
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 5, No. 2, July 2019, pp. 137-149 137

 http://dx.doi.org/10.26555/ijain.v5i2.296 http://ijain.org ijain@uad.ac.id

A survey of graph-based algorithms for discovering
business processes

Riyanarto Sarno a,1,*, Kelly Rossa Sungkono a,2

a Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
1 riyanarto@if.its.ac.id; 2 kelly@its.ac.id

* corresponding author

1. Introduction

Analysts use their business process model to find out the latest business process and become a
reference for future development. Unfortunately, modification of a business process model becomes
forgotten in a system that has fast-growing requirements. Thus, changes in a process model are not in
line with changes in the system. Because of that, algorithms for automatically detecting a business
process model are needed. A set of those algorithms is called process discovery. Several topics implement
process discovery, such as business [1]–[8], fraud [9]–[11], and advertising [12]. Several findings process
combination of tuples to depict relationships and conditions, such as invisible tasks, parallel
relationships, and non-free choice, and combine them into a process model [13]–[16]. Other researches
calculate the frequency of activities occurrences to determine the conditions and relationships [5], [17]–
[19]. Probabilities of the Hidden Markov Model are also used to decide the relationships in a process
model [1], [20].

Out of all algorithms, there is a graph-based algorithm that depicts a process model by processing a
graph-database. This algorithm chose a graph-database to be processed because a graph-database can
store not only activities but also their relationships. The ability for storing relationships is claimed to
produce low time complexity. The graph-database algorithm has improved, so there are a group of
graph-database algorithms containing a graph-based algorithm of the parallel process [21], a graph-based
algorithm of processes containing non-free choice which is proposed by the author, a graph-based
algorithm of processes containing invisible task [22].

Graph-based algorithms which are analyzed by this paper are limited because the graph utilization in
process discovery is rare. Graph algorithm is usually implemented in knowledge mining [23]–[26] and

ARTICL E INFO

ABSTRACT

Article history

Received November 2, 2018

Revised June 15, 2019

Accepted July 4, 2019

Available online July 30, 2019

 Algorithms of process discovery help analysts to understand business
processes and problems in a system by creating a process model based on a
log of the system. There are existing algorithms of process discovery,
namely graph-based. Of all algorithms, there are algorithms that process
graph-database to depict a process model. Those algorithms claimed that
those have less time complexity because of the graph-database ability to
store relationships. This research analyses graph-based algorithms by
measuring the time complexity and performance metrics and comparing
them with a widely used algorithm, i.e., Alpha Miner and its expansion.
Other than that, this research also gives outline explanations about graph-
based algorithms and their focus issues. Based on the evaluations, the
graph-based algorithm has high performance and less time complexity than
Alpha Miner algorithm.

This is an open access article under the CC–BY-SA license.

Keywords

Survey

Graph database

Process discovery

Quality

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Journal of Advances in Intelligent Informatics (IJAIN)

https://core.ac.uk/display/268127046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.26555/ijain.v5i2.296
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:riyanarto@if.its.ac.id
mailto:kelly@its.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v5i2.296&domain=pdf

138 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

image classification [27]–[31]. Yan [19] proposed a graph algorithm for process mining; however, this
algorithm is not discussed in this paper because the graph is used for decomposing the log and that
paper uses rules of the heuristic miner for depicting a process model.

This research analyzes all of the graph-based algorithms. Several questions guide this research to
analyze; Q(1) What are issues that are handled by graph-based algorithms? Q(2) How graph-based
algorithms handle those issues? Q(3) How is the quality of graph-based algorithms in the context of
time complexity and performance of its results?

To answer the last question, this research uses fitness and precision measurements in [4], [32] to
determine the performance of the obtained process model. Fitness is a measurement of completeness of
a model based on the process in a log. Precision is a measurement of conformity of model behavior with
a log. This research compares graph-database algorithms with widely used algorithm, Alpha miner [33]
and its expansions, i.e. Alpha++ [15] that concerns with non-free choice constructs, Alpha# [34] that
detects invisible tasks for describing some special conditions, and Alpha$ [16] that combines Alpha++
and Alpha# for detecting non-free choice in invisible tasks.

2. Method

2.1. Issues in Discovering Process Models

2.1.1. Parallel Relationships

In a process model, an activity has a relationship with other activities. There is a condition when two
activities are related to each other for all processes, or activity have relationships with more than one
activity. A sequential relationship is a condition when an activity always followed by the same activity for
all processes. On the contrary, a parallel relationship is a condition when an activity has different related
activities. Table 1 explains both of sequential and parallel relationships.

Table 1. A process model containing parallel relationships.

1. Sequential Relationships

Processes in the Log Process model

{Act_1, Act_2}, {Act_1, Act_2},

{Act_1, Act_2}

2. Parallel relationships

2.1 XOR relationships

{Act_1, Act_2, Act_5}, {Act_1, Act_3,

Act_5}, {Act_1, Act_3, Act_5}

2.2 AND relationships

{Act_1, Act_2, Act_3, Act_4, Act_5},

{Act_1, Act_3, Act_4, Act_2, Act_5},
{Act_1, Act_4, Act_2, Act_3, Act_5}

2.3 OR relationships

{Act_1, Act_2, Act_3, Act_5}, {Act_1,

Act_3, Act_4, Act_5}, {Act_1, Act_4,
Act_2, Act_5}

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 139
 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

This research uses YAWL notation [35], [36] to depict those relationships. In the first event log,
activity Act_1 always followed by Act_2 for those three processes. This condition is called a sequential
relationship which is depicted by a place (a circle) and connectors between the place and activities.
Parallel relationships [21] are divided into three categories. First, activities are included in the XOR
relationship if only one of them is selected in a process. As seen in Table 1, there is only one of the
activities {Act_2, Act_3, Act_4} that is executed in every process. The triangle signs in both of Act_1
and Act_5 describe XOR relationships by using YAWL. Secondly, AND relationships occur if all
activities are executed in every process with a different order of executions. The example log is shown in
Table 1, wherein {Act_2, Act_3, Act_4} are executed with different sequences. Lastly, OR relationships
depict conditions that cannot be handled by AND relationships and XOR relationships. The example is
shown in Table 1. All processes only execute two out of three activities, i.e. {Act_2, Act_3, Act_4}. This
condition does not meet the rule of XOR relationship and AND relationship. Because of that, this
condition is depicted by OR relationship. The OR relationship is denoted by diamond signs in YAWL
notation.

Process discovery determines AND or OR relationships in two ways. The first way is considering the
sequence of activities, and the second way is considering the time execution of activities. Mostly process
discovery algorithm, such as graph-based algorithm, chooses the first way. Meanwhile, there are
researches that determine those relationships by using the second way [37], [38].

2.1.2. Non-Free Choice

With the development of processes, both parallel and sequential relationships cannot handle all
conditions. There are several conditions requiring special depiction. One of the conditions is the
selection of activity in a parallel relationship is influenced by the selection of activities in the previous
parallel relationship. This condition triggers a non-free choice.

A non-free choice is an additional implicit dependency in a process model for describing the election
dependence between an activity and its previous activity [1], [15]. The simplified example is shown in
Table 2. Based on the event log, Act_5 always executed when Act_2 is chosen, vice versa for Act_6. The
real example is part of choosing transportation online. In the application, there is two option of
transportation online, such as a motorcycle and a car. Even if there are two choices, when a customer
bought large stuff, he chooses a car rather than a motorcycle. Conversely, if a customer bought small or
no stuff, most likely he chooses a motorcycle. The relationship between the selection of transportation
online and the selection of stuff is depicted by non-free choice.

Table 2. A process model containing non-free choice relationships.

Non-free choice Relationships

Processes in the Log Process model

{Act_1, Act_2, Act_4, Act_5, Act_7}, { Act_1,

Act_3, Act_4, Act_6, Act_7}

There are several ways to depict a non-free choice in a process model. Both of YAWL and Petri Net
model uses a place and arcs to connect the place and the activities. The additional place is depicted by a
grey circle in Table 2. In the graph model, the non-free choice is depicted by an arc with the name is
“NONFREE CHOICE”. Process discovery algorithms determine non-free choice by observing the
behavior of activities in the process model. If an activity of selection is executed when the activity of
previous selection is chosen, process discovery algorithm detects those relationships as NONFREE
CHOICE.

140 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

2.1.3. Invisible tasks

Besides non-free choice, several conditions cannot be handled by both parallel and sequential
relationships. Those conditions are skip condition, redo condition, and switch condition.

The first condition is a skip condition. Skip condition happens if several processes skipped one or
more activities. The skip condition is detected by comparing the processes with other processes. If a
process executes two activities, such as Act_1 and Act_3, and another process executes other activities
between Act_1 and Act_3, this is called skip condition. Table 3 explains a skip condition in the event
log and the process model. As shown in Table 3, there is a skip condition when activity Act_1 can
directly be followed by Act_3. An invisible task is added to depict this condition.

The second condition is a redo condition. Redo condition happens if several activities in a process
are executed more than one time. The redo condition is detected by calculating the execution frequency
of activities in a process. If a process executes two activities, such as Act_2 and Act_3, and those activities
are stored more than one time in a process, this condition is called redo condition. Table 3 explains a
redo condition in the event log and the process model. As shown in Table 3, there is a redo condition
when activity Act_2 and Act_3 has more than one execution time in a process. An invisible task is added
to depict this condition.

Table 3. A process model containing invisible tasks relationships.

Invisible Tasks

Invisible Tasks for handling skip conditions

Processes in the Log Process model

{Act_1, Act_2, Act_3}, {Act_1, Act_3},

{Act_1, Act_3}

Invisible tasks for handling redo conditions

{Act_1, Act_2, Act_3, Act_2, Act_3, Act_4},

{ Act_1, Act_2, Act_3, Act_2, Act_3, Act_4}

Invisible tasks for handling switch conditions

{Act_1, Act_2, Act_4, Act_6}, {Act_1, Act_2,
Act_5, Act_6}, {Act_1, Act_3, Act_5, Act_6}

2.2. Description of Method

2.2.1. Alpha Miner

Alpha Miner algorithm is a deterministic process discovery algorithm that develops causality of
activities based on the event log [39]. Alpha Miner discovers a process model that has sequence
relationships or parallel relationships, such as XOR relationship and AND relationship. The alpha
algorithm utilizes workflow-nets in the form of Petri Nets [40], [41].

Alpha Miner creates tuples for constructing a process model. There are some rules for determining
a tuple (ActGroup1, ActGroup2). There can be one or more activities in ActGroup1 or ActGroup2. Those
rules are:

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 141
 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

1. All of the activities in ActGroup1 and ActGroup2 are stored in the event log.

2. All of the activities in ActGroup1 have casual dependencies with all activities in ActGroup2. A causal
dependency denoted by → occurs if an activity is followed by another activity, but another activity is
not followed by the activity. For example, based on a process KR, K has a causal dependency with R
because activity K is followed by activity R and activity R is not followed by activity K.

3. All of the activities in ActGroup1 do not have casual dependencies each other, likewise all activities
in ActGroup2.

4. If there are two tuples that have the same activity in ActGroup1 or the same activity in ActGroup2,
those tuples can be combined into a tuple.

5. For example, if there are two tuples, (K,R) and (K,S), it can be combined into a tuple, (K, {R,S}).

Those obtained tuples are arranged into a process model. To arrange into a Petri-Net process model,
Alpha Miner defines those tuples to create places, activities, and arcs. There is an initial place, an ending
place, and a place between i and ActGroup2 for each tuple and arcs connect activities and places. For
example, if there are two tuples, (K,{R,S}), and ({R,S},O), there are four places (an initial place, an
ending place, and two places for each tuple) and four arcs that are used to build the process model. The
process model based on those two tuples is shown in Fig. 1. This process model has an XOR relationship
between activity R and activity S.

Fig. 1. A process model by the alpha miner.

2.2.2. Alpha++

Alpha++ improves Alpha Miner to depicting non-free choice in a process model forming a Petri Net
model. The non-free choice is depicted by adding implicit dependencies. Alpha++ forms implicit
dependencies by adding extra-arcs and extra-places to connect the activities. The steps of the Alpha++
algorithm is showed in Fig. 2. The first step and the second step are the parts of the Alpha algorithm.
Alpha++ adds the third and the four steps for creating non-free choice constructs.

Fig. 2. Steps of Alpha++ Algorithm

There are three rules to depict the implicit dependency as the form of a non-free choice. All implicit
dependencies are added into obtained tuples of Alpha Miner. The rule of depicting the dependencies
are:

 A first implicit dependency of task a and task b occurs if task a is a task of a parallel AND relationship
that has an explicit dependency with another activity and both of another activity and task b are tasks
of an XOR relation.

 A second implicit dependency of task a and task b occurs if task a is a former or latter activity of AND
relation and it has an indirect relationship with task b.

142 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

A third implicit dependency of task a and task b occurs if task a has an indirect relationship with task
b, both of task a and task b are activities of XOR relation and task a has different XOR relation with task
b.

2.2.3. Alpha#

Alpha# algorithm aims to detect invisible prime tasks from event logs. This algorithm is derived from
the Alpha algorithm. Alpha# divides the prime tasks into three types, SKIP, REDO, and SWITCH.
There are several steps of Alpha# algorithm for obtaining invisible prime tasks.

The steps of Alpha# algorithm are similar to the Alpha++ algorithm. The different is Alpha# adds
invisible tasks, meanwhile Alpha++ adds implicit dependencies. The steps of Alpha# can be seen in Fig.
3. There are several steps to detect invisible tasks by Alpha# algorithm.

Fig. 3. Steps of Alpha# Algorithm

First, Alpha# detects all mendacious dependencies between tasks and identifies redundant

mendacious dependencies. Based on the discovered mendacious dependencies, Alpha# algorithm
constructs invisible prime tasks. Besides, Alpha# algorithm also ensures that newly discovered
dependencies are not composed by the others. Then, Alpha# algorithm combines new casual and parallel

relations between invisible tasks with ones between invisible tasks and visible tasks. Finally, the set of
visible tasks and invisible tasks establishes a process model.

2.2.4. Alpha$

Alpha$ algorithm is a combination of alpha++ and alpha#. Alpha$ algorithm aims to construct a
process model including invisible tasks and non-free choice. Alpha$ algorithm uses Petri Net for

depicting the process model.

 There are several steps to construct a process model using alpha$ algorithm. The steps are shown in
Fig. 4. Alpha$ improves the rules of mendacious dependencies in a# algorithm by adding a rule to

generate invisible tasks involved in a parallel construct. The improvement rules can solve a condition
that cannot be handled by Alpha#.

Fig. 4. Steps of Alpha$ Algorithm

2.2.5. Graph-Based Algorithm for Parallel Process

Graph-Based Algorithm for Parallel Process [21] constructs a graph process model that contains

parallel relationships by implementing several rules in a graph-database. There are three parallel
relationships that are handled by the graph-based algorithm for the parallel processes, such as XOR, OR,
and AND. Table 4 describes the step-by-step of a graph-based algorithm for the parallel process.

Based on Table 4, there are several steps. The first step is storing an event log in the format of graph-
database. There is a storing process because the research cannot keep a log as a graph-database
automatically. Then, the research discovers XOR relationship. To depict a parallel relationship, a process
model needs Split sign and Join sign. The split sign is used to denote the beginning of a parallel
relationship, and the join sign is used to denote the end of a parallel relationship. XOR relationship

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 143
 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

occurs if several activities have only one outgoing activity. After that, the research discovers AND
relationship. The activities are included in AND relationship if the number of outgoing arcs of the
activity is the same as the number of outgoing arcs of its previous activity. Lastly, the OR relationship
is discovered following the condition, i.e. activities having the number of outgoing arcs less than the
total number of outgoing arcs of previous activity and more than 1 arc.

Table 4. Graph-based algorithm for the parallel process.

No Steps of algorithm

The input is an event log that contains names of activities, number of case or process, and execution time of activities

1 Storing event log in the format of graph database following rules in Table 7.

2 For a graph sequence that fulfills a format {node act1 – relation - node act2}:

if the number of the next node of node act1 is more than 1 and the number of the previous nodes, as well as the

next node, of node act2 is 1:

Creating XORSPLIT relation that connects act1 and act2

3 For a graph sequence that fulfills a format {node act1 – relation - node act2}:

if the number of the next node of node act1 is 1 and the number of the previous node of node act2 is more than 1:

Creating XORSPLIT relation that connects act1 and act2

3 for a graph sequence that fulfills a format { node act1 – relation - node act2 – relation - node act3}:

if the number of the next node of node act1 is more than 1, the number of the next node of node act3 is same

with that of node act1, and act1 is not the next node of both of node act2 and node act3:

Creating ANDSPLIT relation that connects act1 and act2 and ANDSPLIT relation that connects act1 and act3

4 for a graph sequence that fulfills a format { node act2 – relation - node act3 – relation - node act1}:

if the number of the previous node of node act1 is more than 1, the number of the next node of node act3 is same

with the number of the previous node of node act1, and node act1 has not ANDSPLIT relation:

Creating ANDJOIN relation that connects act2 and act1 and ANDJOIN relation that connects act3 and act1

5 for a graph sequence that fulfills a format { node act1 – relation - node act2 – relation - node act3}:

if the number of the next node of node act1 is more than 1, the number of the next node of node act3 is more

than 1 and less than that of node act1, and act1 is not the next node of both of node act2 and node act3:

Creating ORSPLIT relation that connects act1 and act2 and ORSPLIT relation that connects act1 and act3

6 for a graph sequence that fulfills a format { node act2 – relation - node act3 – relation - node act1}:

if the number of the previous node of node act1 is more than 1, the number of the next node of node act3 is more

than 1 and less than the number of the previous node of node act1, and node act1 has not ORSPLIT relation:

Creating ORJOIN relation that connects act2 and act1 and ORJOIN relation that connects act3 and act1

The output is a graph process model containing parallel relationships

2.2.6. Graph-Based Algorithm for Processes Containing Non-Free Choice

Graph-based algorithm for processes containing non-free choice is an expansion algorithm of a
graph-based algorithm for parallel processes. This algorithm adds the rule to obtain non-free choice in
the graph-based algorithm for parallel processes.

Table 5 shows the pseudocode of the graph-based algorithm for processes containing non-free choice.
This algorithm creates an implicit dependency between two activities if that activity is in the same process
and the beginning activity of the implicit dependency is executed before the end activity. This statement
can be seen in the fifth step. The final result of the algorithm is a graph process model.

144 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

Table 5. Graph-based algorithm for processes containing a non-free choice

No Steps of algorithm

The input is an event log that contains names of activities, number of case or process, and execution time of activities

1 Converting event log following rules in Table 7.

2 Creating a graph process model following rules in Table 4.

3 For a sequence that fulfills {node act1, relation XORJoin, node actafter}:

4 For a sequence that fulfills { node actbefore, relation XOR Split, node act2}:

5 For 2 nodes, initialized by actfirst and actsecond, that are obtained from the first list of Table 7:

6 If the name of node act1 is same with the name of node actfirst, the name of node act2 is same
with the name of node actsecond, the number of case of node actfirst is same with node actsecond

and the execution time of node actfirst is before the time execution of node actsecond:

7 Creating non-free choice relation that connects node act_1 and node act_2

The output is a graph process model containing a non-free choice

2.2.7 Graph-Based Algorithm for Processes Containing Invisible Task

Graph-based algorithm for processes containing invisible task is an expansion algorithm of a graph-
based algorithm for parallel processes. This algorithm adds the rule to obtain an invisible task in the
graph-based algorithm for parallel processes. Table 6 shows the pseudocode of the graph-based algorithm
for processes containing invisible tasks. This algorithm has specific steps. Those steps are executed after
the steps of the graph-based algorithm for parallel processes are executed. This algorithm will add
invisible task between two activities if the beginning activity has more than one outgoing relationship,
and the name of the relationships are different. The obtained process model is formed a graph process
model.

Table 6. Graph-based Algorithm for Processes Containing Invisible Tasks

No Steps of algorithm

The input is an event log that contains names of activities, number of case or process, and execution time of activities

1 Converting event log following rules in Table 7.

2 Creating a graph process model following rules in Table 4.

3 For a graph sequence that fulfills {node act_i, relation_a, node act_1}:

4 For a graph sequence that fulfills {node act_i, relation_b, node act_2}:

5 if relation_a has “SPLIT” fragment and relation_b has “JOIN” fragment:

6 Creating additional node naming Invisible_Task

7 Creating a graph sequence that fulfills {node act_i, relation_a, Invisible_Task}

8 Creating a graph sequence that fulfills {Invisible_Task, relation_b, node act_2}

7 Deleting relation_b that connects node act_i and node act_2

The output is a graph process model containing invisible tasks

2.2.8. Graph-Based Approach of Processes Containing Non-Free Choice and Invisible Task

The graph-based approach of processes containing non-free choice and the invisible task is a
combination of a graph-based algorithm of non-free choice and graph-based algorithm of an invisible
task. This algorithm applies the steps of an invisible task in the graph-based algorithm and then applies
steps of non-free choice. The obtained process model is formed in the graph process model.

All of the graph-based algorithms contain steps for converting event logs. The input of graph-based
algorithms is the event log that includes case identifications, activities, and execution times. The format
of the event log is CSV format. The output is a graph database. Table 7 shows pseudocode for converting
event logs. Even though the steps for converting event logs needs several times and costs, these steps
decrease the time complexity of graph-based algorithms.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 145
 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

Table 7. A pseudocode of constructing a graph-database based on the event log.

No Steps of algorithm

The input is an event log that contains names of activities, number of case or process, and execution time of activities

1 Creating two lists of nodes, i.e., 1) a list containing all activities and their information in the event log, and 2) a list

containing irredundant activities

2 For id a) =1 to maximal_id b):

3 act1 is a node that has id as its index storing and act2 is a node that has id+1 as its index storing

4 For actbefore and actafter as nodes in the second list:

5 if the number of case of act1 is same with that of act2, the name of act1 is same with that of actbefore,

and the name of activity of act2 is same with that of node actafter:
6 Creating SEQUENCE relation that connects node act1 and act2

The output is a graph database having SEQUENCE relation.
a) id = the index storing of activities in the first list.

b) maximal_id = the maximal index storing in the first list.

3. Results and Discussion

This research evaluates the graph-based algorithm and Alpha algorithm using four-event logs as the
data set. The detailed data set is shown in Table 8. The complex event log of all event logs is the event
log of port container handling. It is because this event log has a non-free choice and invisible tasks. All
of the processes in those event logs are complete and right processes, so there are no noises in there.
The performance metrics are calculated based on those event logs. Performance metrics that are used in
this paper are fitness and precision. The performance metrics and the time complexity are shown in
Table 9.

Table 8. Event log for evaluation.

The name of the

process

The

number

of cases

Issues

Noise

(Y/N)

XOR

(Number

Max

Branch)

OR

(Number

Max

Branch)

AND

(Number

Max

Branch)

Non-Free

Choice

Invisible

Task

Port container
handling process 200

v
(3 branches)

 v
v

(skip

condition)

N

Certificate

Formation process
50

v

(3 branches)
 N

Cotton Production
60

v
(2 branches)

v
(2 branches)

 N

The subprocess of

Retail (Selling

process and

Recording Item
Sales Journal)

50
v

(4 branches)
 N

Based on Table 9, all of the graph-based algorithms have less time complexity than Alpha Miner and
its expansions. Meanwhile, there are differences in terms of performance. The results of Alpha Miner
and Alpha++ have higher fitness and higher precision than those of graph-based algorithm of parallel
process and non-free choice. It is because Alpha Miner and Alpha++ can handle skip condition without
an invisible task, while graph-based cannot. Then, both of graph-based non-free choice invisible task
and Alpha$ has higher fitness and precision of the port event log because those algorithms can handle
non-free choice and invisible task. Alpha Miner and its expansions cannot handle OR relation, so in the
certificate event log, all of the Alpha algorithms have low fitness and precision. Meanwhile, graph-
database algorithms have high fitness and precision because those can handle OR relation. Based on
Table 9, the number of branches of OR relation affects the performance of graph-based algorithms.
Graph-based algorithms cannot handle OR relation with two branches because the number of arcs is
similar to AND relation in the graph-database. There is no problem to depict a process model of sub-
process of retail because the issue is only AND relation.

146 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

Table 9. Performance metrics and time complexity.

Methods Event Logs

Performance Metrics
Time

Complexity
Fitness a)

(0.0 – 1.0)

Precision b)

(0.0 – 1.0)

Alpha Miner

Port container handling

process
0.4 0.42

O(𝑛4)
Certificate Formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Alpha++

Port container handling

process
0.4 0.63

O(𝑛4)
Certificate Formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Alpha#

Port container handling

process
1.0 0.28

O(𝑛4)
Certificate Formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Alpha$

Port container handling

process
1.0 0.83

O(𝑛4)
Certificate Formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Graph-Based Parallel

Process

Port container handling

process
0.2 0.33

O(𝑛2)
Certificate Formation

process
1.0 0.5

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Graph-Based Non-Free

Choice

Port container handling

process
0.2 0.5

O(𝑛3)
Certificate Formation

process
1.0 0.5

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Graph-Based Invisible

Task

Port container handling

process
1.0 0.28

O(𝑛2)
Certificate Formation

process
1.0 0.5

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Graph-Based Non-Free

Choice and Invisible

Task

Port container handling

process
1.0 0.83

O(𝑛3)
Certificate Formation

process
1.0 0.5

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0
a) fitness = the metric of calculating the capability of delineating a log process into a model.

b) precision = the metric of calculating the suitability of extracted processes of a model with processes of a log.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 147
 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

4. Conclusion

Graph-based algorithms are algorithms for discovering a process model by storing both of activities
and their relationships in a graph database and processing the graph database into a process model.
Graph-based algorithms handle many aspects, such as parallel relationship, non-free choice constructs,
invisible tasks, and non-free choice in invisible tasks. This research evaluates graph-based algorithms in
the context of time complexity, fitness, and precision. The evaluation is comparing graph-based
algorithms and Alpha Miner and its expansions, such as Alpha++, Alpha#, and Alpha$. Graph-based
algorithms have less time complexity than Alpha Miner algorithm and its expansions. Then, out of all
graph-based algorithms, the graph-based algorithm of non-free choice and the invisible task has higher
fitness and precision. Meanwhile, all of the graph-based algorithms cannot handle OR relation with two
branches. For future work, the graph-based algorithm of non-free choice and invisible tasks can be
improved to handle OR relation with two branches. Then, the event log can be stored as a graph database
directly, e.g., using Neo4j.

References

[1] R. Sarno and K. R. Sungkono, “Coupled Hidden Markov Model for Process Discovery of Non-Free Choice
and Invisible Prime Tasks,” Procedia Comput. Sci., vol. 124, pp. 134–141, 2018, doi:
10.1016/j.procs.2017.12.139.

[2] R. Sarno and K. R. Sungkono, “Coupled Hidden Markov Model for Process Mining of Invisible Prime
Tasks,” Int. Rev. Comput. Softw., vol. 11, no. 6, pp. 539–547, 2016, doi: 10.15866/irecos.v11i6.9555.

[3] R. Sarno and K. R. Sungkono, “Hidden Markov Model for Process Mining of Parallel Business Processes,”
Int. Rev. Comput. Softw., vol. 11, no. 4, pp. 290–300, 2016, doi: 10.15866/irecos.v11i4.8700.

[4] K. R. Sungkono and R. Sarno, “Constructing Control-Flow Patterns Containing Invisible Task and Non-
Free Choice Based on Declarative Model,” Int. J. Innov. Comput. Inf. Control, vol. 14, no. 4, 2018, available
at: 10.24507/ijicic.14.04.1285.

[5] S. K. L. M. vanden Broucke and J. De Weerdt, “Fodina: A robust and flexible heuristic process discovery
technique,” Decis. Support Syst., vol. 100, pp. 109–118, 2017, doi: 10.1016/j.dss.2017.04.005.

[6] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “BPMN Miner: Automated discovery of
BPMN process models with hierarchical structure,” Inf. Syst., vol. 56, pp. 284–303, 2016, doi:
10.1016/j.is.2015.07.004.

[7] F. M. Maggi, C. Di Ciccio, C. Di Francescomarino, and T. Kala, “Parallel algorithms for the automated
discovery of declarative process models,” Inf. Syst., vol. 74, pp. 136–152, 2018, doi: 10.1016/j.is.2017.12.002.

[8] D. Chapela-Campa, M. Mucientes, and M. Lama, “Mining Frequent Patterns in Process Models,” Inf. Sci.,
vol. 472, pp. 235-257, 2019, doi: 10.1016/j.ins.2018.09.011.

[9] K. R. Sungkono and R. Sarno, “Patterns of fraud detection using coupled Hidden Markov Model,” in 2017
3rd International Conference on Science in Information Technology (ICSITech), 2017, pp. 235–240, doi:
10.1109/ICSITech.2017.8257117.

[10] R. Sarno, R. D. Dewandono, T. Ahmad, M. F. Naufal, and F. Sinaga, “Hybrid Association Rule Learning
and Process mining for Fraud Detection,” IAENG Int. J. Comput. Sci., vol. 42, no. 2, pp. 59–72, 2015,
available at: Google Scholar.

[11] S. Huda, R. Sarno, T. Ahmad, and H. A. Santoso, “Identification of Process-based Fraud Patterns in Credit
Application,” in 2014 2nd International Conference on Information and Communication Technology (ICoICT),
2014, pp. 84–89, doi: 10.1109/ICoICT.2014.6914045.

[12] A. S. Osses, L. Q. Da Silva, B. F. Cobo, and M. Arias, “Business process analysis in advertising: An extension
to a methodology based on process mining projects,” in Computer Science Society (SCCC), 2016 35th
International Conference of the Chilean, 2016, pp. 1–12, doi: 10.1109/sccc.2016.7836000.

[13] Z. He, Y. Du, L. U. Wang, L. Qi, and H. Sun, “An Alpha-FL Algorithm for Discovering Free Loop
Structures From Incomplete Event Logs,” IEEE Access, vol. 6, pp. 27895–27901, 2018, doi:
10.1109/ACCESS.2018.2840818.

https://doi.org/10.1016/j.procs.2017.12.139
https://doi.org/10.15866/irecos.v11i6.9555
https://doi.org/10.15866/irecos.v11i4.8700
https://doi.org/10.24507/ijicic.14.04.1285
https://doi.org/10.1016/j.dss.2017.04.005
https://doi.org/10.1016/j.is.2015.07.004
https://doi.org/10.1016/j.is.2017.12.002
https://doi.org/10.1016/j.ins.2018.09.011
https://doi.org/10.1109/ICSITech.2017.8257117
https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+Association+Rule+Learning+and+Process+mining+for+Fraud+Detection&btnG=
https://doi.org/10.1109/ICoICT.2014.6914045
https://doi.org/10.1109/sccc.2016.7836000
https://doi.org/10.1109/ACCESS.2018.2840818

148 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

[14] S. Akshay, L. Helouet, and R. Phawade, “Combining Free Choice and Time in Petri Nets,” in Proceedings
of the International Workshop on Temporal Representation and Reasoning, 2016, vol. 2016–Decem, pp. 120–
129, doi: 10.1109/TIME.2016.20.

[15] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining process models with non-free-choice
constructs,” Data Min. Knowl. Discov., vol. 15, no. 2, pp. 145–180, 2007, doi: 10.1007/s10618-007-0065-y.

[16] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu, “Mining Invisible Tasks in Non-free-choice Constructs,”
2015, pp. 109–125, doi: 10.1007/978-3-319-23063-4_7.

[17] A. P. Kurniati, G. Kusuma, and G. Wisudiawan, “Implementing Heuristic Miner for Different Types of
Event Logs,” vol. 11, no. 8, pp. 5523–5529, 2016, available at: Google Scholar.

[18] R. Sarno, W. A. Wibowo, Kartini, Y. A. Effendi, and K. R. Sungkono, “Determining Model Using Non-
Linear Heuristics Miner and Control-Flow Pattern,” TELKOMNIKA (Telecommunication, Comput.
Electron. Control., vol. 14, no. 1, pp. 349–360, 2016, doi: 10.12928/telkomnika.v14i1.3257.

[19] Z. Yan et al., “Decomposed and parallel process discovery: A framework and application,” Futur. Gener.
Comput. Syst., vol. 98, pp. 392–405, 2019, doi: 10.1016/j.future.2019.03.048.

[20] K. R. Sungkono and R. Sarno, “CHMM for discovering intentional process model from event logs by
considering sequence of activities,” in 2017 4th International Conference on Electrical Engineering, Computer
Science and Informatics (EECSI), 2017, pp. 1–6, doi: https://doi.org/10.1109/EECSI.2017.8239194.

[21] R. Sarno, K. R. Sungkono, and R. Septiarakhman, “Graph-Based Approach for Modeling and Matching
Parallel Business Processes,” Int. Inf. Inst. (Tokyo). Inf., vol. 21, no. 5, pp. 1603--1614, 2018, available at:
Google Scholar.

[22] R. Sarno, K. R. Sungkono, R. Johanes, and D. Sunaryono, “Graph-Based Algorithms for Discovering A
Process Model Containing Invisible Tasks,” Intell. Networks Syst. Soc., vol. 12, no. 2, pp. 85–94, 2019,
available at: Google Scholar.

[23] S. Velampalli and M. V Jonnalagedda, “Graph based knowledge discovery using MapReduce and SUBDUE
algorithm,” Data Knowl. Eng., vol. 111, pp. 103–113, 2017, doi: 10.1016/j.datak.2017.08.001.

[24] Q. Zhang, X. Song, Y. Yang, H. Ma, and R. Shibasaki, “Visual graph mining for graph matching,” Comput.
Vis. Image Underst., vol. 178, pp. 16–29, 2019, doi: 10.1016/j.cviu.2018.11.002.

[25] M. Iğde, Y. Kavurucu, and A. Mutlu, “Graph Representation of Relational Database for Concept Discovery,”
Procedia - Soc. Behav. Sci., vol. 195, pp. 1981–1989, 2015, doi: 10.1016/j.sbspro.2015.06.212.

[26] P. Braun, A. Cuzzocrea, C. K. Leung, A. G. M. Pazdor, and K. Tran, “Knowledge Discovery from Social
Graph Data,” Procedia Comput. Sci., vol. 96, pp. 682–691, 2016, doi: 10.1016/j.procs.2016.08.250.

[27] Z. Mohammadpoory, M. Nasrolahzadeh, N. Mahmoodian, and J. Haddadnia, “Automatic identification of
diabetic retinopathy stages by using fundus images and visibility graph method,” Measurement, vol. 140, pp.
133–141, 2019, doi: 10.1016/j.measurement.2019.02.089.

[28] Z. Chen, B. Jiang, J. Tang, and B. Luo, “Image Set Representation and Classification with Attributed
Covariate-Relation Graph Model and Graph Sparse Representation Classification,” Neurocomputing, vol.
226, pp. 262–268, 2017, doi: 10.1016/j.neucom.2016.12.004.

[29] R. Zhu, F. Dornaika, and Y. Ruichek, “Joint graph based embedding and feature weighting for image
classification,” Pattern Recognit., vol. 93, pp. 458–469, 2019, doi: 10.1016/j.patcog.2019.05.004.

[30] H. Yuan, J. Li, L. L. Lai, and Y. Y. Tang, “Graph-based multiple rank regression for image classification,”
Neurocomputing, vol. 315, pp. 394–404, 2018, doi: 10.1016/j.neucom.2018.07.032.

[31] Y. Shao, N. Sang, C. Gao, and L. Ma, “Spatial and class structure regularized sparse representation graph
for semi-supervised hyperspectral image classification,” Pattern Recognit., vol. 81, pp. 81–94, 2018, doi:
10.1016/j.patcog.2018.03.027.

[32] J. C. A. M. Buijs, B. F. Van Dongen, and W. M. P. van Der Aalst, “On the role of fitness, precision,
generalization and simplicity in process discovery,” in OTM Conferences (1), 2012, vol. 7565, no. 1, pp. 305–
322, doi: 10.1007/978-3-642-33606-5_19.

https://doi.org/10.1109/TIME.2016.20
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/978-3-319-23063-4_7
https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=Implementing+Heuristic+Miner+for+Different+Types+of+Event+Logs&btnG=
https://doi.org/10.12928/telkomnika.v14i1.3257
https://doi.org/10.1016/j.future.2019.03.048
https://doi.org/10.1109/EECSI.2017.8239194
https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=%22Graph-Based+Approach+for+Modeling+and+Matching+Parallel+Business+Processes%22&btnG=
https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=%22Graph-Based+Algorithms+for+Discovering+A+Process+Model+Containing+Invisible+Tasks%22&btnG=
https://doi.org/10.1016/j.datak.2017.08.001
https://doi.org/10.1016/j.cviu.2018.11.002
https://doi.org/10.1016/j.sbspro.2015.06.212
https://doi.org/10.1016/j.procs.2016.08.250
https://doi.org/10.1016/j.measurement.2019.02.089
https://doi.org/10.1016/j.neucom.2016.12.004
https://doi.org/10.1016/j.patcog.2019.05.004
https://doi.org/10.1016/j.neucom.2018.07.032
https://doi.org/10.1016/j.patcog.2018.03.027
https://doi.org/10.1007/978-3-642-33606-5_19

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 149
 Vol. 5, No. 2, July 2019, pp. 137-149

 Sarno & Sungkono (A survey of graph-based algorithms for discovering business processes)

[33] A. K. A. De Medeiros, B. F. Van Dongen, W. M. P. van der Aalst, and A. J. M. M. Weijters, “Process
mining: Extending the α-algorithm to mine short loops,” Eindhoven Univ. Technol. Eindhoven, pp. 1–25,
2004, doi: 10.1016/j.is.2011.01.003.

[34] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang, and J. Sun, “Mining process models with prime
invisible tasks,” Data Knowl. Eng., vol. 69, no. 10, pp. 999–1021, Oct. 2010, doi:
10.1016/j.datak.2010.06.001.

[35] W. M. P. Van Der Aalst and A. H. M. Hofstede, “YAWL : yet another workflow language,” vol. 30, pp.
245–275, 2005, doi: 10.1016/j.is.2004.02.002.

[36] E. Börger, “Approaches to modeling business processes : a critical analysis of BPMN , workflow patterns
and YAWL,” pp. 305–318, 2012, doi: 10.1007/s10270-011-0214-z.

[37] R. Sarno, Y. A. Effendi, and F. Haryadita, “Modified Time-Based Heuristics Miner for Parallel Business
Processes,” Int. Rev. Comput. Softw., vol. 11, no. 3, pp. 249–260, 2016, doi: 10.15866/irecos.v11i3.8717.

[38] R. Sarno, Kartini, W. A. Wibowo, and A. Solichah, “Time based Discovery of parallel business processes,”
Proceeding - 2015 Int. Conf. Comput. Control. Informatics Its Appl. Emerg. Trends Era Internet Things, IC3INA
2015, pp. 28–33, 2016, doi: 10.1109/IC3INA.2015.7377741.

[39] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: discovering process models from
event logs,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004, doi:
10.1109/TKDE.2004.47.

[40] A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst, “Discovering colored Petri nets from event
logs,” Int. J. Softw. Tools Technol. Transf., vol. 10, no. 1, 2008, doi: 10.1007/s10009-007-0051-0.

[41] R. Sarno, B. A. Sanjoyo, I. Mukhlash, and H. M. Astuti, “Petri Net model of ERP business process variation
for small and medium enterprises,” J. Theor. Appl. Inf. Technol., vol. 54, no. 1, pp. 31–38, 2013, available at:
Google Scholar.

https://doi.org/10.1016/j.is.2011.01.003
https://doi.org/10.1016/j.datak.2010.06.001
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1007/s10270-011-0214-z
https://doi.org/10.15866/irecos.v11i3.8717
https://doi.org/10.1109/IC3INA.2015.7377741
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1007/s10009-007-0051-0
https://scholar.google.co.id/scholar?q=Petri+Net+model+of+ERP+business+process+variation+for+small+and+medium+enterprises&hl=en&as_sdt=0,5

