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Full polarimetry SAR data known as PoISAR contains information
in terms of microwave energy backscattered through different
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scattering mechanisms (surface-, double- and volume-scattering) by
the targets on the surface of land. These scattering mechanisms
information is different in different features. Similarly, different
classifiers have different capabilities as far as identification of the
targets corresponding to these scattering mechanisms. Extraction of
different features and the role of classifier are important for the
purpose of identifying which feature is the most suitable with which
classifier for land cover classification. Selection of suitable features
and their combinations have always been an active area of research
for the development of advanced classification algorithms. Fully
polarimetric data has its own advantages because its different
channels give special scattering feature for various land cover.
Therefore, first hand statistics HH, HV and VV of PolSAR data
along with their ratios and linear combinations should be
investigated for exploring their importance vis-a-vis relevant
classifier for land management at the global scale. It has been
observed that individually first hand statistics yield low accuracies.
And their ratios are also not improving the results either. However,
improved accuracies are achieved when these natural features are
stacked together
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1. Introduction

The process of managing the use and development of land resources is known as land
management. Land resources are the primitive resources which provide basis for further
development activities. A variety of purposes such as agriculture, reforestation, water resource
management and eco-tourism projects etc. use land resources [1].

Land management and study of patterns of consumption of other natural resources have become
more relevant these days due to various reasons: climate change, growing population and cities,
geographic and demographic distributions, costlier agricultural products etc. All these factors are
increasing the pressure to make more intensive use of land area, which is gradually becoming short
in supply, causing conflicts in various interests. One such conflict is “food versus fuel”
simultaneously protecting the environment. The important question is that out of expansion of
settlement areas and preservation of arable land which one should be given priority. These
confusions are increasingly arising both at regional and global levels [2-7]. The solution of these
problems and sustainable use of available land areas call for finding new techniques for land
management. The new techniques should have wide scope and reach so that solutions at different
scales can be evolved.

Radar polarimetry is one such technique which can provide dependable solutions to the above
problems at matching scales. Interaction of radar frequencies with different land covers; categorized
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into various scattering mechanisms viz. single-, double- and volume-scattering provides an efficient
and wide scope tool for land management. Radar can provide observations during night and
inclement weather conditions i.e. presence of clouds, dust, rain etc. which is an advantage in
comparison to other satellite sensors. Ease of availability of data from advanced synthetic aperture
radar (SAR) sensors, such as RADARSAT, TerraSAR-X, ALOS PALSAR, RISAT etc. that operate
in different range of microwave frequencies, led to further development of advanced techniques for
land management using full polarimetric radar data (PoISAR) [8-10]. One of the basic steps for land
management using radar polarimetry is land cover classification. Various land features such as
water, urban, bare soil, vegetation etc. scatter incident radar signal through one of the above
scattering mechanisms that manifest themselves differently for different polarizations HH, HV or
VV. For instance, single-bounce is known to dominate in VV and double-bounce in HH
polarization. Similarly their ratios, for example HV/VV or HV/HH, have been believed to be able to
differentiate further these scattering mechanisms resulting in better identification of individual land
cover [11].

Extraction and preprocessing of PoISAR data is followed by feature extraction suitable for an
application. There are mainly three broad categories of POISAR feature types; one based on original
data and its transforms such as scattering-, coherent-matrix and backscattering intensity, second
based on polarimetric target decompositions such as H/A/a, 3-, 4-component and Touzi
decompositions and third based on other types such as texture and color etc as shown in Fig. 1[12,
13]. Backscattering intensity is the primary and natural feature of PoISAR data obtained after its
preprocessing and calibration without any approximations. It is converted into a physical quantity
called backscattering coefficient expressed in dB. Typically its values range from +5 dBs for high to
-40 dBs for low backscatter [14]. This feature is dependent on variety of factors related to both
target and illuminating radar such as size, shape, orientation and type of scatterers, moisture contents
in the illuminated targets and frequency, polarization and incidence angle of radar signal. All other
features are derived or transformed features based on certain mathematical assumptions.

PoISAR Features

Features based on
polarimetric target
decompositions
(PTD)

Features based on
original data and
its transforms

Other Features

Scattering Matrix — H/A/a_ . Texture
decomposition

I
3-and 4-
— component Colour
decomposition

I

Coherent or
Covariance Matrix

Backscattering | | Touzi
intensity decomposition

Fig. 1 Broad classification of POISAR features

During early years of PolSAR i.e. second last decade of twentieth century, land cover
classification studies were conducted using intensity features but with low classification accuracies
[12, 15]. Later on, it was tried to increase classification accuracies using other transformed and
decomposed features. In general, they have been used in conjunction with other features such as
texture [16] etc. on one hand and myriad combination of classification and labeling algorithms to
improve classification accuracies. This made the whole process of radar polarimetry based land
cover classification complicated with requirement of additional inputs in terms of prior information,
which is not always readily available. Availability or absence of prior information will decide the
classification approach to be used; supervised in the first case and unsupervised in the latter case.
Also the process can be simplified by relying on first order statistics of land cover classification. In
any case, development of autonomous classification techniques with minimum human intervention
is desirable. Hence, in the present study backscattering coefficients and their combinations are
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investigated comprehensively for their suitability for land cover classification using various
supervised and unsupervised classifiers. This will help in assessing which of these are able to better
identify which land cover on its own without any additional information.

1. Study Area and Data Used

The study region is lying between 29°49'47.45 —29°54'0.19'N to 77°5059.29 —77°5512.03'F .
The study region mainly consists of Roorkee city situated in the state of Uttarakhand, India. The city
contains urban area, a rivulet Solani in the north. Ganga canal divides the whole city into two equal
halves. The study area has abundant of land cover such as water, urban, wetland, bare soil, short
vegetation and tall vegetation. Ganga canal is the main water body and regions around the banks of
rivulet Solani constitutes wetland cover. Baresoil exists in the open areas in and around city. Short
and long vegetation spread over the whole study region.

ALOS PALSAR fully polarimetric data observed on 9th April 2010is used here. This product is
L1.1 data in CEOS format with scene ID ALPSRP224150590. It is a single look complex data on
slant range and has seven numbers of looks in azimuth. The terrain of the study area is flat
(slope<1°), hence backscattering coefficient is calculated using a constant incident angle (23.989°)
due to small deviation in it (22.5° — 24°) [17].

Over the whole study region, ground sample points (GSPs) of each land cover i.e. water, urban,
wetland, bare soil, short vegetation and tall vegetation are selected. Various classification
accuracies are computed using testing ground samples. The ground sample points are selected
through extensive ground survey and Google Earth.

111. Proposed Methodology

A. Data Preprocessing

Pre-processing of full polarimetric ALOS PALSAR data is done to extract different datasets for
HH, HV and VV polarizations. These datasets contain normalized backscattering coefficients which
are randomly distributed over the whole real numbers. ENVI software and its SARSCAPE module
are used for pre-processing PALSAR data using steps outlined by Mishra et al. [10]. Focused
PALSAR data is directly imported to extract single look complex (SLC) files which are multi-
looked by a factor of 7 to improve radiometric resolution due to different resolutions in range and
azimuth directions. Digital elevation model (DEM) is extracted using GO TOPQO30 for the purpose
of geo-referencing by nearest neighbor approximation. Phase-mod form of the geo-referenced data
is then converted to complex files which are separated into real and imaginary parts. Band Math is
then applied to extract normalized backscattering coefficient using the formula given in [10]. The
process is repeated for each polarization.

B. PoISAR features

After preprocessing of PoOISAR data, various datasets HH, HV and VV are obtained. These
datasets contain backscattered intensity values calibrated in terms of backscattering coefficients

o0, and o, , respectively. These are expressed in dBs. Different scattering mechanisms i.e.

w !

surface- (bare soil, wetland, water etc.), double bounce- (urban, buildings etc.), volume-scattering
(tall vegetation, forest etc.) present themselves prominently in different features. For instance,
double bounce-, surface- and volume-scattering is more prominent in HH, VV and HV features,
respectively.

The other features are obtained by taking their ratios Z—H HH HV HV VW and % Different

V' W' W HH' HH
researchers have found that a particular land cover class is highlighted by these ratio features [11].
Linear combinations of HH, HV and VV (e.g. HHtHV etc.) are also considered for their effect on
identification of various land covers. But still role of classifier is to be investigated regarding which
feature is suitable for identifying which land cover.

All the above features correspond to single bands or their ratios. Some of supervised classifiers
such as Mahanalobis distance (MD) and maximum likelihood classifier (MLE) requires at-least two

bands. Therefore some of the features are stacked to use them. For instance, o,, is chosen to be
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I or Zw g5 it is not appearing in either ratio. Similarly, stacking of all three
0, o,

v

o,,,0, and o, is investigated (Table 1). Physical significance of some of these features is

summarized in [11] (the list is not exhaustive due to still unknown nature of these complex
phenomena).

stacked with

v

Table 1. Physical significance of backscattering coefficients [11]

Feature Se.nsmwty to Expected land cover identification
scattering mechanism
Ohn double-bounce Buildings and high structures
Ohy multiple-bounce Vegetation, bio-mass etc.
Ow single-bounce Water, smooth bare soil etc.

O, O,
hv and w
O o}

w hv

Differentiates single- and multiple-bounce  Discriminates bare soil and vegetation

C. Supervised Classification

Supervised classification requires representative ground sample points corresponding to different
land covers. These sample land cover classes are called “training sites”. Based on these training sites
the supervised classifier identifies various land cover classes in the entire dataset. It assigns each
data point to one of the land covers it resembles most in the training set. The common supervised
classifiers are parallelepiped, minimum distance, Mahanalobis distance and maximum likelihood.

Parallelepiped classification uses decision boundaries forming an n-dimensional parallelepiped.
Its dimensions are defined using a standard deviation threshold from the mean of each selected class.
If a pixel value lies between the lower and upper thresholds, it is assigned to that class. Areas that do
not fall within any of the parallelepiped classes are designated as unclassified.

Minimum distance classifier calculates the Euclidean distance from each unknown pixel to the
mean vector for each class. All pixels are classified to the nearest (minimum distance) class. The
Mahanalobis distance classification is a direction-sensitive distance classifier that uses statistics for
each class. It overcomes some of the limitations of minimum distance classifier that arise in case of
poorly scaled and highly correlated features. This classifier uses Mahanalobis distance measure
instead of Euclidean distance which takes into account number of standard deviations that a point is
away from each class mean along different principal component axis instead of simple distance.
Therefore, this measure is without units and scale-invariant. Corresponding to rescaling to unit
variance along each axis, Mahanalobis distance is identical to Euclidean distance.

Mahanalobis distance classifier is similar to maximum likelihood classifier for equal class
covariances. On the other hand, maximum likelihood classifier works on the assumption of normal
distribution of each class statistics. It calculates the probability that a given pixel belongs to a
specific class. Each data point is assigned to the class that has the highest probability (maximum
likelihood). All data points are classified for no probability threshold [18].

Class-wise producer’s and user’s classification accuracies for some of the features for different
supervised classifiers are summarized in Table 2 to Table 7.

The accuracies in Table 2 to Table 7 given as NR are either zero, negative or abysmally low,
hence these values does not have any practical significance. Stacking of HH with ratio of cross
features i.e. HV/VV or VV/HV does not improve classification accuracy.

Since Mahanalobis and Maximum likelihood classifier require at-least two bands, therefore
different features are stacked for land cover classification using them. Various classification
accuracies for one of the features obtained by stacking HH, HV, VV for different supervised
classifiers are shown in Table 2 to Table 7. Entries corresponding to single features are marked NF
in the above tables.
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Table 2. Classification Accuracies of ‘water’with Supervised Classifiers

Classifier . Minimum Mahanalobis Maximum
Parallelepiped

Distance Distance Likelihood
Feature PA UA PA UA PA UA PA UA
HH 68.18 31.38 67.27 49.66 NF NF NF NF
HV 68.18 26.32 56.36 41.33 NF NF NF NF
VvV 67.27 37.19 67.27 55.64 NF NF NF NF
HH/HV 68.18 16.52 455 12.82 NF NF NF NF
HH/VV NR NR 455 12.82 NF NF NF NF
HV/HH 68.18 16.52 21.82 16.44 NF NF NF NF
HV/IVV 68.18 16.52 33.64 2151 NF NF NF NF
VV/HH NR NR 455 12.82 NF NF NF NF
VV/HV 73.64 19.10 33.64 2151 NF NF NF NF
HH+HV 68.18 36.23 66.36 58.40 NF NF NF NF
Stacked(HH,HV,VV) 33.64 46.25 68.18 65.79 65.45 62.07 61.82 67.33

PA & UA - Producer’s and user’s accuracy (%), NR — not relevant, NF — not feasible

Table 3. Classification Accuracies of ‘urban’ with Supervised Classifiers

Classifier Parallelepiped Minimum Mahanalobis Maximum

Distance Distance Likelihood
Feature PA UA PA UA PA UA PA UA
HH 64.50 36.13 64.50 57.59 NF NF NF NF
HV 69 64.49 71.50 84.62 NF NF NF NF
\AY 71.50 36.11 6.50 24.53 NF NF NF NF
HH/HV 23.50 34.31 2.50 26.32 NF NF NF NF
HH/VV NR NR 2.50 26.32 NF NF NF NF
HV/HH 23.50 34.31 12 37.50 NF NF NF NF
HVIVV 23.50 34.31 54.50 48.02 NF NF NF NF
VV/HH NR NR 2.50 26.32 NF NF NF NF
VV/HV 32.50 44.22 54.50 48.02 NF NF NF NF
HH+HV 67 52.76 70.50 75.40 NF NF NF NF

Stacked(HH,HV,VV)  32.50 73.03 72.5 84.3 63 82.89 70 90.91

PA & UA - Producer’s and user’s accuracy (%), NR — not relevant, NF — not feasible

Table 4. Classification Accuracies of ‘wetland” with Supervised Classifiers

Classifier parallelepiped Minimum Mahanalobis Maximum
Distance Distance Likelihood
Feature PA UA PA UA PA UA PA UA
HH 7.64 12.36 25 36 NF NF NF NF
HV NR NR 25 43.37 NF NF NF NF
VvV NR NR 47.22 33.66 NF NF NF NF
HH/HV 46.53 65.05 52.78 25.85 NF NF NF NF
HH/VV NR NR 52.78 25.85 NF NF NF NF
HV/HH 46.53 65.05 77.08 55.22 NF NF NF NF
HVIVV 46.53 65.05 84.72 75.78 NF NF NF NF
VV/HH NR NR 52.78 25.85 NF NF NF NF
VV/HV 68.75 77.95 84.72 75.78 NF NF NF NF
HH+HV 56.25 31.76 15.97 29.11 NF NF NF NF
Stacked(HH,HV,VV)  33.33 94.12 86.11 86.05 87.5 75.9 88.89 79.01

PA & UA - Producer’s and user’s accuracy (%), NR — not relevant, NF — not feasible
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Table 5. Classification Accuracies of ‘bare soil” with Supervised Classifiers

Classifier Parallelepiped Minimum Mahanalobis Maximum
Distance Distance Likelihood
Feature PA UA PA UA PA UA PA UA
HH 3.16 10.34 20 15.45 NF NF NF NF
HV 65.26 27.56 42.11 31.25 NF NF NF NF
VvV 25.26 21.82 21.05 17.09 NF NF NF NF
HH/HV NR NR 50.53 16.16 NF NF NF NF
HH/VV NR NR 50.53 16.16 NF NF NF NF
HV/HH NR NR 12.63 14.12 NF NF NF NF
HVIVV NR NR 12.63 14.63 NF NF NF NF
VV/HH NR NR 50.53 16.16 NF NF NF NF
VV/HV NR NR 12.63 14.63 NF NF NF NF
HH+HV NR NR 22.11 21.65 NF NF NF NF
Stacked(HH,HV,VV)  32.63 30.10 41.05 35.78 40 36.54 47.37 38.79

PA & UA - Producer’s and user’s accuracy (%), NR — not relevant, NF — not feasible

Table 6. Classification Accuracies of ‘short vegetation” with Supervised Classifiers

Classifier Parallelepiped Minimum Mahanalobis Maximum

Distance Distance Likelihood
Feature PA UA PA UA PA UA PA UA
HH NR NR 26.67 36.36 NF NF NF NF
HV NR NR 36 41.22 NF NF NF NF
VvV NR NR 28.67 44.33 NF NF NF NF
HH/HV NR NR 12 27.27 NF NF NF NF
HH/VV NR NR 12 27.27 NF NF NF NF
HV/HH NR NR 11.33 32.69 NF NF NF NF
HV/IVV NR NR 14 27.27 NF NF NF NF
VV/HH NR NR 12 27.27 NF NF NF NF
VV/HV NR NR 14 27.27 NF NF NF NF
HH+HV NR NR 38 37.75 NF NF NF NF
Stacked(HH,HV,VV) 18 61.36 40.67 52.59 32.67 52.69 40 51.72

PA & UA - Producer’s and user’s accuracy (%), NR — not relevant, NF — not feasible

Table 7. Classification Accuracies of ‘tall vegetation” with Supervised Classifiers

Classifier parallelepiped Minimum Mahanalobis Maximum
Distance Distance Likelihood
Feature PA UA PA UA PA UA PA UA
HH NR NR 14.67 16.18 NF NF NF NF
HV NR NR 52 34,51 NF NF NF NF
VvV NR NR 25.33 11.05 NF NF NF NF
HH/HV 1.33 25 8 10.17 NF NF NF NF
HH/VV NR NR 8 10.17 NF NF NF NF
HV/HH 1.33 25 53.33 17.70 NF NF NF NF
HV/IVV 1.33 25 4 5.45 NF NF NF NF
VV/HH NR NR 8 10.17 NF NF NF NF
VV/HV NR NR 4 5.45 NF NF NF NF
HH+HV NR NR 36 20 NF NF NF NF
Stacked(HH,HV,VV) 17.33 34.21 49.33 33.64 49.33 25.87 62.67 37.60

PA & UA - Producer’s and user’s accuracy (%), NR — not relevant, NF — not feasible

D. Unsupervised Classification

Unsupervised classification does not require any or minimum a-prior information for
identification of land cover classes. K-means and ISODATA are most commonly used classifiers for
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PoISAR land cover classification in an unsupervised manner. Both are basically iterative clustering
algorithms.

In general, an arbitrary initial cluster is assigned in both the algorithms. Then each pixel is
assigned to the closest cluster. After that new cluster means are calculated for all the pixels in a
cluster. The above two steps are repeated until there is a little “change™ between the iterations.

The ISODATA algorithm is more refined than K-means in terms of splitting and merging of
clusters. Merging is allowed if numbers of pixels in a cluster are less than or if the centers of two
clusters are closer than a certain threshold. Similarly splitting is allowed for the case of standard
deviation more than a predefined threshold or numbers of pixels are twice than the agreed threshold
[18].

The ISODATA algorithm is unlike K-means algorithm in the sense that in the former different
number of clusters are allowed while latter assumes number of clusters a-priori.

Class-wise producer’s and user’s classification accuracies for some of the features for different
unsupervised classifiers are summarized in Table 8 to Table 13.

Table 8. Classification Accuracies of ‘water” with unsupervised Classifiers

Classifier K-means ISODATA
Feature PA UA PA UA
HH 38.18 5753 38.18 57.53
HV 36.36 54.05 36.36 54.05
VvV 51.82 6552 5182 65.52
HH+HV+VV 4445 72.06 4455 72.06

Stacked (HH,HV,VV) 5455 75 5455 75

Table 9. Classification Accuracies of ‘urban’ with unsupervised Classifiers

Classifier K-means ISODATA
Feature PA UA PA UA
HH 26 71.23 26.00 71.23

HV 675 87.1 67.5 87.1

VvV 34 56.20 24 56.2
HH+HV+VV 415 7757 415 7757

Stacked (HH,HV,VV) 475 87.16 475 87.16

Table 10. Classification Accuracies of ‘wetland’ with unsupervised Classifiers

Classifier K-means ISODATA
PA UA PA UA
Feature
HH 4444 3282 4444 32.82
HV 40.97 42.75 40.97 42.75
VvV 57.64 38.07 57.64 38.07
HH+HV+VV 43.06 2897 39.58 33.53

Stacked (HH,HV,VV) 66.67 51.89 66.67 51.89

Table 11. Classification Accuracies of ‘bare soil” with unsupervised Classifiers

Classifier K-means ISODATA
Feature PA UA PA UA
HH 37.89 18.65 37.89 18.65

HV 43.16 28.87 43.16 28.87

VvV 23.16 1497 23.16 14.97
HH+HV+VV 33.68 25.2 33.68 25.20

Stacked (HH,HV,VV) 4211 2614 421 471
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Table 12. Classification Accuracies of ‘short vegetation” with unsupervised Classifiers

Classifier K-means ISODATA
PA UA PA UA
Feature
HH 32.67 34.03 32.67 34.03
HV 3267 3712 32.67 37.12
VvV 26 41.49 26 41.49
HH+HV+VV 26.67 4545 26.67 45.45

Stacked (HH,HV,VV) 13.33 2353 47.33 46.41

Table 13. Classification Accuracies of ‘tall vegetation” with unsupervised Classifiers

Classifier K-means ISODATA
PA UA PA UA
Feature
HH 8 6.25 8 6.25
HV 58.67 33.08 58.67 33.08
\AY 18.67 13.08 18.67 13.08
HH+HV+VV 25.33 11.18 50.67 17.76

Stacked (HH, HV,VV) 66.67 30.86 66.67 30.86

After rigorous iterations, it was found that the following parameters for K-means and ISODATA
unsupervised classifiers give the best classification results; no. of iterations=50, change threshold=4,
classes=6 (both K-means and ISODATA), no. of pixels=10 (for ISODATA). No maximum standard
deviation from mean and maximum distance error has been specified in K-means while maximum
class deviation and minimum class distance are taken to be 1 and 5, respectively for ISODATA
classifier.

E. Critical Analysis and Discussion

Various natural PoISAR features, their ratios and linear combinations have been investigated for
various land covers (water, urban, wetland, bare soil, short- and
tall-vegetation) classification wusing various supervised (parallelepiped, minimum distance,
Mahanalobis distance and maximum likelihood classifier) and unsupervised (ISODATA and K-
means) classifiers. Selection of features and their combinations has always been an active subject of
investigation in PoISAR land cover classification studies. Various advanced computational
algorithms have been applied for proper selection of the desired features [11].

However, in this study first hand statistics of PoISAR and their linear combinations are
considered for land cover classification. This will help in assessing suitability of different features
for this application along with the role of classifier. This is expected to lead to the end objective of
developing generic unsupervised algorithms for the application of land cover classification with
minimum human intervention. For comparison various supervised classifiers have also been taken
into account.

The class ‘water’ is identified with a PA of around 68% using all features mentioned in Table 2
with the exception of stacked (HH,HV,VV), HH/VV and VV/HH features using parallelepiped
classifier. The accuracies are abysmally low for HH/VV and VV/HH features. But UA is low for all
the features. The minimum distance classifier results in PA of around 68% for HH, VV, HH+HV
and stacked (HH, HV, VV) features with reasonable high UA for last two features. Since
Mahanalobis distance and maximum likelihood classifiers work with at-least two bands so entries
corresponding to single features are shown as not-feasible (NF) in Table 2. PA and UA are obtained
in the range of 62-65% and 62-67% respectively for these two classifiers. In case of unsupervised
classification, highest PA and UA of 55% and 75% are obtained for stacked (HH, HV, VV) feature
for both K-means and ISODATA classifiers as shown in Table 8. Therefore, it is observed that
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stacked (HH, HV, VV) feature with minimum distance supervised classifier gives overall good
results for water land cover. And, both unsupervised classifiers give identical results for this class.

Urban land cover is classified with the highest PA of 71.5% for VV and highest UA of 73.03%
for stacked (HH, HV and VV) with parallelepiped classifier as shown in Table 3. The same trend is
observed for minimum distance classifier with highest PA of 72.5% and UA of 84% for stacked
(HH, HV, VV). However, in this case UA is highest for HV feature. Maximum likelihood classifier
results in very good UA of about 91% for this class. In case of unsupervised classification, both K-
means and ISODATA result in highest PA of 67.5% and UA of 87.1% for HV feature as observed
from Table 9. In nutshell, it is observed that stacked (HH, HV and VV) feature is good for
identifying urban land cover either with minimum distance or maximum likelihood classifier. On the
other hand, HV feature can be used with either K-means or ISODATA classifier for urban land
cover.

Wetland land cover is classified with highest PA of 68.75% and UA of 77.95% for VV/HV with
parallelepiped classifier as observed from Table 4. However, UA of 94.12 % is highest for stacked
(HH, HV and VV) feature which also give highest PA of 86.11% and UA of 86.05% with minimum
distance classifier. PA of 88.89% is highest for stacked (HH, HV and VV) feature with maximum
likelihood classifier. PA of 66.67% and UA of 51.89% are highest for stacked (HH, HV and VV)
feature with both K-means and ISODATA unsupervised classifier as observed from Table 10.
Therefore, stacked (HH, HV and VV) feature works best with minimum distance or maximum
likelihood supervised classifiers and both K-means and ISODATA unsupervised classifiers for
identifying wetland land cover.

HV feature gives best PA of 65.26% with parallelepiped classifier while it is around 50% for
HH/HV, HH/VV and VV/HH features with minimum distance classifier as observed from Table 5.
UA of 27.56% is obtained in the former case and UA of 16.16% is obtained in the latter case. Both
these values are quite low. Similar trend is observed for other two supervised classifiers i.e.
Mahanalobis and maximum likelihood classifier. HV also give highest PA of 43.16% and UA of
28.87% with both K-means and ISODATA unsupervised classifiers. Therefore, it can be
summarized that HV feature can be used for this class with parallelepiped classifier, K-means or
ISODATA classifier.

Very poor classification results are obtained for short vegetation class with parallelepiped
classifier as is evident from Table 6. However, minimum distance classifier results in PA of 40.67%
and UA of 52.59% for stacked (HH, HV and VV) feature. Same PA but different UA of 51.72% is
obtained for this feature with maximum likelihood classifier. ISODATA unsupervised classifier
gives best PA of 47.33% and UA of 46.41% for stacked (HH, HV and VV) feature as is observed
from Table 12. Therefore, short vegetation can be identified best with stacked (HH, HV and VV)
feature using either minimum distance classifier in supervised approach or ISODATA classifier in
unsupervised approach.

Performance of parallelepiped classifier is also not good for any of the features for tall vegetation
land cover as is observed from Table 7. The minimum distance classifier gives best PA of 53.33%
for HV/HH feature but with low UA of only 17.7%. Both PA and UA are reasonably high for
stacked (HH, HV and VV) feature. However, PA of 62.67% is highest for maximum likelihood
classifier. Stacked (HH, HV and VV) feature also results in highest PA of 66.67% for both K-means
and ISODATA classifiers as observed from Table 13. Therefore, stacked (HH, HV and VV) feature
seems to be appropriate with either maximum likelihood supervised classifier or K-means or
ISODATA unsupervised classifiers.

It has been observed from above discussion that not any single feature or classifier is appropriate
for identifying different land covers. In general, the ratios and linear combinations of nature PoOISAR
features are not giving encouraging results. On the other hand, when they are stacked as in stacked
(HH, HV and VV) feature, the good classification results are obtained for most of the land covers
using both supervised and unsupervised approaches. Not very high values of classification
accuracies can be achieved because in this study no additional information other than natural
PoISAR features are taken into account.

The bigger challenge, however, is land cover classification in the scenario when minimum or no
prior information is available. Only unsupervised classification can be used in such cases. Therefore,
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to make the study complete a comparison with other popular unsupervised classifier viz. Wishart
classifier based on H/A/a decomposed features is also shown in Table 14.

Table 14. Classification Accuracies with Wishart unsupervised classifier
Class Water Urban Wetland Baresoil ShortVeg Tall Veg
PA UA PA  UA PA UA PA UA PA UA PA UA
Feature

H/A/a 5167 7561 66.67 100 77.42 60.76 53.73 5538 59.21 5556 NR NR
NR - not relevant
Classification accuracies shown in Table 14 are obtained without any additional information.
These accuracies are better than stacked (HH, HV and VV) feature used in this study. This can be
attributed to the fact that Wishart unsupervised classifier exploits the Wishart statistical distribution
of PoISAR data which is not present in stacking of features.

1VV. Conclusion

In this study, various PolSAR features used for land cover classification have been summarized.
Natural features, their ratios and linear combinations have been investigated using various
supervised and unsupervised classification for their suitability for land cover classification using
PoISAR data. It is concluded from this study that the natural features HH, HV and VV stacked
together may give improved classification results in both supervised and unsupervised domain.
Further explorations are required to be done for enhancing the information content of POISAR data
and select/design suitable classifier for improved land cover classification keeping the two ends i.e.
features and classifiers simple computationally and algorithmically.
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