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I. Introduction 

There are a lot of text mining methods that can be used to classify documents, including K-NN, 
Jaccard, and Cosine Similarity. Understanding the K-NN method can be seen in the literature [1]. 
while the understanding of the Jaccard method can be seen in the literature [2]. The third 
understanding of the Cosine Similarity method can be seen in the literature [3]. The cosine similarity 
method is a method that produces the highest performance value compared to the K-NN and Jaccard 
methods [4]. This can occur because the cosine similarity value between two vectors depends on the 
number of word frequencies of the test and training documents [5]. This method uses the 
normalization concept of vector length by comparing word frequency between two documents so 
that it can produce high accuracy values [6]. Before being classified, the document will go through 
the pre-processing stage.  

Pre-processing is a stage that functions to change data so that it is more structured and ready to 
be processed to the next stage [7]. The benefits of applying the pre-processing stage, which will help 
reduce noise, improve classification performance, and speed up the classification process [8]. In 
general, the pre-processing stages carried out for text mining consist of changing capital letters to 
lowercase letters, eliminating numbers and punctuation, stopword removal, and stemming [9]. From 
several stages, the most regularly applied pre-processing is stopword removal  [10]. This stage is 
done to eliminate words that do not affect the classification process [11] [12].   

Besides using the tuning Tala dictionary, deletion of words can be done with: Term Frequency 
Filtering is done to reduce dimensions by reducing all words that have a specific frequency, 
Supervised Word Removal is done to control the stoplist because the creation of bigram causes 
invalid words to be entered in the stoplist list [13], and Deterministic Finite Automata (DFA) 
functions to improve the performance of an algorithm by detecting whether a word-finding includes 
a stopword or not [14]. 
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This research focuses on the stopword removal pre-processing technique on the economic 
dictionary with frequency-based. The application of stopword removal based on the economic 
dictionary aims to eliminate important words related to the world economy. This stage is done so 
that the word is not registered in the frequency-based stopword removal dictionary anymore. 
Whereas, frequency-based stopword removal dictionary is made to make the term with certain 
frequency documents that appear in the document as a stopword dictionary because the term with a 
certain frequency is assumed to be not important words and it will provide less relevant results on 
the calculation 

 

II. Method 

The classification of Artikel jurnal ekonomi by adding frequency-based stopword removal was 
carried out in this study. The stages consisted of collecting datasets, pre-processing to change the 
data to be more structured, calculating VSM-based Cosine Similarity values, and testing algorithms 
using k-fold cross-validation. 

 

A. Research Dataset 

The dataset used in this study is Artikel Jurnal Ekonomi Universitas Negeri Malang of 
Indonesian language. The datasets were collected in March 2019 consisting a total of 126 data 
containing titles and abstracts. The datasets of Artikel Jurnal Ekonomi were grouped into four labels; 
(1) Ekonomi Bisnis, (2) Pendidikan Akuntansi & Bisnis, (3) Pendidikan Bisnis & Manajemen, and 
(4) Pendidikan Akuntansi. 

Table 1 displays the proportion of label members or categories based on their fields. 

Table 1.  The initial proportion of the number of dataset- labeled members 

Label Number of Instances 
Percentage 

(%) 

Ekonomi Bisnis 
29 23 

Pendidikan Akuntansi & Bisnis 31 25 

Pendidikan Bisnis & Manajemen 30 24 

Pendidikan Akuntansi 36 28 

 

As much as 126 Artikel Jurnal Ekonomi of Indonesian language were used as test and training 
documents. The following are examples of documents taken from each field of each 1 document. 
The table of sample documents can be seen in Table 2. 

Table 2 displays an example document consisting of label attributes and title & abstract. 

Table 2.  The initial proportion of the number of datasets- labeled members 

Label Title and Abstract 

Ekonomi Bisnis 

PENGARUH KUALITAS PRODUK DAN LAYANAN TERHADAP  
LOYALITAS PELANGGAN COFFEE SHOP Penelitian ini bertujuan 
untuk menganalisis pengaruh kualitas produk dan layanan terhadap 
loyalitas pelanggan, dan kepuasan pelanggan sebagai mediasi. Populasi 
yang digunakan dalam penelitian ini adalah pelanggan DW Coffee yang 
telah datang lebih dari satu kali pada rentang usia 20-30 tahun, dengan 

metode non-probability sampling sebanyak 100 orang. 

Pendidikan Akuntansi & Bisnis 

PENGEMBANGAN MULTIMEDIA INTERAKTIF UNTUK PERUSAHAAN 
JASA Penelitian pengembangan multimedia interaktif pada mata pelajaran 
akuntansi Pokok Bahasan Siklus Akuntansi Perusahan Jasa ini bertujuan 
untuk memaksimalkan media yang telah disediakan oleh sekolah, dan 
diharapkan dapat memotivasi siswa dalam belajar sehingga tujuan 
pembelajaran dapat tercapai. 
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Label Title and Abstract 

Pendidikan Bisnis & Manajemen 

Pengaruh Penerapan Presensi Sidik Jari (Fingerprint) terhadap Kinerja 

Guru  Melalui Motivasi Kerja di SMA Negeri 5 Malang Hasil penelitian ini 
menunjukkan (1) Penerapan presensi sidik jari (fingerprint) termasuk 
dalam kategori sangat baik, motivasi kerja guru termasuk dalam kategori 
tinggi, dan kinerja guru termasuk dalam kategori baik 

Pendidikan Akuntansi 

PENGARUH PERSEPSI SISWA TENTANG KOMPETENSI 
PROFESIONALISME GURU TERHADAP MOTIVASI BELAJAR DAN 
PRESTASI BELAJAR MATA DIKLAT AKUNTANSI Penelitian ini menguji 

pengaruh persepsi siswa tentang kompetensi profesionalisme guru terhadap 
motivasi belajar dan prestasi belajar mata dilat akuntansi. Penelitian ini 
termasuk penelitian kuantitatif dengan metode penjelas. 

 

B. Pre-processing 

The function of pre-processing can be seen in the literature[15]. There were three (3) stages of 
pre-processing in this study; (1) case folding, (2) stopword removing based on economic dictionary, 
and (3) frequency-based stopword removing. 

The first step was case folding, which was done by changing uppercase letters to lowercase 
letters [6]. And followed by removing punctuation characters (! @ # $% ^ & *> <?) and numbers 
(0123456789) in the document [8]. 

The second stage was a stopword removing based on the economic dictionary that served to 
eliminate words related to the word economy. Thus, important words related to the word economy 
were not included in the stage of making frequency-based stopword removal dictionaries. The 
Economic Dictionary used consisted of 331 words. The steps taken were: 

• Tokenizing documents and dictionaries 

• Matching all words in the documents with the words in the economic dictionary 

o If the word in the document is the same as the word in the economic dictionary, the word 
in the document will be deleted, 

o If the word in 

o  the document is not the same as the economic dictionary, it can be assumed that the 
word will not affect the classification process. 

• They are recombining the decapitated word into a complete sentence. 

The third stage was frequency-based stopword removal, which functioned to delete words on the 
test document based on the frequency term. The important word related to economics had already 
been described in the previous process so that the word was not included in the list of frequency-
based stopword removal dictionary. The steps taken were: 

• Counting the number of the terms’ occurrences of the training document. 

• Building stopword removal dictionaries based on the frequency terms in training documents. 

• Decapitating sentences in test documents and dictionaries based on tokenizing. 

• They are matching the frequency-based stopword removal dictionary with terms contained in 
test documents.  
o If the term is the same as the frequency-based stopword removal dictionary, the term in 

the test document will be deleted. 
o The term is assumed to be an important word that will influence the classification 

process.  

• They are recombining the decapitated words into a complete sentence. 
 

C. VSM Approach 

At this stage, the document was represented by a vector using the VSM approach. The 
definition of the VSM approach can be seen in the article [16]. The function of VSM is to convert 
documents into numbers so that we can calculate the weight [17]. Each different word term will be 

represented by , whereas d  is the appropriate weight  in the document d [18]. With 
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VSM approach, the calculation of weight from each term in the training document and test 
documents was carried out using the TF-IDF weighting method. The TF-IDF has the main ideas 
that can be seen in the literature [19]. To determine the value of TF-IDF, two elements were used; 
TF and IDF. There were three (3) stages to determine the value of TF-IDF weighting, namely: 

• Calculation of TF (Term Frequency) 
It was done to calculate the frequency of term i in document j [20]. The formula for 
calculating TF can be seen in the literature[15]. 

• IDF Document (Inverse Dokument Frequency) 
IDF reflected the distribution of terms contained in the literature [19].  

• TF-IDF 
The TF-IDF value was obtained by combining both values of TF and IDF. The TF-IDF 
weighting scheme can be seen in the literature [21] [22]. 
 

Whereas, to classify documents using the Cosine Similarity method. Cosine Similarity method 
uses a calculation based on a vector space similarity measure. The similarity value between two 
documents stated in two vectors using keywords from a document [2]. The equation for calculating 
cosine similarity can be seen in the literature [23]. 

The output of the Cosine Similarity method is a similarity value with a range of zero to one. If 
the similarity value is closer to one, it means that the level of document similarity is high. 
Conversely, if the similarity value is close to zero, it means that the level of similarity between the 
two documents is low [24]. 

D. Testing Method 

The stage of testing the Cosine Similarity method was carried out in two (2) stages, namely: 

• K-Fold Cross Validation 

The definition of the K-Fold Cross Validation method can be seen in the article [25]. The way 
the Cross Validation method works was by dividing the data into almost the same set of k 
parts. In each repetition, a set of k was used as test data and the remainder was used as 
training data. The process was repeated as many as k until all the data alternately changed into 
random test data [26] [27]. The output of this step was a k estimate of the test error which was 
then averaged to get the estimated value of the expected testing error [28]. 

• Confusion Matrix 

The definition of confusion matrix can be seen in the literature [29].  At this stage there is an 
accuracy test of the algorithm used to classify the data. Accuracy test was done by using the 
confusion matrix method. Testing was done using equations: 

o Accuracy 

The value of the method accuracy was obtained by dividing the number of true 

documents to true value with the number of all classified documents [11] [30]. 

o True Positive Rate (Recall) 

Recall was done through the calculation of the ratio of true positive. The recall 
calculation formula can be seen in the literature [15]. 

o Presision 

Presision was calculated from the ratio of the amount of data in the true dataset that 
is true positive to the number of true positive data and the number of false negative 
data. The precision calculation formulas can be seen in the literature [15]. 

 

III. Result 

In the tests that have been done by removing several different word frequencies, the comparison 
results of the number of words before, after stopword removal with tala dictionary and after 
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frequency-based stopword removal are obtained. A comparison of the number of words can be seen 
in Table 3. 

Table 3 displays the comparison of the number of words before, after stopword removal with tala 
dictionary and after frequency-based stopword removal with a specified frequency limit of less than 
60. 

Table 3.  Comparison of  the Number of Words 

Words 

Word 

Numbers 

Before 

Word Numbers After 
With Tala  

dictionary 

With 

dictionary 

based 

frequency  

pengaruh kualitas produk dan layanan terhadap  loyalitas 
pelanggan coffee shop penelitian ini bertujuan untuk 
menganalisis pengaruh kualitas produk dan layanan 
terhadap loyalitas pelanggan  dan kepuasan pelanggan 
sebagai mediasi  populasi yang digunakan dalam 

penelitian ini adalah pelanggan dw coffee yang telah 
datang lebih dari satu kali pada rentang usia tahun  
dengan metode non probability sampling sebanyak orang 

56 32 25 

 

Based on Table 3, the number of words before frequency-based stopword removal was 56 words. 
After stopword removal with tala dictionary the remaining 32 words. We can assume that because 
only deleted words are basic words. And after being executed with frequency-based stopword 
removal with a specified frequency limit, only 25 words remain. This can be assumed because the 
words that are displayed are not just basic words. Not only for less than 60 frequencies, testing was 
done by removing frequencies that are less than 30, 40, 50, and 70. Comparison of the remaining 
words from each frequency can be seen in Table 4. 

Table 4 displays the comparison of the remaining words before and after stopword removal 
based on the specified frequency. 

Table 4.  Comparison of the Remaining Words Based On Frequency 

Before  

After  

Frequency 

30 40 50 60 70 

56 32 27 27 25 24 

 

Based on Table 4, the difference in the number of words remaining from each set frequency 
limit. This can be assumed because the number of dictionaries on each boundary frequency varies. 
So that it can affect the number of words remaining after being matched with a dictionary frequency 
based on the prescribed limits. 

In addition to knowing the number of words remaining, the purpose of this study is to know the 
value of accuracy, precision, recall and the results. The results of the confusion matrix can be seen in 
Table 5. 

Table 5 displays an example of confusion matrix by removing terms that have a frequency of less 
than 60. 

Table 5.  Sample of Confusiin Matrix Calculation 

Predicted Class 

 
Real Class 

0 1 2 3 

0 27 1 1 1 

1 1 17 5 8 
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Predicted Class  
Real Class 

0 1 2 3 

2 1 3 15 5 

3 0 10 9 22 

 

Not only term with frequency > 60 was removed, terms with frequencies less than 30, 40, 50, and 
70 were deleted. The results comparison of accuracy, precision and recall can be seen in Table 6. 

Table 6 displays the result of testing performance based on the frequency that was deleted. 

Table 6.  Test Result Based on the Frequency That Has Been Deleted 

Deleted Frequency Limit 

( < ) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

30 59,52 62,28 61,94 

40 60,31 61,06 60,03 

50 61,90 62,28 61,94 

60 64,28 64,76 65,24 

70 57,93 58,48 58,27 

 

Based on Table 6, the highest number of accuracy results from deletion of frequency that is less 
than 60. Frequency less than 60 is used as a treshhold value. Whereas, accuracy decreases when 
terms with frequencies less than 30, 40, 50, and 70 are deleted. We can assume that when the term 
with frequency < 30 is deleted, the deleted term becomes too little so the accuracy value decreases. 
Meanwhile, we can assume that the accuracy result of term removal with frequency < 70 decreases 
because too many terms are deleted causing a decrease in accuracy value. 

The results of this study can be compared with the values of accuracy, precision and recall testing 
of the cosine similarity method. 

Table 7 displays the difference between the accuracy comparison of the Cosine Similarity 
method with stopword removal with Tala dictionary and the accuracy of the Cosine Similarity 
method that has been combined with frequency-based stopword removal. 

 

Table 7.  Result of Comparative Performance Accuracy, Precision, and Recall with Previous 

 

Cosine Similarity 

with stopword 

removal with Tala 

dictionary 

(%) 

Cosine Similarity 

with Stopword 

Removal based 

frequency 

(%) 

Accuracy 61,37 64,28 

Precision 60,18 64,76 

Recall 
64,52 65,26 

 

Based on Table 7, the value increases of accuracy, precision and recall are 2.91%, 4.58% and 
0.74%. It seems that the increase in accuracy value is still not significant. This is because there are 
still too many words left after the frequency-based stopword removal stage that can affect the 
document classification process.  

In addition to performance accuracy, precision, and recall, the execution time of the classification 
process was compared as well. Comparison of the execution time can be seen in Table 8. 
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Table 8 displays the comparison of the execution time of the Cosine Similarity method which has 
been combined with stopword removal based Tala dictionary with the Cosine Similarity method 
which has been combined with frequency-based stopword removal. 

 

Table 8.  The Result of the Execution Time With Previous Research 

 

Cosine Similarity 

With Stopword 

Removal Based Tala 

Dictionary 

(S) 

Cosine Similarity With 

Stopword Removal Based 

Frequency 

(S) 

Execution Time Pre-

Processing 
0,650 61,6266 

Execution Time 

Classification 
0,791 0,05033 

 

Based on Table 8, the required execution time in pre-processing the Cosine Similarity method 
with stopword removal based Tala dictionary is faster; 0.650 s. It can happen because there are not 
many pre-processing steps in the basic method. Meanwhile, the Cosine Similarity method with 
frequency-based stopword removal requires an execution time of 61,6266 s. The execution time at 
the combined pre-processing stage is longer because more stages are carried out. However, the 
execution time in the classification of the combined Cosine Similarity method with frequency-based 
stopword removal is faster because the number of words is matched slightly. The execution time 
needed is only 0.05033 s so that it can speed up the classification process. Meanwhile, the execution 
time required for classification in the basic Cosine Similarity method is longer. It happens because 
the number of words that need to be matched are a lot. The execution time required is 0.791 s. 

IV. Conclusion 

This study concludes that adding frequency-based stopword removal can improve the 
performance of the Cosine Similarity algorithm. This study resulted in accuracy value of 64.28%. 
Compared with the previous research which produced accuracy value of 62.70%, the accuracy 
increase in this study was approximately 2%. Meanwhile, the execution time is needed when the 
classification process is faster, which is 0.05033 s. However, the results of this study are considered 
to be less than optimal. It happens because the term frequency is not evenly distributed so that an 
increase in the value of accuracy is still not optimal. Therefore, the researchers suggest adding 
stemming to future studies. 
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