publication or use of this thesis or parts thereof for
financial gain shall not be given to me and to Universiti Utara Malaysia for any scholarly
use which may be made of any material from my thesis.

A copy of this thesis may also appear online, on my personal web sites as a very small
contribution to the computer security community other than complementing and
enhancing my previous, current and future study on computer security.

Requests for permission to copy or to make other use of materials in this thesis, in whole

or in part should be addressed to:

Assistant Vice Chancellor
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.

ABSTRAK (BAHASA MELAYU)

Walaupun banyak penyelidikan telah dijalankan selama hampir lebih dari 20 tahun,
masalah buffer overflow masih lagi berlaku hingga sekarang. Kajian ini mengambil
peluang untuk menganalisé buffer overflow jenis stack-based yang merupakan satu jenis
buffer overflow yang dominan. Satu demonstrasi eksperimen dalam persekitaran terkawal
dijalankan untuk menunjukkan bagaimana dan kenapa masalah ini berlaku. Sepanjang
demonstrasi ini, syarat-syarat utama kenapa dan bagaimana eksploitasi ini berlaku
dikenalpasti, dianalisa dan didokumenkan. Hasil kajian ringkas ini menunjukkan bahawa
terdapat banyak lagi yang boleh dilakukan terutamanya pada peringkat penulisan kod
untuk mengelakkan masalah buffer overflow ini sebelum kerosakan berlaku, yang
selalunya selepas produk perisian telah dijual. Dalam hal ini ianya sudah tentu membazir
banyak sumber seperti kos, tenaga manusia dan masa. Hasilnya, beberapa cadangan yang
praktikal telah kemukakan di mana ianya sesuai untuk perlaksanaan dan penyelidikan
seterusnya. Selain dari itu, hasil kajian ini juga’penting untuk dijadikan asas dalam
merekabentuk dan melaksana kaedah atau mekanisma baru untuk mengesan dan

mengelak masalah buffer overflow.

ii

ABSTRACT

It is interesting to know that a buffer overflow problem still exist today despite of many
researches have been conducted in a period of more than 20 years. This study takes an
opportunity to analyze one of the dominant buffer overflow problem type, a stack-based
buffer overflow. A controlled experimental demonstration has been carried out to emulate
a stack-based buffer overflow exploit. During the process, main conditions why and how
the exploit happens will be identified, analyzed and documented. The findings showed
that more works can be done at the coding stage to prevent the problem before the
damage (exploit) occurs whiéh normally happen after the software product has been
distributed. In this case more resources have been wasted such as cost, man-hour and
time. Hence, several practical suggestioné with its own advantageous have been
highlightéd for further research and implementation. In addition, the findings should be
very useful inputs in designing and ixﬁplementing new buffer overflow detection and

prevention mechanisms.

iii

ACKNOWLEDGMENTS

Alhamdulillah, because of the blessing and strength from Allah SWT, I am able to
complete this project successfully. Shalawat and greeting to our leader, imam, our
byword and lbver, Prophet of Muhammad SAW (pbuh).

The highest appreciation to my supervisor, Assoc. Professor Hatim Mohamad Tahir for
his continuous guidance and feedback. I thank him for the assistance, inspiration and
motivation to overcome the difficulties in completing the project.

Next, my greatest gratitude to my online friends around the world that involved in
computer security field whom some of them gave me a very useful comments,
recommending me for good books and articles. Keep up your good works dudes.

Finally, I would like to thank other lecturers mainly evaluators, librarians and course
mates who have directly or indirectly given me encouragement, motivation and assistance
throughout the journey of completing this writing.

May Allah SWT abundance His blessing and hidayah to all of us, for contributing to and

sharing with others, invaluable knowledge. Allahumma amen. Wassalam

iv

TABLE OF CONTENTS

PERMISSION TO USE
ABSTRAK (BAHASA MELAYU)
ABSTRACT
ACKNOWLEDGMENTS
TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS
LIST OF APPENDICES

LIST OF CODE LISTING

CHAPTER ONE: INTRODUCTION
1.1 Problem Statement ~
1.2 Research Objective

1.3 Scope and Limitation

1.4 Significance of the Study

CHAPTER TWO: LITERATURE REVIEW
2.1 The Current Trends
2.2 Detection and Prevention Solutions
2.3 The Current Implementation
2.4 The Exploit Advancement
2.5 Intel Processor Execution Environment
2.5.1 Memory
2.5.2 Registers
2.5.3 Procedure Call
2.5.3.1 Stack
2.5.3.2 General Task of the Stack Set up
2.5.3.3 Procedure Linking Information
2.5.3.4 Calling Procedures Using CALL and RET
2.6 Related Instructions and Stack Manipulation

CHAPTER THREE: METHODOLOGY
3.1 Introduction
3.2 The Specifications
3.3 Vulnerable Environment Preparation
3.3.1 Disabling the SELinux
3.3.2 Non-Executable Stack and Address Space Randomization
3.4 Preparing the Vulnerable Code
3.5 C Function Call Convention
3.6 Stack Boundary Alignment
3.7 Generating and Testing Shellcode as Payload

3.8 Storing Shelicode in Environment Variable
3.9 The Exploit: The Miserable setuid Program
3.10 Optional Steps

3.10.1 Disabling the Canary

3.10.2 Flagging the Executable Bit

3.10.3 The bash Shell Protection

CHAPTER FOUR: FINDINGS AND DISCUSSION
4.1 The Conditions for Buffer Overflow to Occur
4.1.1 Using Unsafe C Function
4.1.2 No Input Validation
4.1.3 Return Address Adjacent to Code and Data
4.1.4 Suitable Exploit Code Availability
4.2 Current Implementation Review
4.3 The Coding Stage Advantage
4.4 Recommendations

CHAPTER FIVE: CONCLUSION AND FUTURE WORK
5.1 Research Contribution
5.2 Related Future Work

REFERENCES

vi

38
43
45
45
46
47

48
48
48
49
50
50
51
52
53

56
56
57

58

LIST OF TABLES

Table 2.1: Shifts in threats and vulnerabilities reported

Table 2.2: Summary of the vulnerability type distribution for 2001 ~ 2006
Table 2.3: The 32-bit general-purpose registers

Table 3.1: C function call convention

Table 3.2: Activation record data description

vit

(¥}

11
31
32

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 3.1:

Figure 3.2:

Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:

Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.11:
Figure 4.1:

Figure 4.2:

Figure 4.3:

LIST OF FIGURES

Top 20 threats and vulnerabilities, January - October 2007

A structure of stack

The PUSH operation

The PUSHA operation

The POP operation

The POPA operation

Disabling the SELinux permanently by editing
/etc/sysconfig/selinux file

Disabling exec-shield for address space randomization by editing
the sysctl.conf file

A typical stack frame layout for C function call

Overwriting the return address and pointing to other location

A general type of data that might appear in an activation record
Screenshot for the shellcode testing

Screenshot for the running payload and finding the address
program '

The payload has been setup in the environment variable

The bit and byte order for little-endian machine

The completed exploit 44

Stack based buffer overflow - escalating to root

Buffer overflow detection and prevention at various stages of
program execution

Buffer overflow issue during the coding, compiling and running a
program ‘

Buffer overflow detection and prevention enhancement at the
coding level

viii

13
18
18
19
19
23

25

28
29
31
37
40

41
42
44
45
51

54

AMD
ASLR
CERT
CPU
CVE
DEP
DLL
EBP/ebp
ElP/eip
ESP/esp
GCC
gdb
GOT
IDE
IDS
IEC
[0S
ISO
NOEXEC
NOP
NX

(0N}
POC
SEH

Sp

SQL
SSp

XD

LIST OF ABBREVIATIONS

Advance Micro Device

Address Space Layout Randomization
Computer Emergency Response Team
Central Processing Unit

Common Vulnerabilities and Exposures
Data Execution Prevention

Dynamic Link Library

extended base pointer

extended instruction pointer

extended stack pointer

GNU Compiler Collection

GNU Debugger

Global Offset Table

Integrated Development Environment
Intrusion Detection System
International Electrotechnical Commission
Internetwork Operating System
International Organization for Standardization
No Execute

No Operation

No Execute

Operating System

Proof-Of-Concept

Structured Exception Handling

Service Pack

Structured Query Language
Stack-Smashing Protector

Execute Disable

1X

LIST OF APPENDICES

APPENDIX A: The three memory management models

APPENDIX B: The general system and application programming registers
APPENDIX C: The alternate general-purpose register names

APPENDIX D: The use of segment registers for flat memory model
APPENDIX E: The use of segment registers in segmented memory model
APPENDIX F: The default segment selection rules

65
66
67
68
69
70

CODE LISTING 3.1:
CODE LISTING 3.2:
CODE LISTING 3.3:
CODE LISTING 3.4:
CODE LISTING 3.5:
CODE LISTING 3.6:
CODE LISTING 3.7:
CODE LISTING 3.8:
CODE LISTING 3.9:

CODE LISTING 3.10:

LIST OF CODE LISTING

Running the vulnerable code with several input 1234
samples

Generating the core dump file

Viewing the core dump file content

Running the vulnerable code with overflow input and
viewing the core dump file

Debugging the vulnerable code and finding the
allocated buffer size

Lowering the stack boundary alignment

A shellcode in assembly that acts as a payload
Generating the binary hex representation using
objdump tool

Viewing the environment variable after storing the
shellcode ,

A stack-based buffer overflow vulnerability and
exploit in action

xi

71

72

73

77

79
80

82

84

86

CHAPTER ONE
INTRODUCTION

Almost 20 years after the first publicized buffer overflow vulnerability and exploit used by
Morris worm in November, 1988 [1] then followed by Code Red worm in July 2001 [2] and
Slammer worm [3] in January 2003, the buffer overflow still one of the top vulnerability,
proven to have a severe effect, which has been exploited successfully. Since then, the buffer
overflow vulnerable exploited again and again which cover a wide range of computer
application, library, operating system (kernel and embedded system as well) and networking,.
There are many hardware and software based techniques and tools that have been proposed
and developed to detect and protect from buffer overflow vulnerable. However this
vulnerable still happen and based on the trend it look likes this problem will continue to
happen.

It is publicly known that the buffer overflow happens when there is no bound checking on
the used buffer in programs. In the plain source codes, this no bound checking is a normal
for unsafe programming language that dominated by C and C++ for a set of the standard
library functions. Unfortunately, C and C++ are the languages that most widely used for
critical applications such as kernel, Operating System (OS), database engine and device
driver.

A buffer is small and reusable temporary data storage during the program execution.
Normally it is declared as sized array data type in C and C++ programs though it is not
limited to the declared sized array because other unsafe standard C and C++ functions used
for string and character manipulation such as strcat () and gets() also resembled
similar characteristics. Without bound checking, input size that bigger than the declared size
of the array will overwrite other adjacent data in memory and corrupting them. From the
programmer point of view, the problem is, when we declared a sized array in a program, we
normally already expected or pre-calculated the maximum number of input. However, we

cannot accurately determine the maximum number of input from user and other application

The contents of
the thesis is for
internal user
only

Hopefully, by having a better understanding on how and why the stack-based buffer
overflow vulnerability and exploit, programmer that using C or other similar 'unsafe
language’ can avoid this problem at the earliest stage of their task in developing a program.
Having a good knowledge where the buffer overflow vulnerability is possible to happen in
the application development for example, will obviously contribute something that can
improve the product’s quality, saving cost, man-hour and time. This is also supposed to be
beneficial for other languages that use C as their base code so that the buffer overflow

problem does not inherited and propagated.
5.2 Related Future Work

The information provided in this part is actually extracted from the Finding and Discussion
section. One future research that can be done is to find the relationship between the program
size and speed when we add extra code for buffer overflow protection. This should be
specific to buffer overflow codes and should be critical for large program. The effectiveness
of the prior secure coding knowledge or training also could be measured when the topics of
secure C/C++ coding included in C/C++ syllabus or suitable secure coding training is
conducted. This also can be applied when implementing a comprehensive exception
handling in C/C++ programming.

Another interesting thing to explore is to enhance the C/C++ editor or compiler with
educational info of the buffer overflow problem such as through the intellisense feature.
Research can be done to gauge the effectiveness of the implementation on reducing the
buffer overflow problem.

This project does not emphasize on the compile and runtime detection and prevention
solution other than implementing a comprehensive exception handling because of the many
researches (mostly funded) have been carried out as discussed in the Literature Review
section. Although it is out of programmer’s control, this does not mean it is not important.
For example, the convention used for C function call, the way how the stack frame
constructed and destroyed (also how the processor support the mechanism through its

execution environment) may be reviewed and changed to the better and safer ways.

REFERENCE

[1] Eugene H. Spafford, "The Internet Worm Program: An Analysis," Purdue
Technical Report CSD-TR-823, December 8, 1988. [Online]. Available:
http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf. [Accessed: July. 3, 2008].

[2] CERT Incident Note IN-2001-08, "Exploited buffer overflow vulnerability in IIS
Indexing Service DLL," July. 19, 2001. [Online]. Available:
http://www.cert.org/advisories/CA-2001-19.html. [Accessed: July 3, 2008].

[3] Gregory Travis, Ed Balas, David Ripley and Steven Wallace, "Analysis of the
SQL Slammer worm and its effects on Indiana University and related institutions,"
Advanced Network Management Lab, Cybersecurity Initiative, Indiana University,
May 17, 2007. [Online]. Available:
http://paintsquirrel.ucs.indiana.edu/pdf/SLAMMER.pdf. [Accessed: July 3, 2008].

[4] Kelly Jackson Higgins, "Buffer Overflows Are Top Threat, Report Says,"
Darkreading, Nov. 26, 2007. [Online]. Available:
http://www.darkreading.com/document.asp?doc_id=139871. [Accessed: July 4,
2008].

[5] Cisco Systems, Inc., "Cisco 2007 Annual Security Report," Cisco Public
Information, 2007. [Online]. Available:
http://www.cisco.com/web/CA/events/pdfs/Cisco2007Annual_Security Report.pdf.
[Accessed: July 4, 2008].

[6] Mitre.org, "Vulnerability Type Distributions in CVE," Document version: 1.1,
May 22, 2007. [Online]. Available: http://cve.mitre.org/docs/vuln-trends/index.html.
[Accessed: July 4, 2008].

[7] Dr. Bjarne Stroustrup, "C++ Applications," Bjarne Stroustrup's personal
homepage, July 5, 2008. [Online]. Available:
http://www.research.att.com/~bs/applications.html. [Accessed: July 7, 2008].

[8] Mudge, "How to write buffer overflows," insecure.org, Oct. 20, 1995. [Online].
Available: http://insecure.org/stf/mudge buffer overflow_tutorial.html. [Accessed:
July 7, 2008].

[9] Aleph One, "Smashing the stack for fun and profit," Phrack Magazine, Vol. 7,
Issue 49, Aug. 8, 1996. [Online]. Available:
http://www.phrack.org/issues.html?id=14&issue=49. [Accessed: July 7, 2008].

[10] M. Kaempf, "Smashing The Heap For Fun And Profit," bughunter.net. [Online].
Available: http://doc.bughunter.net/buffer-overflow/heap-corruption.html.
[Accessed: July 7, 2008].

[11] Mingo, "Exec Shield," RedHat people, May 11, 2004. [Online]. Available:
http://people.redhat.com/mingo/exec-shield/. [Accessed: July 7, 2008].

[12] Pandey, S.K. Mustafa, K. and Ahson, S.I., “A checklist based approach for the
mitigation of buffer Overflow attacks," in Third International Conference on
Wireless Communication and Sensor Networks, Dec. 2007, pp. 115-117.

[13] Zhenkai Liang and Sekar, R., "Automatic generation of buffer overflow attack
signatures: An approach based on program behavior models," in Proceedings of the
21st Annual Computer Security Applications Conference, Dec. 2005, pp. 215 - 224.

[14] Smirnov, A. and Tzi-cker Chiueh, "Automatic patch generation for buffer
overflow attacks," in Proceedings of the Third International Symposium on
Information Assurance and Security 2007, Aug. 2007, pp. 165 - 170.

[15] PaX team, "Homepage of The PaX Team," 2002. [Online]. Available:
http://pax.grsecurity.net/. [Accessed: July 8, 2008].

[16] Speirs, W.R., "Making the kernel responsible: a new approach to detecting &
preventing buffer overflows," in Proceedings of the Third IEEE International
Workshop on Information Assurance, March 2005, pp. 21-32.

[17] J.P. McGregor, D.K. Karig, Z. Shi, and R.B. Lee., "A processor architecture
defense against buffer overflow attacks," in Proceedings of the IEEE International
Conference on Information Technology, Aug. 2003, pp. 243 — 250.

[18] Nathan Tuck, Brad Calder and George Varghese, "Hardware and binary
modification support for code pointer protection from buffer overflow," in
Proceedings of the 37th International Symposium on Microarchitecture (MICRO-
37°04), Dec. 2004. pp.209 - 220

[19] Zhang Yuhong, Wang Jiebing, Xu Zhihan, Yan Xiaolang and Wang Leyu,
"Hardware solution for detection and prevention of buffer overflow attacks," in
Proceedings of 5th International Conference on ASIC, vol. 2, Oct. 2003, pp. 1304 -
1307.

[20] H. Ozdoganoglu, C. E. Brodley, T. N. Vijaykumar, B. A. Kuperman and A.
Jalote, "SmashGuard: A hardware solution to prevent security attacks on the function
return address," IEEE Transactions on Computers, vol. 55, no. 10, pp. 1271 - 1285,
November, 2003.

[21] Zili Shao, Chun Xue, Qingfeng Zhuge, Sha, E.H.M. and Bin Xiao, "Efficient
array & pointer bound checking against buffer overflow attacks via
hardware/software," in Proceedings of the International Conference on Information
Technology: Coding and Computing, vol. 1, April 2005, pp. 780 — 785.

[22] Takahiro Shinagawa, "SegmentShield: Exploiting segmentation hardware for
protecting against buffer overflow attacks," in 25¢th IEEE Symposium on Reliable
Distributed, 2006, pp. 277 - 288.

[23] Shao, Z. Zhuge, Q. He, Y. Sha and E.H.-M., "Defending embedded systems
against buffer overflow via hardware/software," in Proceedings of the 19th Annual
Computer Security Applications Conference, Dec. 2003, pp. 352 - 361.

(24] Crispin Cowan, Calton, Dave Maier, Heather, Jonathan, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang, "StackGuard: automatic
adaptive detection and prevention of buffer-overflow attacks," in Proceedings of the
seventh USENILX security conference, 1998, pp. 63-78.

[25] Vendicator, "StackShield: A stack smashing technique protection tool for
Linux," Jan. 08, 2000. [Online]. Available: http://www.angelfire.com/sk/stackshield/.
[Accessed: July 8, 2008].

[26] Microsoft Corporation, "GS (Buffer security check),” Visual C++ Compiler
Options, 2008. [Online]. Available: http://msdn.microsoft.com/en-
us/library/8dbf701c(VS.80).aspx. [Accessed: July 8, 2008].

[27] Hiroaki Etoh, "GCC extension for protecting applications from stack-smashing
attacks,” IBM SSP/ProPolice, Aug. 22, 2005. [Online]. Available:
http://www.trl.ibm.com/projects/security/ssp/. [Accessed: July 10, 2008].

[28] Mike Frantzen and Mike Shuey, "StackGhost," Purdue University, 2001.
[Online]. Available: http://projects.cerias.purdue.edu/stackghost/. [Accessed: July 10,
2008].

[29] Crispin Cowan, Steve Beattie, John Johansen and Perry Wagle,

"Pointguard: protecting pointers from buffer overflow vulnerabilities," in
Proceedings of the 12th conference on USENIX Security Symposium, August 2003,
pp. 91-104.

[30] Rinard, M. Cadar, C. Dumitran, D. Roy and D.M. Leu, T., "A dynamic
technique for eliminating buffer overflow vulnerabilities (and other memory errors),"
in Proceedings of the 20th Annual Computer Security Applications Conference, 2004,
pp. 82 - 90.

[31] N. Dor, M. Rodeh, and M. Sagiv., "CSSV: Towards a realistic tool for statically
detecting all buffer overflows in C," in Proceedings of the ACM Conference on
Programming Language Design and Implementation, June 2003, vol. 38, no. 5, pp
55-167.

[32] Tsai, T. and Singh, N., "Libsafe: Transparent system-wide protection against
buffer overflow attacks," in Proceedings of the International Conference on
Dependable Systems and Networks, 2002, pp. 541.

[33] Nikolai Joukov, Aditya Kashyap, Gopalan Sivathanu, and Erez Zadok,
"Kefence: An electric fence for kernel buffers," in Proceedings of the first ACM
International Workshop on Storage Security and Survivability (StorageSS 2005), in
conjunction with the 12th ACM Conference on Computer and Communications
Security (CCS 2005), pp. 37-43, November 2005.

[34] Madan, B.B., Phoha, S. and Trivedi, K.S., "StackOFFence: A technique for
defending against buffer overflow attacks," in Proceedings of the International

Conference on Information Technology: Coding and Computing, April 2005, vol. 1,
pp. 656 - 661.

[35] Zhu, G. and Tyagi, A., "Protection against indirect overflow attacks on
pointers," in Proceedings of the Second IEEE International Information Assurance
Workshop, April 2004, pp. 97- 106. '

[36] Nishiyama, H., "SecureC: Control-flow protection against general buffer
overflow attack," in Proceedings of the 29th Annual International Computer
Software and Applications Conference, July 2005, pp. 149 - 155.

[37] Lei Wang, Cordy, J.R. and Dean, T.R., "Enhancing security using legality
assertions," in Proceedings of the 12th Working Conference on Reverse Engineering,
Nov. 2005, pp. 35 - 44.

[38] Benjamin A. Kuperman, Carla E. Brodley, Hilmi Ozdoganoglu, T. N.
Vijaykumar and Ankit Jalote, "Detection and prevention of stack buffer overflow
attacks," in Source Communications of the ACM, Nov. 2005, vol. 48, no. 11, pp. 50 -
56

[39] C. Cowan, P. Wagle, C. Pu, S. Beattie and J. Walpole, "Buffer overflows:
attacks and defenses for the vulnerability of the decade," in Proc. of the DARPA
Information Survivability Conference and Expo, 1999.

[40] Kelly Jackson Higgins, "Four different tricks to bypass StackShield and
StackGuard protection," CoreSecurity, 2002. [Online]. Available:
http://www.coresecurity.com/files/attachments/Richarte_Stackguard 2002.pdf.
[Accessed: July 10, 2008].

[41] Peter Silberman and Richard Johnson, "A comparison of buffer overflow
prevention implementations and weaknesses," BlackHat, USA, 2004. [Online].
Available: www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-
04-silberman-paper.pdf. [Accessed: July 10, 2008].

[42] Steven Alexander, "Defeating Compiler-level Buffer Overflow Protection,
“;login: The USENIX Magazine, vol. 30, no. 3, June 2005. [Online]. Available:
http://www.usenix.org/publications/login/2005-06/pdfs/alexander0506.pdf.
[Accessed: July 10, 2008].

[43] Wikipedia, "NX bit," Wikipedia.org, July 1, 2001. [Online]. Available:
http://en.wikipedia.org/wiki/NX_bit. [Accessed: July 11, 2008].

[44] Mastropaolo, "Buffer overflow attacks bypassing DEP (NX/XD bits) - part 1:
Simple Call," mastropaolo.com, June 4, 2005. [Online]. Available:
http://www.mastropaolo.com/2005/06/04/buffer-overflow-attacks-bypassing-dep-
nxxd-bits-part-1/. [Accessed: July 11, 2008].

[45] Skape and Skywing, "Bypassing Windows Hardware-enforced Data Execution
Prevention," Uninformed Journal, Oct. 2, 2005. [Online]. Available:
http://www.uninformed.org/?v=2&a=4. [Accessed: July 11, 2008].

[46] Sebastian Krahmer, "x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique," Suse.de, Sept. 28, 2005. [Online]. Available:
http://www.suse.de/~krahmer/no-nx.pdf. [Accessed: July 7, 2008].

[47]1 ISO/IEC JTC1 SC22 WG14 Committee, "[SO/IEC TR 24731 , Extensions to the C
Library, Part I: Bounds-checking interfaces," March 2007. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wgl4/www/docs/n1225.pdf. [Accessed: July 12,
2008].

[48] ISO/IEC JTC1 SC22 WG14 Committee, "ISO/IEC PDTR 24731-2, Extensions to
the C Library, Part II: Dynamic Allocation Functions, August 2007. [Online].
Available: http://www.open-std.org/jtc1/sc22/wgld/www/docs/n1248.pdf.
[Accessed: July 12, 2008].

[49] cert.org, "CERT C Secure Coding Standard," Jul. 16, 2008. [Online]. Available:
https://www.securecoding.cert.org/confluence/display/seccode/CER T+C+Secure+Co
ding+Standard. [Accessed: July 12, 2008].

[50] Yingbo Song, Michael E. Locasto, Angelos Stavrou, Angelos D. Keromytis and
Salvatore J. Stolfo, "On the infeasibility of modeling polymorphic shellcode," in
Proceedings of the 14th ACM conference on Computer and Communications security,
2007, pp. 541 - 551.

[51]1 K2, "ADMmutate," Security, Jan. 2002. [Online]. Available:
http://www.ktwo.ca/security.html. [Accessed: July 12, 2008].

[52] Metasploit LLC, "The Metasploit Project," 2003, [Online]. Available:
http://www.metasploit.com. [Accessed: July 13, 2008].

[53] Next Generation Security Technologies, "Polymorphic Shellcodes vs.
Application IDSs," Jan. 21, 2002. [Online]. Available:
http://www.ngsec.com/docs/polymorphic_shellcodes vs app IDSs.PDF. [Accessed:
July 13, 2008].

[54] Pasupulati, A., Coit, J., Levitt, K., Wu, S.F., Li, S.H., Kuo, J.C., Fan, K.P.,
"Buttercup: on network-based detection of polymorphic buffer overflow
vulnerabilities," in Network Operations and Management Symposium, April 2004,
vol. 1, pp. 235 - 248.

[55] Hsiang-Lun Huang, Tzong-Jye Liu, Kuong-Ho Chen, Chyi-Ren Dow, Lih-
Chyau Wuu, "A polymorphic shellcode detection mechanism in the network,” in
Proceedings of the 2nd international conference on Scalable information systems,
Article no. 64, Vol. 304, 2007.

[56] Intel.com, "Intel® 64 and IA-32 Architectures Software Developer's Manuals,"
2008. [Online]. Available: http://www.intel.com/products/processor/manuals/.
[Accessed: Aug. 5, 2008].

[57] Fedora Linux FTP Repository, "Fedora 9 1386 debug info download,"
RedHat.com, 2008. [Online]. Available:
ftp://download.fedora.redhat.com/pub/fedora/linux/
releases/9/Everything/i386/debug/. [Accessed: Aug. 5, 2008].

[58] Debian Hardening Wiki, "Using Hardening Options," Debian.org, 2008.
[Online]. Available: http://wiki.debian.org/. [Accessed: Aug. 5, 2008].

[59] Kerry Thompson, "How to Disable SELinux," 2008. [Online]. Available:
http://www.crypt.gen.nz/selinux/disable_selinux.html. [Accessed: Aug. 7, 2008].

[60] Michael L. Scott, Programming language pragmatic, 2nd Edition. San
Francisco: Morgan Kaufmann Publishers, 2006.

[61] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Compilers:
principles, techniques, & tools. 2nd ed. Boston, MA: Pearson Education, 2007.

[62] lhall, "Introduction to Writing Shellcode," milwOrm.com, April, 2006. [Online].
Available: http://www.milwOrm.com/papers/51. [Accessed: Aug. 11, 2008].

[63] The GNU C Library, "Setuid Program Example," 2008. [Online]. Available:
http://www.gnu.org/software/libtool/manual/libc/Setuid-Program-
Example.html#Setuid-Program-Example. [Accessed: Aug. 12, 2008].

[64] Adam Shostack, "Home page - Adam Shostack’s SETUID man page" 2008.
[Online]. Available: http://www.homeport.org/~adam/setuid.7.html. [Accessed: Aug.
20, 2008].

[65] Kevin F. Quinn, "Stack protector, switches and macros," Mail archive of the
gec@gcec.gnu.org mailing list for the GCC project, Dec. 2005. [Online]. Available:
http://gcc.gnu.org/ml/gec/2005-12/msg00216.html. [Accessed: Aug. 21, 2008].

[66] The GNU’s GCC, "GCC Command Options, Options That Control
Optimization," 2008. [Online]. Available: http://gcc.gnu.org/onlinedocs/gec-
4.1.2/gcc/Optimize-Options.html#Optimize-Options. [Accessed: Aug. 21, 2008].

[67] Fedora Linux FTP Repository, "Fedora 9 1386 Packages download,"
RedHat.com, 2008. [Online]. Available:
ftp://download.fedora.redhat.com/pub/fedora/linux/releases/9/
Everything/i386/0s/Packages/. [Accessed: Aug. 26, 2008].

]

[68] The SEED Project, "Instructional Laboratories for Computer Security
Education," Syracuse University, 2008. [Online]. Available:
http://www.cis.syr.edu/~wedu/seed/. [Accessed: Sept. 9, 2008].

[69] Vim.org, "An improved vi editor version," vim.org, 2008. [Online]. Available:
http://www.vim.org/. [Accessed: Sept. 9, 2008].

[70] Ravi Shankar, and Madan Ganesh, "Vim Intellisense," 2008. [Online].
Available: http://insenvim.sourceforge.net/. [Accessed: Sept. 17, 2008].

[71] Microsoft Corp, "Structured Exception Handling," MSDN Library, Sept. 2008.
[Online]. Available: http://msdn.microsoft.com/en-us/library/ms680657(VS.85).aspx.
[Accessed: Sept. 22, 2008].

[72] Matt Pietrek, "A Crash Course on the Depths of Win32 Structured Exception
Handling," Microsoft Systems Journal, Jan. 1997 issue. [Online]. Available:
http://www.microsoft.com/msj/0197/Exception/Exception.aspx. [Accessed: Sept. 22,
2008].

