SIMULATION FOR PERFORMANCE OF CONTAINER OPERATIONS IN THE YARD OF WESTPORT KLANG

A thesis submitted to the Graduate School in partial fulfillment of the requirements for the degree Master of Science (Information Technology),
Universiti Utara Malaysia

by

Jessica Tan Ming Kwan

Copyright© 2001 Jessica Tan Ming Kwan

Sekolah Siswazah (Graduate School) Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK (Certification of Project Paper)

Saya, yang bertandatangan, m (I, the undersigned, certify that)	<u>-</u>		
JES	JESSICA TAN MING KWAN		
calon untuk Ijazah (candidate for the degree of)	Sarjana Sains (Teknologi Maklumat)		
telah mengemukakan kertas pr (has presented his/her project p			
SIMULATION FOR PERFOR	MANCE OF CONTAINER OPERATIONS IN THE		
YARI	O OF WESTPORT KLANG		
(as it appears on the bahawa kertas projek tersebut dan meliputi bidang ilmu deng	le in form and content, and that a satisfactory		
	Prof. Madya Dr. Razman bin Mat Tahar		
Tandatangan (Signature) :	Josthwansfeld -		
Tarikh (Date) : 15 l	Mei 2001		

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a post-graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in his absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due to recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School Universiti Utara Malaysia 06010 Sintok Kedah Darul Aman

ABSTRAK

Pelabuhan dan operasi kontena adalah salah satu asset yang terpenting bagi sesebuah negara kerana ia dapat mendatangkan pendapatan bagi membangunkan negara tersebut. Tambahan pula, ia dapat mengharumkan nama sesebuah negara di dunia kerana salah satu cara untuk menjalankan perdagangan di antara negara adalah melalui pelabuhan. Oleh itu, prestasi operasi kontena adalah sangat penting sebagaimana yang kita ketahui operasi kontena di pelabuhan adalah sangat kompleks and dinamik kerana setiap operasi memerlukan peralatan dan sumber yang berbeza. Oleh itu, kecekapan dalam mengagihkan dan utilasi peralatan serta sumber akan memainkan peranan yang besar dalam menentukan prestasi operasi kontena. Dalam kajian ini, simulasi dan model akan digunakan untuk menentukan and meningkatkan prestasi operasi di Westport, Klang kerana simulasi dan model adalah alatan yang paling sesuai serta baik untuk membuat kajian terhadap satu sistem yang kompleks dan dinamik. Tambahan pula, ia dapat mengurangkan kos kerana simulasi dan model membolehkan pengguna membuat eksperimentasi sebelum melaksanakan sebarang perubahan. Perisian simulasi yang digunakan dalam kajian ini dikenali sebagai "Arena Simulation Software". Operasi kontena di Westport, Klang akan dimodelkan di dalam perisian ini. Model ini akan mengukur prestasi pelabuhan ini dari aspek utilasi dan kesibukan "Prime Mover" dan "Rubber Tyre Gantry" di kawasan "yard". Tambahan lagi, model ini juga boleh dieksperimentasikan atau dipanggil "What-If" analisis supaya pengguna bole membuat ujian terhadapmodel ini sebelum melaksanakan rancangan tersebut. Oleh itu, model in dapat mengurangkan kos pelabuhan ini.

Katakunci: simulasi, model, operasi kontena, utilasi, kesibukan, prestasi, prime movers, Rubber Tyre Gantrys, perisian simulasi, "What-If" analisis

ABSTRACT

Seaports and container terminal operation is one of the most important assets for a country because it can contribute income to develop a country. Furthermore, it can help to make a country well known in a world because trading with other country through ports. The performance of the container terminal operation is very important. As we know that the container operation is a very complex and dynamic system. This is because each operation requires different resources and equipment assigned to it. Therefore the efficiency in the assigning and utilization of this equipment and resources will determine the performance of container terminal operation. In this research, simulation and modeling is used to study the performance of the container terminal operation in Westport, Klang because simulation and modeling is the best tool to study dynamic and complex operations. Furthermore, it will reduce the cost of the company because the users can use the simulation model to do some experimentation before real implementation. The simulation software, which is used in this study is called Arena Simulation Software. The container operation in Westport, Klang will be model in this software. This model will measure the performance of this port from the aspect of utilization and the busiest of the prime movers and Rubber Tyre Gantrys in the yard. Furthermore, this model can do a lot of experimentation or "What-If" analysis so that the users can test it before real implementation is done. Therefore, this model will reduced the cost of the company.

Keywords: simulation, modeling, container operation, utilization, performance, busiest, Prime Movers, Rubber Tyre Gantry, yard, What-If analysis

ACKNOWLEDGEMENT

In doing this project, there are many difficulties and obstacles that I have to face. However, I learn a lot from this project especially on simulation and the Arena Simulation software. There are many peoples who have help and guide me through these challenging and hard times. Therefore, I would like to take this opportunity to thank them all. Firstly, I would like to thank my beloved parents for their fullest support, love and encouragement. Secondly, I would like to thank my supervisor, Prof. Madya Dr.Razman Mat Tahar for his guidance, support and his tremendous ideas. Thirdly, I would like to UUM lecturers who have guide and taught me well in the MSc IT program. Fourthly, I would like to thank the Universiti Utara Malaysia for their well equipped resources and facilities provided for me to do the research. I would also like to thank all Westport staffs who have given me their co-operation and support. I would also like to thank all my friends for their understanding, guidance, support and motivation and lastly to all the individuals who are involved in the establishment of this project.

TABLE OF CONTENTS

ABSTRAK		i
ABSTRAC	T	ii
ACKNOWLEDGEMENT		iii
TABLE OF	FCONTENTS	iv
LIST OF F	IGURES	viii
LIST OF T	ABLES	x
CHAPTER	1: INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	2
1.3	Aims and Objectives	2
1.4	Methods of Analysis	2
1.5	Significance Of The Study	3
1.6	Scope Of Study	4
1.7	Definition Of Terms	4
1.8	Project Report Outline	6
CHAPTER	2 : LITERATURE REVIEW	
2.1	Introduction	8
2.2	Modeling and Simulation	8
2.3	Application Of Simulation Modeling	12
2.4	Categories Of Computer Simulation	20
2.5	Seaports And Containers	23
	2.5.1 Management Of Container Terminal	26
	2.5.1.1 Berth Allocation	26
	2.5.1.2 Yard Planning	26
	2.5.1.3 Stowage Planning	28
	2.5.1.4 Logistic Planning	28

	2.5.1.5 Quay Cranes	29
	2.5.1.6 Yard Cranes or RTG	29
	2.5.1.7 Prime Movers	30
2.6	Containerisation	30
2.7	Simulation Of Seaports And Containers	34
СНАРТЕ	R 3 : WESTPORT CONTAINER TERMINAL	
3.1	Background	44
3.2	History	47
3.3	Mission	48
3.4	Vision	48
3.5	Westport Concepts	49
	3.5.1 The Fastport Concept	49
	3.5.2 The Flexiport Concept	49
	3.5.3 The Garden Port Concept	50
3.6	Container Operations	50
3.7	Conventional Operations	53
	3.7.1 Dry Bulk	55
	3.7.2 Liquid Bulk Terminal	55
	3.7.3 Break Bulk	56
	3.7.4 Cement	57
3.8	Facilities	57
	3.8.1 Westport Distripark	57
	3.8.2 Roads	59
	3.8.3 Haulage	59
	3.8.4 Vehicle Terminal Centre	60
	3.8.5 Westport Business Centre	60
	3.8.6 Computer Systems	61
	3.8.7 Free Commercial Zones	62
	3.8.8 Rail Link	63
	3.8.9 Quality Marine Services	64
	3.8.10 Feeder System	65
	3.8.11 Clean Sea Terminal Westport	65
	3.8.12 Bunkering Breakthrough	66

CHA	PTER 4	4 : METHODOLOGY	
	4.1	Introduction	67
	4.2	Simulation Modeling Process	67
	4.3	Simulation Methodology	68
		4.3.1 Problem Formulation	68
		4.3.2 Model Building	68
		4.3.3 Data Collection	69
		4.3.4 Model Translation	69
		4.3.5 Verification and Validation	70
		4.3.6 Experimental Design	70
		4.3.7 Model Runs and Output Analysis	70
		4.3.8 Documentation and Report Results	71
		4.3.9 Implementation	71
	4.4	Data Collection	72
		4.4.1 Primary Data	72
		4.4.2 Secondary Data	73
	4.5	Modeling The System	73
	4.6	Arena	73
CHA	PTER 5	5 : MODEL DEVELOPMENT	
	5.1	Process Flow	76
	5.2	Model Description	78
	5.3	Model Input	97
CHAF		5 : OUTPUT AND VALIDATION	
	6.1	Model Limitations	112
	6.2	Model Verification and Validation	112
		6.2.1 Transporters Or Prime Movers	113
		6.2.2 Cranes or RTGs	114
	6-3	Model Results	114
		6.3.1 Transporters or Prime Movers	114
		6.3.1.1 Utilization	115
		6.3.1.2 Busy	115
		6.3.1.3 Summary Of Output	115

	6.3.2	Cranes Or RTGs	116
CHAPTER '	7 : MO l	DEL EXPERIMENTATION	
7.1	Introd	luction	132
7.2	Scena	rios	132
	7.2.1	Scenario 1 : Increase To Seven	
		Transporters For Each Set	132
	7.2.2	Scenario 2: Reduced To Five	
		Transporters For Each Set	133
	7.2.3	Scenario 3: Reduced 50% Of	
		The Process Time Of The Crane	135
CHAPTER 8	8 : CON	NCLUSION	150
REFERENC	EES		151
GLOSSARY	,		163
APPENDIX			

LIST OF FIGURES

Figure 1-1	: Operational Process For Container Unloading At Port	4
Figure 5-1	: Planning Operations For Discharge And Loading	79
Figure 5-2	: Discharging Operations	80
Figure 5-3	: Loading Operations	81
Figure 5-4	: Layout Of The Model	82
Figure 5-5	: Arrive Module	83
Figure5-6	: Transporter Module	84
Figure 5-7	: Network Link Module	85
Figure 5-8	: Enter Module	86
Figure 5-9	: Choose Module	87
Figure 5-10	: Process Module	88
Figure 5-11	: Count Module	89
Figure 5-12	: Store Module	90
Figure 5-13	: Model For Discharging Operation	90
Figure 5-14	: Signal Module	91
Figure 5-15	: Wait Module	92
Figure 5-16	: Assign Module	93
Figure 5-17	: Delay Module	94
Figure 5-18	: Unstore Module	95
Figure 5-19	: Leave Module	96
Figure 5-20	: Model For Loading Operation	96
Figure 5-21	: Total Container For Discharging Operations (Import)	101
Figure 5-22	: Time Between Arrival	102
Figure 5-23	: Total Time For Quay Crane To Put Containers On Prime	
	Mover	103
Figure 5-24	: Total Time For RTG To Pick Containers From Prime Movers	104
Figure 5-25	: Total Process Time Of The RTG For Discharging Operations	105

Figure 5-26	: Total Time For The RTG To Put The Containers At The	
	Block In The Yard	106
Figure 5-27	: Total Container For Loading Operation (Export)	108
Figure 5-28	: Total Process Time Of RTG For Loading Operations	109
Figure 5-29	: Total Time For The RTG To Put The Containers On The	
	Prime Mover	110
Figure 5-30	: Total Time For The Quay Crane To Pick The Containers	
	From The Prime Mover.	111
Figure 6-1	: Formula For Percentage Of Utilization For Transporters Or	
	Prime Movers.	113
Figure 6-2	: Formula For Percentage Of Utilization For The Cranes Or	
	RTGs	114
Figure 6-3	: Percentage Of Utilization For Transporters Or Prime	
	Movers (6 Units)	119
Figure 6-4	: Number Of Busy Transporters Or Prime Movers (6 Units)	121
Figure 6-5	: Percentage Of Utilization In Crane A	123
Figure 6-6	: Percentage Of Utilization In Crane B	125
Figure 6-7	: Percentage Of Utilization In Crane C	127
Figure 6-8	: Percentage Of Utilization In Crane D	129
Figure 6-9	: Percentage Of Utilization In Crane E	131
Figure 7-1	: Percentage Of Utilization For Transporters Or Prime	
	Movers (7 Units)	137
Figure 7-2	: Percentage For Utilization Of Transporters Or Prime	
	Movers (5 Units)	139
Figure 7-3	: Percentage Of Utilization For Cranes In Zone A	
	(50% Reduction)	141
Figure 7-4	: Percentage Of Utilization For Cranes In Zone B	
	(50% Reduction)	143
Figure 7-5	: Percentage Of Utilization For Cranes In Zone C	
	(50% Reduction)	145
Figure 7-6	: Percentage Of Utilization For Cranes In Zone D	
	(50% Reduction)	147
Figure 7-7	: Percentage Of Utilization For Cranes In Zone A	
	(50% Reduction)	149

CHAPTER 1 INTRODUCTION

1.1 Background

Seaports are considered as the link between seas to land transport, where goods from one place are transferred from one mode of transport to another. Ports are connected with ships, which bring import cargo, or load the export cargo on one side, and on the other side are linked by road or rail to move the cargo out, or bring in the cargo, as the case may be. A port is a very important asset for a country because it serves as the collection and distribution center for essential goods and cargo. Therefore, Malaysia is considered fortunate to have so many ports around it such as Kelang Port, Johor Port, Penang Port and et. al. Without efficient ports, Malaysia's will not able to compete with other countries. Malaysia once used to rely heavily on Port of Singapore for trading activities, hence, Malaysia have to bear a high cost to support this activities. One of the most important ports that play a very important role in Malaysia is Kelang Multi Terminal Sdn Bhd, also known as Westport.

The goal of this study is to develop a simulation model that can be used to help the port management to evaluate the performance of port operations. The major goal of terminal planning is to increase the terminal throughput, reducing handling time and turnaround time and increasing the utilization of facilities, minimize traffic congestion, utilize the resources required; and at the same time to be able to minimize the operating costs.

The contents of the thesis is for internal user only

REFERENCES

- **About Stolthaven Malaysia**. (2000). Stolthaven (Westport) Sendirian Berhad http://www.stolthaven.com.my/stolth.html
- Arnold Buss. Web-Based Simulation Modeling.

<http://scs.org/confernc/wmc98/websim/wbms/d36/bussA.html>

Associate Prof. Pawlikowski & Dale, T. (15 October, 1999). COSC410: Simulation Modeling And Analysis.

http://www.cosc.canterbury.ac.nz/prospectus/gradbook/node30.html

Barge Links Batu Pahat Inland Terminal And Port Klang. (2000). portsworld.com.

http://www.portsworld.com/publications/gateway/gateway2/gw4.htm

- Barnard, C.J. and Haaften, D.H. (2000). Simulation Model For Shipment To The Waste Isolation Pilot Plant. **Proceedings Of The 2000 Winter Simulation Conference**.
- Blue, J.L. (September 21, 1995). **Modeling And Simulation**. A NIST Multi-Laboratory Strategic Planning Workshop Gaithersburg, MD. http://math.nist.gov/spw.html
- Bontempi G., Gambardella L.M., Rizzoli A.E. (June 1-4,1997). <u>Simulation And Optimization For Management Of Intermodal Terminals</u>, **European Simulation Multiconference 1997**, Instanbul.

- Bruzzone, A.G., Giribone, P. and Revetria, R. (1999). Operative Requirements And Advances For The New Generation Simulators In Multimodal Container Terminals. Proceedings Of The 1999 Winter Simulation Conference.
- Carrie, A. (1988). Simulation Of Manufacturing Systems. John Wiley & Sons Ltd. Great Britain.
- Centeno, M. (8-11 December, 1996). An Introduction to Simulation Modeling.

 Proceeding of the 1996 Winter Simulation Conference, Coronado, CA.
- Chan, S.C. Westport's Trans-Shipment Aspirations.
 http://web3.asia1.com.sg/timesnet/data/cna/docs/cna3599.html
- Chan, S.C. **Port Alliances Urged.**http://web3.asial.com.sg/timesnet/data/cna/docs/cna3632.html
- Chemical Distribution Stolthaven Westport Malaysia. (2000). Stolthaven (Westport) Sendirian Berhad. http://www.stolthaven.com.my/chemdist.html
- Consulting Services: Solving Your Problems With Simulation. http://www.arenasimulation.com/consulting/default.htm
- Contact Stolthaven Westport Malaysia. (2000). Stolthaven (Westport) Sendirian Berhad. http://www.stolthaven.com.my/contact.html
- Container Yard. < http://www.netpci.com/~pag4/containe.htm>
- David Hew and Leesa Tan. (May 06, 2001). Northport Moving Ahead Amid Strong Competition.
 - http://www.informare.it/news/review/2000/star0048.asp
- Deming, W.E., (24 July 1989). Foundations For Management Of Quality In The Western World. A Paper Delivered At A Meeting Of The Institute Of Management Sciences In Osaka, Japan.

- Donald C. C. (July 8, 1996). Extensible Hierarchical Object-Oriented Logic Simulation With An Adaptable Graphical User Interface http://www.cs.mun.ca/~donald/msc/thesis.html
- Economist Intelligence Unit Briefs: Transshipment Business Soars At Port Kelang. (July 7, 2000). http://biz.yahoo.com/ifc/my/news/70700-1.html
- Encyclopedia Of Computer Science, 4th Edition. (July 2000). Grove's Dictionaries, New York http://www.modelbenders.com/encyclopedia/>
- Facilities And Services Stolthaven Westport Malaysia. (2000). Stolthaven (Westport) Sendirian Berhad. http://www.stolthaven.com.my/facser.html
- First Word By The General Manager. (2000). portsworld.com. http://www.portsworld.com/publications/gateway/gateway/gw1.htm
- Fishwick, P.A. (1994). Computer Simulation: Growth Through Extension.
- Fishwick, P.A. (February 24, 1994). **Types of Simulation.** http://www.cis.ufl.edu/~fishwick/book/section2 2 2.html>
- Fishwick, P.A. (February 24, 1994). **Model Engineering.** http://www.cis.ufl.edu/~fishwick/book/subsection2 2 3 2.html>
- Fishwick, P.A. (February24, 1994). For the Student. http://www.cis.ufl.edu/~fishwick/book/subsection2 2 4 3.html>
- Fishwick, P.A. (April 15, 1994). **Abstract.**http://www.cis.ufl.edu/~fishwick/paper/section3 1.html>

- Fishwick, P.A.. (Apr 15, 1994). **Introduction**. http://www.cis.ufl.edu/~fishwick/paper/section3 2.html>
- Fishwick, P.A. (April 15, 1994). "What Is Simulation?". http://www.cis.ufl.edu/~fishwick/paper/subsection3 3 1.html>
- Fishwick, P.A. (April 15, 1994). "Simulation Is A Tool". http://www.cis.ufl.edu/~fishwick/paper/subsection3 3 2.html>
- Fishwick, P.A. (April 15, 1994). "Simulation Of What?". http://www.cis.ufl.edu/~fishwick/paper/subsection3 3 3.html>
- Fishwick, P.A. (April 15, 1994). "Simulation Is The Method Of Last Resort". http://www.cis.ufl.edu/~fishwick/paper/subsection3-3-4.html
- Fishwick, P.A. (April 15, 1994). "Simulations Are Created With A Specific Purpose In Mind".

< http://www.cis.ufl.edu/~fishwick/paper/subsection3_3_5.html>

- Fishwick, P.A. (April 15, 1994). **Conclusions**http://www.cis.ufl.edu/~fishwick/paper/section3 14.html>
- Fishwick, P.A. (October19, 1995). **The Future.** http://www.cis.ufl.edu/~fishwick/introsim/node7.html
- Gallagher, F.D. (1984). **ASEAN-Australia Liner Shipping: A Cost Based Simulation Analysis**. ASEAN-Australia Joint Research Project. Australia.
- Gambardella L.M., Rizzoli A.E., Zaffalon M. (August 1998). <u>Simulation And Planning Of An Intermodal Containers Terminals</u>, **Special Issue Of Simulation Journal In Harbour And Maritime Simulation**, Vol. 21, No 2, pp. 107-116.
- Gene Bellinger. **Continuous Simulation**. OutSights. http://www.outsights.com/systems/simulation/contsim.htm

- Gene Bellinger. **Discrete Simulation**. OutSights http://www.outsights.com/systems/simulation/dissim.htm
- Gene Bellinger. **Modeling & Simulation : An Introduction**. OutSights. http://www.outsights.com/systems/modsim/modsim.htm
- Gene Bellinger. **Simulation Is Not The Answer.** OutSights. http://www.outsights.com/systems/simulation/simnotta.htm
- Gene Bellinger. **Simulation**. OutSights. http://www.outsights.com/systems/simulation/simulation.htm
- Gogg, T.J. and Mott, J.R.A. (1993).Intorduction To Simulation. **Proceedings Of The 1993 Winter Simulation Conference.**
- Hanneman, R. and Patrick, S. (1997). On The Uses Of Computer-Assisted Simulation Modeling In The Social Sciences. Sociological Research Online, Vol. 2.
- Harrel, C.R. and Tumay, K. (1995). **Simulation Made Easy, A Manager's Guide.** Institute of Engineers, Narcross, Georgia.
- Heidelberger, P. (Jan. 1995). Fast Simulation Of Rare Events In Queueing And Reliability Models. ACM Transactions On Modeling And Computer Simulation. Vol.5, No. 1 pp. 43-85.
 - http://www.acm.org/pubs/toc/Abstracts/tomacs/203094.html
- Hiroyuki YAMATO, Takeo KOYAMA, Akira FUSHIMI, Tomohiro TSUNODA, Tomoko OGANE. A Study On Simulation Based Design For Container Terminal. University Of Tokyo.
 - http://www.nakl.t.u-tokyo.ac.jp/trans-sys/docs/SimCon/SimBasedDesignContT.html

Index Stolthaven Westport Malaysia. (2000). Stolthaven (Westport) Sendirian Berhad. http://www.stolthaven.com.my/index.html

Introduction. http://www.abo.fi/~atorn/Petri/P11.html

Introduction. http://www.abo.fi/~atorn/Simulation/Page11.html

Introduction. < http://bob.nap.edu/readingroom/books/modeling/1.html

Jim X. Chen, Xiadong Fu and J. Wegman. (1999). Real-Time Simulation Of Dust Behavior Generated By A Fast Traveling Vehicle. **ACM Transactions On Modeling And Computer Simulation**, Volume 9, Issue 2, pp. 81-104. http://www.acm.org/pubs/citations/journals/tomacs/1999-9-2/p81-chen

Kalyani, K.N. (May 6, 1996). Malaysia's Westport: 'Build It, And They Will Come' http://www.hindubusinessline.com/1996/05/06/BLFP04.html

Kelang Container Terminal Bhd: Going For Growth By Merger. (May 06, 2001).

http://www.informare.it/news/review/1998/st0442.asp

Kelton, W.D., Sadowski, R.P. and Sadowski, D.A. (1998). Simulation With ARENA. The Mc Graw-Hill Companies, Inc.

Klang Westport. (1999-2000). Sadec Online. http://www.sadec.com/AboutUs/Pages/Aff05-1.htm

Krick, E. (1976). An Introduction To Engineering Concepts, Methods and Issues. John Wiley & Sons, Inc. New York.

Kulick, B.C. and Sawyer, J.T. (1999). A Flexible Interface And Architecture For Container And Intermodal Freight Simulations. Proceedings Of The 1999 Winter Simulation Conference.

- Kulick, B.C. and Sawyer, J.T. (2000) The Use Of Simulation Modeling For Intermodal Capacity Assessment. **Proceedings Of The 2000 Winter Simulation Conference.**
- Law, A.M. and Kelton, W.D. (1991). Simulation Modeling And Analysis: Second Edition. Mcgraw-Hill, Inc. United States of America.
- Law, A.M. and McComas, M.G. (8-11 December, 1991). Secrets of Successful Simulation Studies. Proceeding of the 1991 Winter Simulation Conference, Phoenix AZ.
- Maria, A. (1997). Intorduction To Modeling And Simulation. **Proceedings Of The 1997 Winter Simulation Conference.**
- Mastrolilli, M., Fornara, N., Gambardella, L.M., Rizzoli, A.E., Zaffalon, M. (6-8 September, 1998). In: Merkuryev, Y., Bruzzone, A., Novitsky, L. (Eds.) Simulation For Policy Evaluation, Planning And Decision Support In An Intermodal Container Terminal. Proceedings Of The International Workshop "Modeling And Simulation Within A Maritime Environment", Riga, Latvia. Pp. 33-38. Society For Computer Simulation International.
- Ming C. Lin. COMP 290-072: Physically-Based Modeling, Simulation And Animation. Department Of Computer Science, College Of Arts And Sciences, The University Of North Carolina At Chapel Hill http://www.cs.unc.edu/~lin/COMP290-72-S2K/
- Modeling And Simulation Linking Entertainment And Defense. (1997). National Academy Press Washington, D.C.
 - <http://www.nap.edu/readingroom/books/modeling/index.html>
- Musselman, K.J. (1994). Guidelines For Simulation Project Success. **Proceedings**Of The 1994 Winter Simulation Conference.

- Nordgren, W.B. (1995). Steps For Proper Simulation Project Management. Proceedings Of The 1995 Winter Simulation Conference.
- P&0 Nedlloyd Barentsz. (October 10, 2000). Maiden Call At Port Klang. portsworld.com. http://www.portsworld.com/news/news1.htm
- Patter, A.J.G. and Teunisse, M.J.G. (1997). The Use Of A Template-Based Methodology In The Simulation of A New Cargo Track From Rotterdam Harbor To Germany. Proceedings Of The 1997 Winter Simulation Conference.
- Pegden, C.D., Shannon, R.E. and Sadowski, R.P. (1990). Introduction To Simulation Using SIMAN. Mcgraw-Hill, Inc. United States Of America.
- Pembinaan Redzai. (1999-2000). Sadec.com. http://www.sadec.com/AboutUs/aff05.html
- Pidd, M. (1992). Computer Simulation in Management Science 3rd. Edition. John Wiley & Son Ltd. Chichester.
- Pidd, M. (11-14 December, 1994). An Introduction to Computer Simulation. Proceedings of the 1994 Winter Simulation Conference, Orlando.
- Professor James J. Pomykalski. (January 17, 2000). **ISAT 341 : Modeling And Simulation.** College Of Integrated Science And Technology, James Madison University. http://www.isat.jmu.edu/users/pomykajj/isat341-s00/
- Ramani, K.V. (1996). An Interactice Simulation Model For The Logistics Planning Of Container Operations In Seaports. **Simulation**. Vol. 66, p.291-300.
- Red Tape Dissolved At Port Klang Customs. (DECEMBER 5, 1997). Informare. http://www.informare.it/news/review/1997/sn0025.asp

- Rizzoli A.E., Gambardella L.M., Zaffalon M., Mastrolilli M. (16-18th September, 1999b). Simulation For The Evaluation Of Optimised Operations Policies In A Container Terminal, HMS99, Maritime & Industrial Logistics Modelling And Simulation, Genoa, Italy.
- Rizzoli A.E., Fornara N., Gambardella L.M. (6-9th December, 1999a). A Simulation Tool For Combined Rail-Road Transport In Intermodal Terminals, MODSIM99, International Congress On Modeling And Simulation, Hamilton, New Zealand.
- Robinson, J.N. 1997. Visualize A Port In Africa. Proceedings Of The 1997 Winter Simulation Conference.
- Robl, E.H. (1995-2000). The Intermodal Container FAQ :Answers To Frequently Asked Questions About The Use Of Intermodal Containers. http://www.robl.w1.com/Transport/intermod.htm
- Ryan, N.K. (1998). The Future Of Maritime Facility Designs And Operations. **Proceedings Of The 1998 Winter Simulation Conference.**
- Sadowski, R.P. (8-11 December, 1991). Avoiding the Problems and Pitfalls in Simulation. Proceedings of the 1991 Winter Simulation Conference, Phoenix AZ.
- Sawyers, W.A. (1998). Marine Corps Analytic Modeling And Simulation. Proceedings Of The 1998 Winter Simulation Conference.
- Seila, A.F. (3-6 December, 1995). Introduction to Simulation. **Proceedings of the**1995 Winter Simulation Conference, Arlington, Virgina.

- Scacchi, W. (1999). Experience With Software Process Simulation And Modeling. ATRIUM Laboratory, University of Southern California.

 http://www.usc.edu/dept/ATRIUM/Papers/JSS98/JSS98.html
- Shannon, R.E. (13-16 December, 1998). Introduction to the Art and Science of Simulation. Proceedings of the 1998 Winter Simulation Conference, Washington D.C.
- **Simulation**. (January 27, 1997). The Consummate Design Center. http://www.tcdc.com/dmeths/dmeth4h.htm
- Simulation Practice And Theory. (March 15, 2001). **Elsevier Science**, Vol. 8, Issue 6-7. http://www.elsevier.nl/locate/simpra?menu=cont&label=table
- Smith, R.L. and Platt, L. (1987). Benefits Of Animation In The Simulation Of A Machining And Assembly Line. Simulation. Vol. 48, pp.28-30.
- Smith, R.D.1998. Simulation Article. Encyclopedia of Computer Science.
- Soemon Takakuwa and Tsukasa Fujii. (1999). A Practical Module-Based Simulation Model For Transshipment-Inventory Systems. **Proceedings Of The 1999**Winter Simulation Conference.
- **Stolthaven Westport Malaysia.** (2000). Stolthaven (Westport) Sendirian Berhad. http://www.stolthaven.com.my/wpklg.html>
- Swedish, J.A. (1998). Simulation Of An Inland Waterway Barge Fleet Distribution Network. **Proceedings Of The 1998 Winter Simulation Conference.**
- Szymankiewicz, J., McDonald, J. and Turner, K. (1988). Solving Business Problems By Simulation. Mcgraw-Hill Book Company (UK) Limited. Great Britain

Terminal layout, Stolthaven Westport Malaysia. (2000). Stolthaven (Westport) Sendirian Berhad. http://www.stolthaven.com.my/terminal.html>

The Social Sciences. (June 30, 1997). Sociological Research Online, vol. 2, no. 2. http://www.socresonline.org.uk/socresonline/2/2/5.html

Thompson, M. Malaysia - Port Of Klang.

http://www.intl.acec.org/overview/ThursdayCommunique/jan6/Malaysia Port Kland.txt>

Training Courses. http://www.arenasimulation.com/training/default.htm

University Software: Simulation At Universities And Colleges Academic Software. http://www.arenasimulation.com/University/default.htm

Using CSIM18/Optquest To Configure An Online Server. Mesquite Software, Inc., USA. http://www.mesquite.com/examplePaper.htm>

Westport Distripark. (1999). JobStreet Sdn Bhd. http://192.228.198.10/recruit/1999/w/westds11.htm

Westport Kelang Multi Terminal (April 30-May6).

<http://thestar.com.my/maritime/kmt.asp>

Westport Klang, 1999-2000, Sadec.Com.

http://sadec.com/AboutUs/aff05-1.html

Westport Launches Second Energy-Saving Campaign. (August16,2000).

Business Times.

http://www.tnb.com.my/newtnb/news/nc/aug2000/16082000a.htm

WSC'00 Final Program Abstracts Business Process, Health Care and Service Industry Applications Track

">http://www.cimnet.ncsu.edu/wsc2000/finalabstracts.asp?TID=BU>">

WSC'00Final Program Abstracts Analysis Methodology I Track http://www.cimnet.ncsu.edu/wsc2000/finalabstracts.asp?TID=AN

WSC'00 Final Program Abstracts Analysis Methodology II Track

http://www.cimnet.ncsu.edu/wsc2000/finalabstracts.asp?TID=AN-2

WSC'00 Final Program Abstracts Advanced Tutorials Track

< http://www.cimnet.ncsu.edu/wsc2000/finalabstracts.asp?TID=AT>

Zaffalon M., Rizzoli A.E., Gambardella L.M., Mastrolilli M. (October 26-28, 1998a). Resource Allocation And Scheduling Of Operations In An Intermodal Terminal, ESS98, 10th European Simulation Symposium And Exhibition, Simulation In Industry, Nottingham, United Kingdom, Pp. 520-528,

Zaffalon, M., Gambardella, L.M., Taillard, E.D. (1998b). A Network Design Approach To The Allocation Of Resources In An Intermodal Terminal, Technical Report IDSIA-08-98, IDSIA, Lugano,