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1. Introduction 

Machine learning has been used in many areas of our daily life, causing some troubles in our life. As 
the techniques inside become larger and more complex, it becomes harder to interpret the main inference 
mechanism and to explain why and how the decisions made by the machine learning techniques reach 
their final conclusion. Because the methods have had serious influences over our safety [1], and the users 
of the techniques should have the right to receive an explanation of how the decisions are made, there 
has been an urgent need to develop methods to interpret and explain the main inference mechanism of 
the machine learning techniques [2]. 

Thus, many types of methods for interpretation have been developed in machine learning, which can 
be classified into two types: internal and external interpretation. In the internal interpretation, the 
methods aim to produce models whose components can be directly inspected and interpreted [3]–[5]. 
On the contrary, in the external interpretation, the models are considered as black-box ones, and try to 
interpret the inference mechanism externally [6]–[8]. In the neural networks, similarly as for the 
machine learning techniques, the interpretation methods have been classified as “decompositional” or 
“pedagogic” [9]. The pedagogic model is the black-box model and tries to infer the relations between 
inputs and outputs only by inspecting the inputs and outputs externally. The decompositional approach 
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 The present paper aims to propose a new type of information-theoretic 
method to interpret the inference mechanism of neural networks. We 
interpret the internal inference mechanism for itself without any external 
methods such as symbolic or fuzzy rules. In addition, we make 
interpretation processes as stable as possible. This means that we interpret 
the inference mechanism, considering all internal representations, created 
by those different conditions and patterns. To make the internal 
interpretation possible, we try to compress multi-layered neural networks 
into the simplest ones without hidden layers. Then, the natural 
information loss in the process of compression is complemented by the 
introduction of a mutual information augmentation component. The 
method was applied to two data sets, namely, the glass data set and the 
pregnancy data set. In both data sets, information augmentation and 
compression methods could improve generalization performance. In 
addition, compressed or collective weights from the multi-layered networks 
tended to produce weights, ironically, similar to the linear correlation 
coefficients between inputs and targets, while the conventional methods 
such as the logistic regression analysis failed to do so.  

 
This is an open access article under the CC–BY-SA license. 

    

 

 
Keywords 

Mutual information 

Internal interpretation 

Collective interpretation 

Inference mechanism 

Generalization 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Advances in Intelligent Informatics (IJAIN)

https://core.ac.uk/display/268127059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.26555/ijain.v5i3.420
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:ryotarokami@gmail.com
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v5i3.420&domain=pdf


180 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 5, No. 3, November 2019, pp. 179-192 

 

 Kamimura et.al (Internal and collective interpretation for improving human interpretability of multi-layered neural networks) 

tries to analyze the components such as connection weights and neuron activations directly. Thus, the 
method can be considered as the above-mentioned internal interpretation. However, usually, in the 
decompositional approach, many external methods, such as symbolic rules, fuzzy rules, decision trees, 
have been used to analyze and represent the components [10]–[12]. In addition, to extract the rules, 
many techniques, such as digitization of inputs and outputs for extracting rules, have been applied [9]. 
Thus, those methods cannot be called “internal interpretation” methods, but they have tried to interpret 
the final results by some external methods, and it is more appropriate call them “external interpretation.” 
As is known, the objective of the interpretation is two-fold. First, and naturally, the interpretation 
method can be used to explain the inference mechanism in human intelligible ways. In addition, the 
clarification of the inference mechanism can be used to improve the general property, such as 
generalization performance, of neural networks. Considering two important aspects behind the 
interpretation, the interpretation methods so far developed have been dependent on methods not related 
to the real inference mechanism of neural networks. Thus, when we need to improve further the 
performance of neural networks, it is necessary to interpret internally the main inference mechanism. 

In addition to the external interpretation, we have faced another problem, that of instable 
interpretation. Ordinarily, machine learning, as well as neural networks, are trained with many different 
data sets and initial conditions, in particular, in evaluating generalization performance. Thus, even for 
the same data set, we can have completely different internal representations due to different initial 
conditions. The problem is selecting which representation among many we should interpret. One of the 
practical solutions is to interpret a representation with the best generalization performance. This means 
that we try to see the ability of neural networks only from one aspect of improved generalization. We 
think that all representations created by different data sets and initial conditions should be taken into 
account for uncovering the fundamental properties of data sets. Then, for the problem of instability of 
interpretation, we should collectively interpret all internal representations created by learning, where 
each representation should have equal importance. It seems to us that the problem of collective 
interpretation has not been fully examined in machine learning as well as neural networks except in some 
exceptional cases with the ensemble methods [9], [13]. In this context, the present paper proposes a 
new type of interpretation called “collective interpretation,” in which all representations from neural 
networks should be taken into account with equal importance. 

We have shown that interpretable neural networks should be internally interpreted and all different 
types of internal representations should be collectively interpreted. Let us consider how to create neural 
networks with those properties for interpretation. As mentioned, in neural networks, there have been 
many types of interpretation methods, and the majority of those methods have been based on the 
simplification of network complexity. This is based upon the assumption that, as networks become 
simpler, their interpretation becomes simpler. Since the beginning of research on this matter, there have 
been many types of simplification methods proposed [14]–[17]. However, it cannot be said that those 
methods can be applied successfully to the interpretation problem because they have been mainly used 
to improve generalization performance. In addition, we can say that simplified networks are not 
necessarily easily interpreted, because it happens that too much information may be condensed in simpler 
components. In particular, in applying them to the interpretation problems, multiple solutions, by 
different initial conditions and with different choices of parameter for the regularization terms, have 
prevented us from interpreting the final results. 

Recently, more powerful methods of simplification, namely, model compression methods, have been 
proposed. The model compression methods aim to compress complex and larger networks into smaller 
ones by transferring knowledge in larger networks to smaller ones [18]–[20]. However, the methods are 
considered principally as black-box ones, in which the behaviors of larger networks or teacher networks 
are imitated by the corresponding smaller student networks using the soft targets from the larger 
networks. In addition, the methods have been used only to improve generalization performance. So, 
even if we succeed in interpreting the main mechanism of student networks, we cannot say that the 
methods can interpret the original and teacher networks internally. 
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Though the model compression can be used to produce the simple models for practical applications 
as well as hardware implementations, the present paper assumes that the internal interpretation should 
be needed for improving the interpretation performance, and even for improving generalization 
performance. For using the model compression methods for the internal interpretation, we have 
developed an information compression method called “neural compressor” [21]. The neural compressor 
tries to compress all connection weights in all layers into the simplest ones. Because the compressed 
weights or collective weights should directly inherit the main characteristics of connection weights from 
the larger networks, the method eventually tries to interpret the inference mechanism of the original 
teacher networks internally. Besides, the collective interpretation is realized by averaging all compressed 
weights over all different types of data sets and initial conditions. 

However, when we tried to apply the neural compressor to actual problems, we observed that the 
generalization performance of networks with compressed weights tended to degrade considerably. We 
encountered a problem of whether compressed weights really represented the characteristics of weights 
of the original networks due to poor generalization performance. By examining carefully information 
flow in compression processes, we found that compression processes were naturally accompanied by the 
loss of information content in the original connection weights. In the worst case, information considered 
important, could be lost in a process of compression. The problem of this lost information forced us to 
develop a method to increase information content on inputs as much as possible before compression. 
Thus, the present paper aims to examine the performance of multi-layered neural networks with 
information augmentation components introduced against the information loss. In addition, we try to 
evaluate the utility of compressed or collective weights from multi-layered neural networks to train the 
simplest networks with no hidden layers. 

2. Method 

2.1. Collective Interpretation and Information Compression 

We try to show here how to compress multi-layered neural networks, as shown in Fig. 1. The 
collective or compressed weights are obtained by multiplying and summing all connection weights and 
by averaging those weights for all different initial conditions and different input patterns. Thus, the final 
collective weights tend to represent the overall characteristics of connection weights between inputs and 
outputs. 

For simplicity’s sake, we deal here with connection weights for different initial conditions. Now, let 
us compute step by step collective weights between inputs and outputs for different initial conditions. 
For illustration purposes, we use the five-layered neural networks shown in Fig. 1, where the number of 
layers is changed from one (1) to five (5), and the first layer is the input and the final layer is the output 
layer by definition. First, suppose that for the tth initial condition (t = 1,2,...,r), connection weights are 
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With collective weights, we train two-layered neural networks as shown in Fig. 1(b) and (c). In Fig. 1(c), 

two-layered neural networks are initialized with collective weights 𝑤𝑖𝑘
(5∗2)

 
𝑡 .  Then, these two-layered 

neural networks are trained to produce the targets, but this time, the learning is performed with 
information from multi-layered neural networks. Finally, for interpretation, the collective weights can 
be obtained by averaging all connection weights 

𝑤̅𝑖𝑘
(5∗2)

=
1

𝑟
   ∑ 𝑤𝑖𝑗

(5∗2)

 

𝑡𝑟 
𝑡=1

 

 

  (4)

Thus, these compressed and collective weights can be used to interpret relations between inputs and 
outputs. 

 

Fig. 1.  Network architecture with a process to obtain collective weights from an initial multi-layered neural 

network (a). The final two-layered network (b) was trained with collective weights as initial weights to 

produce the final state (c). 

2.2. Mutual Information Augmentation 

In the information augmentation component in Fig. 2, we try to increase mutual information 
between input patterns and neurons in the second layer, denoted by (2). For computing mutual 
information, we must compute distance between an input 𝑥𝑘

8 of the sth input pattern (s = 1,2,...,q) to 

the kth input neuron (k = 1,2,...,n1) and the corresponding connection weight 𝑤𝑗𝑘
(2)
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The output from the jth neuron of the second layer is computed by 
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where the parameter 𝜎 represents the width of the distribution. The firing probability is computed by 
normalizing the output 
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By this normalized output, mutual information is defined by 
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𝐼 
(2) = − ∑  
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When this mutual information is maximized, all neurons fire equally on average, while each neuron 
responds to a specific group of neurons. This means that all neurons respond very specifically to input 
patterns. Thus, when mutual information increases, each neuron plays a specific role. 

 

Fig. 2.  Network architecture composed of information augmentation (a) with a process to obtain collective 

weights from an initial multi-layered neural network. The final two-layered network (b) was trained with 

collective weights as initial weights to produce the final state (c). 

2.3. Computational Methods for Information Augmentation 

Mutual information is defined between inputs and input patterns, having two properties, namely, the 
equal use of neurons and specific responses to inputs. This means that all neurons should be equally 
used and respond to specific input patterns. In terms of interpretation, mutual information maximization 
has the effect of disentangling complex features into simpler and distinct features. Thus, those 
disentangled features can be simple enough for easy interpretation, when the number of neurons 
increases. The importance of mutual information has been stressed since Linsker’s pioneer work on 
maximum information preservation [22]–[24]. Since then, there have been many attempts to use mutual 
information in neural networks [25]–[27]. However, one of the main problems in mutual information 
is the computational complexity of computing mutual information, composed of entropy and conditional 
entropy of neurons with respect to input patterns. 

The present paper uses competitive learning to realize mutual information in which the computation 
of mutual information is greatly simplified [28]. The competitive learning [29] tries to detect a winner, 
closest to specific input patterns, and all competitive neurons tend to respond to distinct input patterns 
in an ideal state. This property of competitive learning is close to the objective of mutual information 
maximization. As has been well known, competitive learning tries to determine a winner sc for the sth 
input pattern 

𝑐 
𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗  

 

 𝑝(𝑗|𝑠)  

Thus, the winner tries to imitate the corresponding input patterns as much as possible. In addition, 
competitive learning supposes that all winning neurons represent distinct input patterns in an ideal state. 
This process of winning neurons tries to minimize the conditional entropy, the second term of mutual 
information. In addition, the equal use of all neurons corresponds to maximizing the entropy, the first 
term of mutual information. However, the equal use of all competitive neurons cannot be easily realized. 
In actual competitive processes, some neurons can be dead, meaning that they do not respond to any 
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input patterns. Though many methods to solve the dead neuron problem have been proposed [30], [31], 
the problem has not yet been solved. To weaken the problem of dead neurons, we use here one variant 
of competitive learning, namely, the self-organizing map (SOM) [32]. The SOM determines a winner, 
and it tries to imitate specific input patterns as much as possible. One of the main differences is that, in 
the SOM, not only a winner but also other neurons, located in the vicinity of the winner, try to imitate 
input patterns, depending on the distance from the winner. Thus, the SOM is more suited for a situation 
where the number of neurons tends to increase, as is the case with the method proposed in this paper. 

In addition, mutual information can be realized by increasing the number of neurons. To see how 
mutual information can be increased by increasing the number of neurons, we consider maximum mutual 
information content. As has been well known, maximum mutual information is obtained by 

𝐼𝑚𝑎𝑥
(2)

= 
 log 𝑛2  

where n2 represents the number of neurons in the second layer. As can be seen in the equation, mutual 
information can be increased by just increasing the number of neurons. Thus, all we have to do to 
increase the mutual information is to increase the dimensionality n2 as much as possible. 

3. Results and Discussion 

3.1. Glass Data Set 

3.1.1. Experimental Outline 

The first experiment used the well-known and easily accessible glass data set (glass dataset), where 
we tried to classify glass either as window or non-window, depending on the glass chemistry. The 
number of inputs was nine (refractive index, sodium, magnesium, aluminum, silicon, potassium, calcium, 
barium, and iron). The number of patterns was 214, which was increased so as to make the window and 
non-window glass as equal as possible for easy evaluation of the final results by using the well-known 
minority up-sampling method SMOTE [33]. As explained in the section above, the maximum number 
of layers was set to five, because we could not obtain better results when the number of layers was further 
increased. We used the Matlab neural network package with all default values except the number of 
neurons in the second layers. This is because the use of the default setting makes it possible to easily 
reproduce the present results. Naturally, if we try to tune the parameters, we can expect to obtain results 
better than those discussed in this paper. Only the number of neurons in the second layer was determined 
to produce the best possible generalization performance. 

3.1.2 Information and Generalization 

Fig. 3(a) shows mutual information when the number of neurons in the second layer increased from 
2 to 100. Mutual information increased sharply at the beginning and then increased very slowly. Fig. 
3(b) shows generalization errors as a function of the number of neurons in the second layer. We could 
see that generalization errors decreased rapidly at the beginning and then decreased slowly when the 
number of neurons increased. This result shows that, when mutual information increased, generalization 
errors correspondingly decreased gradually. 

Table 1 shows a summary of generalization errors. As can be seen in the table, the best average error 
of 0.0074 was obtained by the present method with information augmentation (IA) with three and four 
layers. In addition, the present method showed the best standard deviation (0.0096), minimum error 
(0), and maximum error (0.0185). The error was much lower than that of 0.0358 obtained by the logistic 
regression analysis. The error was even much lower than that of 0.0204 obtained by the bagging ensemble 
method [34], [35], which is close to the collective operation in the present method. Also, the well-
known AdaBoostM1 method [36]–[39] could not produce reasonably low errors. 
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Fig. 3.  Mutual information (a) and generalization errors (b) as a function of the number of neurons for five-

layered neural networks for the glass data set. 

Table 1.  Summary of experimental results on generalization performance for the glass data set. The numbers of 

layers denoted by 3-2, 4-2, and 5-2 means that two-layered networks were trained with collective weights 

from three-, four-, and five-layered networks.  

Layers Methods Neurons Avg Std dev Min Max 

 Logistic  

    

0.0358 0.0139 0.0189 0.0566 

   AdaBoostM1     0.4074 0.0611 0.3148 0.5000 

 Bagging  0.0204 0.0222 0.0000 0.0556 

2 Simple  0.0370 0.0195 0.0000 0.0741 

3 Simple  0.0167 0.0184 0.0000 0.0556 

3 IA 49 0.0074 0.0096 0.0000 0.0185 

4 Simple     

 

0.0278 0.0251 0.0000 0.0741 

4 IA 37 0.0074 0.0096 0.0000 0.0185 

5 Simple     

 

0.0204 0.0204 0.0000 0.0556 

5 IA 24 0.0111 0.0156 0.0000 0.0370 

3-2 Simple  0.0407 0.0259 0.0000 0.0926 

3-2 IAC 49 0.0352 0.0254 0.0000 0.0926 

4-2 Simple     

 

0.0444 0.0265 0.0185 0.1111 

4-2 IAC 37 0.0352 0.0295 0.0000 0.1111 

5-2 Simple     

 

0.0519 0.0273 0.0185 0.1111 

5-2 IAC 24 0.0333 0.0244 0.0000 0.0926 

 

Then, we compressed connection weights to get two-layered neural networks. When compressing 
from the simple multi-layered neural networks without an information augmentation component, 
generalization errors increased from 0.0407 (three layers, denoted by 3-2 simple in Table 1) to 0.0519 
(five layers, 5-2 simple). These errors were larger than those of 0.0370 by the simple two-layered neural 
networks without collective weights and 0.0358 by the logistic regression analysis. With collective 
weights from multi-layered networks with information augmentation components, the error decreased 
from 0.0352 (three layers, 3-2 IAC) to 0.0333(five layers, 5-2 IAC). We could see that those errors were 
lower than that of 0.0358 by the logistic regression analysis, though slightly. Thus, the information 
augmentation and compression method could improve generalization, and also, the collective weights 
from multi-layered neural networks with information augmentation could be used to increase 
generalization performance of two-layered neural networks without hidden layers. 
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3.1.3 Collective Interpretation 

Fig. 4(a) shows correlation coefficients between inputs and targets, where input No.3 had the largest 
absolute value. For easy interpretation and comparison, the maximum absolute value was adjusted to 
one. Fig. 4(b) shows connection weights from the simple two-layered neural networks without using 
collective weights. As can be seen in Fig. 4, connection weights were considerably different from the 
correlation coefficients. For example, in the connection weights, inputs No.1 and No.4 had larger 
absolute values, while input No.3, which had the largest absolute values in the correlation coefficients, 
was not so strong. Fig. 5(a) shows collective weights from five-layered neural networks with the best 
generalization performance. As can be seen in Fig. 5(a), the collective weights were considerably close to 
the correlation coefficients in Fig. 4(a), though the positive collective weights were weaker than the 
correlation coefficients. Fig. 5(b) shows connection weights by the two-layered neural networks 
initialized with collective weights. Collective weights and connection weights were similar to each other 
because the two-layered neural networks were initialized with the collective weights. However, in 
connection weights, the positive weights were stronger, and in addition, input No.7 had a stronger 
absolute value, which was different from the correlation coefficients.  
 

 

Fig. 4.  Correlation coefficients between inputs and targets (a) and connection weights for two-layered networks 

with no hidden layers (b) for the glass data set. 

 

 

Fig. 5.  Collective weights from the five-layered neural networks (a) and connection weights for two-layered 

network initialized with the collective weights from the five-layered neural networks (b) for the glass data 

set. 

Fig. 6(a) shows the prediction importance by the bagging ensemble method. The importance seems 
to be different from the correlation coefficients. However, considering that the importance could not 
distinguish between positive and negative effects, the importance considered input No.3 the most 
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important one, which was confirmed by the correlation coefficients. However, Fig. 6(b) shows the 
regression coefficients by the logistic regression analysis. The logistic regression could not detect simple 
linear correlations between inputs and targets. This is because the logistic regression analysis tended to 
produce different coefficients by slightly different training patterns. Since the results presented here were 
the average of all ten runs, the final results became different from the correlation coefficients. 

 

Fig. 6.  Prediction importance by the bagging method (a) and regression coefficients by the logistic regression 

analysis (b) for the glass data set. 

The results show that the information augmentation and compression tended to produce collective 
weights and connection weights close to the correlation coefficients. On the other hand, the simple 
multi-layered and two-layered neural networks and logistic regression produced connection weights, 
collective weights, and regression coefficients different from the correlation coefficients. These results 
show that the simple neural networks try to detect complex patterns as themselves, while the present 
method with information augmentation seems to disentangle complex features into simpler ones as 
much as possible, leading to the detection of linear relations. The logistic regression failed to detect even 
the linear relations, presumably because of the existence of multiple collinearities. 

3.2. Pregnancy Data Set 

3.2.1. Experimental Outline 

The second data set was used to predict the pregnancy of customers for the purpose of recommending 
pregnancy-related products to them [40]. The number of customers was 1,000, and the number of input 
variables was 25, representing gender (No.1) to maternity clothes (No.19). The number of neurons in 
the second layer increased from two to 100, and the number of neurons in the third and fourth layer 
were set to 10 (default values in the Matlab). Seventy percent of the data set was used for training, and 
the remainder was evenly divided into validation and testing data sets. For the sake of page limitation, 
we only present formal results on improved generalization and interpretation here. 

3.2.2. Information and Generalization 

Fig. 7 shows mutual information (a) and generalization errors (b) as a function of the number of 
neurons in the second layer of the five-layered neural networks for the pregnancy data set. As can be 
seen in Fig. 7(a), mutual information constantly increased when the number of neurons increased. On 
the other hand, the generalization errors decreased considerably in the first place, and then they slowly 
decreased. In the end, with 182 neurons, the smallest generalization error was obtained. This means that 
the number of neurons became much larger than the actual number of input variables for obtaining the 
best generalization performance. Then, fixing the number of neurons at 182 with the best generalization 
performance, we tried to control the spread parameter to increase mutual information for the two-
layered neural networks with collective weights. 

Table 2 shows a summary of generalization errors. The four-layered neural networks with information 
augmentation produced the best average error of 0.1553. With the same four-layered neural networks 
but without information augmentation, the average error increased to 0.1867, which was the maximum 
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error obtained by the four-layered networks with information augmentation. For all layers from three 
to five, generalization errors decreased when we used the information augmentation. 

 

Fig. 7.  Mutual information (a) and generalization errors (b) as a function of the number of neurons of the 

second layer for the pregnancy data set. 

Table 2.  Summary of experimental results on generalization performance for the pregnancy data set. 

Layers Methods Neurons Avg Std dev Min Max 

 Logistic  0.1627 0.0186 0.1267 0.1867 

 AdaBoostM1  0.1773 0.0189 0.1533 0.2067 

 Bagging  0.1847 0.0160 0.1533 0.2067 

2 Simple  0.1880 0.0361 0.1333 0.2400 

3 Simple  0.1767 0.0145 0.1600 0.2067 

3 IA 55 0.1600 0.0208 0.1267 0.1867 

4 Simple  0.1867 0.0340 0.1267 0.2467 

4 IA 111 0.1553 0.0183 0.1333 0.1867 

5 Simple  0.1780 0.0199 0.1467 0.2067 

5 IA 182 0.1560 0.0225 0.1267 0.1867 

3-2 Simple  0.1653 0.0239 0.1267 0.2133 

3-2 IAC 55 0.1573 0.0167 0.1333 0.1800 

4-2 Simple  0.1667 0.0249 0.1267 0.2133 

4-2 IAC 111 0.1600 0.0204 0.1267 0.2000 

5-2 Simple  0.1640 0.0178 0.1333 0.1867 

5-2 IAC 182 0.1580 0.0166 0.1400 0.1933 
 

Then, we could examine how the errors of two-layered networks changed with collective weights. 
When two-layered networks were trained with collective weights from three-layered networks with 
information augmentation (3-2, IAC), the error decreased from 0.1653 (simple) to 0.1573. By the 
collective weights from four-layered networks (4-2, IAC), the error decreased from 0.1667 to 0.1600. 
Finally, two-layered networks with collective weights from five-layered network (5-2, IAC) produced 
the error of 0.1580, decreased from 0.1640 by the simple networks. All generalization errors of two-
layered networks by information augmentation and compression were lower than that of 0.1627 by the 
logistic regression analysis. Contrary to our expectation of the well-known AdaBoostM1 and bagging 
ensemble methods, which are close to our methods, they produced higher errors of 0.1773 and 0.1847. 
These results show that the present method with information augmentation and compression could 
produce collective weights by which two-layered neural networks showed better generalization 
performance than the conventional methods. 
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3.2.3. Collective Interpretation 

Fig. 8(a) shows correlation coefficients between inputs and targets for the pregnancy data set. Fig. 
8(b) shows connection weights by the simple two-layered neural networks. Connection weights and 
correlation coefficients were similar to each other, though some different minor points in the middle 
could be seen. For example, inputs No. 16 and 17 were weaker, while the correlation coefficients between 
those inputs and the corresponding targets were relatively larger. 

 

(a) Correlation coefficients between inputs and targets           (b) Connection weights of simple 2 layered networks   

Fig. 8.  Correlation coefficients between inputs and targets (a) and weights for the simple two-layered neural 

networks (b) for the pregnancy data set. 

On the other hand, for the collective weights, the stronger weights were quite similar to the 
corresponding correlations, but the minor correlations were weaker. Fig. 9(a) shows collective weights 
from four-layered neural networks with information augmentation components. The collective weights 
were similar to the correlation coefficients, but some minor weights, for example, weights from input 
No. 10 to 13, were weaker in the collective weights. Fig. 9(b) shows connection weights by the two-
layered neural networks initialized with the collective weights. The connection weights inherited the 
major strong collective weights in Fig. 9(a), but inputs No. 6 and 18 became much stronger. 

 

 
(a) Collective weights from 5 layered networks (b) Connection weights of 2 layered networks with collective weights  

Fig. 9.  Collective weights by the three-layered neural networks (a) and weights by the two-layered with the 

collective weight of multi-layered neural networks (b) for the pregnancy data set. 

The results show that the present method with information augmentation tried to produce collective 
weights similar to the correlation coefficients, but it tried to select the important inputs from among 
inputs with higher correlation coefficients. Finally, we should note that the logistic regression analysis 
produced regression coefficients completely different from the correlation coefficients. This means that 
not the logistic regression analysis but the present method with information augmentation tried to 
detect linear correlations between input and targets. 

4. Conclusion 

The present paper aimed to propose a new interpretation method, which tries to interpret the 
inference mechanism internally and collectively. The internal interpretation aims to interpret the 
inference mechanism itself without any external methods. In addition, collective interpretation tries to 
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interpret all internal representations produced by different initial conditions and different input patterns, 
because all created representations are considered equal in importance. The method tries to compress 
multi-layered neural networks into the simplest networks without hidden layers, which can be used to 
interpret the relations between inputs and outputs, as is the case with the conventional regression 
analysis. However, the compression is accompanied by information loss on input patterns in a process of 
compressing multi-layered neural networks. Thus, we proposed a method to augment information 
content on input patterns before compressing multi-layered neural networks. Actually, the mutual 
information between input patterns and neurons in the information augmentation component is forced 
to be increased as much as possible. This increased mutual information has the effect of disentangling 
complex information in input patterns into a set of simple features. However, we faced difficulty in 
computing mutual information directly, and we used competitive learning, more exactly, SOM, for 
increasing mutual information. In addition, when the number of neurons increases, naturally mutual 
information can be increased. Thus, we tried to increase the number of neurons as much as possible in 
the information augmentation component. 

The method was applied to two data sets namely, the well-known glass data set and the more practical 
pregnancy data set. In both data sets, the present method could improve generalization performance, 
and the performance was considerably better than that of other conventional methods, in particular, 
ensemble methods close to our method, though the main focus of our method was on the interpretation. 
One of the main findings was that information compression with information augmentation tried to 
extract relations between inputs and outputs, described in the correlation coefficients between input and 
targets. On the other hand, by the conventional methods, final weights seem to be different from their 
correlation coefficients. Ironically, our method lies in the extraction of linear relations between inputs 
and outputs, while the conventional methods such as regression analysis could not detect those relations, 
probably due to the multiple collinearities. 

One of the main problems is related to computational methods for increasing mutual information. 
The present paper used competitive learning, or more exactly, SOM, for increasing mutual information. 
This is because competitive learning tries to use all neurons equally on average, responding to specific 
input patterns, which conforms to the objective of mutual information maximization in this paper. 
However, competitive learning has had the well-known shortcoming of dead neurons, where some 
neurons cannot be used in learning. In mutual information maximization, all neurons should be equally 
used, which is not exactly achieved by the present method of competitive learning. We think that more 
powerful methods will be needed to make all neurons activated equally for the further development of 
the method. 

Finally, for future direction, we should examine to what extent the method can be used to clarify the 
actual meaning of data sets. For example, in the second pregnancy data set, we only examined formal 
relations between the connection weights and correlation coefficients on inputs and targets. We should 
examine whether the obtained connection weights can explain the actual meaning of the data set. In 
addition, we should examine in what points the present method is different from the linear correlations 
between inputs and targets, and explain why and how the difference can be produced for the further 
development of neural networks. 
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