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ABSTRACT 
 

This paper describes a strategy for efficiently constructing the demand servicing process of an Integrated 
Communication Network (ICN). Performance analysis, service problems, and relief action of ICNs are provided. 
End-to-end statistical performance parameters are first used to measure network compliance over a given fixed 
period. If any of the performance objectives are not satisfied, a servicing function determines the corrective action 
required to maintain service quality. The advantage of this network model is its efficiency and flexibility in handling 
a variety of services and applications. Enhanced network service and ICN traffic problems are solved using 
adaptive queuing models. 
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INTRODUCTION 
 

n Integrated Communication Network (ICN) carries both voice and data traffic in a packet format on 
a common set of facilities and switches. Figure 1 depicts a schematic diagram of an ICN. The 
network consists of two categories of components: the Access Interface (AI) components and the 

Packet Cross Connect System (PCCS). The AI provides access points to the network and serves as the system’s 
packetizer and its depacketizer. The PCCS consists of the system nodes; as such, it provides the switching elements 
and serves as the cross-connect points for linking traffic moving through the system. 
 
Designing, deploying, and operating an ICN service based system requires a series of centralized and interrelated 
network administration functions. These functions include forecasting and planning, demand servicing, and 
congestion management.  Forecasting and planning functions provide the long-term strategy for network evolution 
to meet future traffic demands. Demand servicing monitors the network’s performance, determining corrective 
actions for maintaining service quality. This real-time congestion and control management ensures maximum 
network operating efficiency during congestion periods. These congestion periods result from over loads and failure 
and are similar to the network flows described by Ahuja, Magnanti and Orlin (1993), Todinov (2013), and 
Nicholson and Zhang (2016). 
 
Collection of raw measurements for demand servicing occurs at the Access Interfaces (AIs) (as noted previously, 
these are the network’s access points). The Packet Cross Connect System (PCCS) is the switching element, which, 
as a telecommunications packet-switching network, has been considered by Dumas and Schwartz (2009) and 
Hochfelder and Misha (1999). 
 
In the general case, for both localized and global servicing, the service problem’s severity determines the applicable 
control action. Initialization of global controls occurs whenever localized control is not effective, or there is high 
network traffic patterns. The subject of this paper are these global controls, involving routing changes and network 
resizing. Based on a queuing network model (Warland, 1998) and (Brooks Kar & Mendonca, 2016), an ICN model 
providing efficient service processing is constructed. 
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Figure 1. A Model of an ICN 
 

 
 
 

ICN QUEUING MODEL 
 

Using a queuing model, Figure 2 shows three (3) queues for services by each node. Here, queue 0 handles the 
signaling and control packets, queue 1 handles voice packets, and queue 2 handles data packets. As the signaling and 
control packet queue, queue 0 has non-preemptory priority over the dynamically served queues 1 and 2. 
 
 

Figure 2. Multiplexer Service Scheme at each Switch 
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A routing algorithm (Dib, Manier, Moalic & Caminada, 2017) is used to establish the appropriate path along a 
network; however, any single node can be routed by no more than one High-Speed Link (HSL) group to any other 
given node. It is the information in the packet header, which includes priority and first intermediate node field that 
guides the packet through the network. Here, the network routing administrator loads it into the nodes as part of the 
provisioning process. For routing purposes, we now consider the grade of service criteria for the voice and data 
traffic. In an ICN, failure to meet a grade of service criteria reveals itself in end-to-end packet degradation (speed or 
quality), which indicates that servicing action must be initiated. Thus, the first step in this servicing action is to 
locate the “problem” path. Once this is located, the “problem” link within this path is then determined. 
 

LOCATING THE PROBLEM LINK WITHIN THE PROBLEM PATH 
 
A problem path is one in which end-to-end performance for either or both voice and data do not meet their specified 
criteria. Location of the problem link in this path can be determined using the following steps: 
 
Step 1: Calculate the component objectives of voice and data for each link along that path using the following 
formula. 
 

𝑄"#$ =
&'()*(+

,
 (Eq.1) 

where 
 
Qdol	 =	 Queueing delay objective of link,	
Do	 =	 End-to-end delay objective,	
Pd	 =	  Propagation delay,	
S	 =	 Switching delay,	
N	 =	 Number of nodes in the path	
 
Note that a queuing delay through the problem path can occur at N places; confinement to a single node within the 
problem path need not occur. 
 
Step 2: Compare the queueing delay for data and voice for each problem path link with their component objectives, 
as provided in Eq. 1. Using an M/M/1/K queueing system, the delay behavior can be approximated (Gross & Harris, 
1998). A determination is then made of the link or links that do not meet their objective(s) by comparing the current 
performance of each link with their component objectives. These are the problem links. 

 
CORRECTIVE ACTION 

 
Corrective action involves routing changes and possibly network resizing. If routing changes are insufficient to 
solve all of the performance problems, then a new determination is made of the required number of links for each 
group to meet all of the relevant performance objectives for voice and data.  Formulating this as a nonlinear 
optimization problem, the required network routing and sizing to clear the path degradation can be determined. Due 
to the complexity of this approach, we have developed a simpler algorithm to solve the service problems. To 
develop this algorithm, a spare bandwidth calculation and path selection methodology is first required. 
 

SPARE BANDWIDTH CALCULATION 
 
Calculating a system’s spare bandwidth requires determining the traffic through a high-speed link (HSL) for a time-
constant of one hour, over a fixed period. Letting 	l. represent the 95th percentile hourly traffic, in bits per second, 
going through an HSL designated as b, then the spare bandwidth for this HSL, denoted as 𝐵𝑊., is simply the 
difference between the provisioned bandwidth for the link and 	l.. Letting  𝑃𝐵𝑊. denote the provisioned bandwidth 
of the HSL, in bits per second, the relationship between these variables is: 
 

𝐵𝑊. = 𝑃𝐵𝑊. − 	l. (Eq.2) 
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PATH SELECTION METHODOLOGY 
 

The path selection algorithm (Ahuja, et al. 1993) and (Panaousis, et al. 2017), determines the path that achieves 
near-optimum resource utilization for each path from its source to its destination. A path is the set of links and nodes 
traversed through the network. The objective is to find the candidate link or path that has enough spare bandwidth to 
support the total bandwidth requirement of rerouted traffic. There are two components in this path selection:  
 

• Determination of the set of nodes to be traversed in the network 
• Selection of an HSL in each of the HSL groups that make up the path (an HSL group consists of one or 

more HSLs between two adjacent nodes).  
 
In this path selection, the goal is to distribute traffic load, in terms of bandwidth, evenly among all HSLs in an HSL 
group. This path selection depends on several factors, including: 
 

• The bandwidth requirement of the path 
• The average spare bandwidth available (per HSL) of each HSL group in each candidate path, 
• The spare bandwidth available on each HSL in each candidate path, 
• The length of each HSL in each candidate path, and  
• The number of nodes traversed.  

 
The first procedure for finding the required path is to identify a set of candidate paths between the two end nodes. 
The next step is to find links in the same HSL group: When traffic rerouting on one of these links is not possible, 
investigation of a direct path is undertaken. Should rerouting on a direct path not be possible, a search of two-link 
candidate paths between end nodes commences. Examination of three-link candidate paths begins when no two-link 
path are found. Finally, additional trunks are required when there are no three-link paths available. For paths 
involving more than two nodes, the following steps will determine a path.  
 
Step 1: A selected path has the least cost metric for HSL groups (length divided by spare bandwidth). Among the 
qualified paths, the selected path is the one having the least cost in terms of HSL groups. 
 
Step 2: Individuals HSLs from the HSL groups of the selected path are determined on a cost metric for the HSLs. 
Examination of other qualified paths begins only if there is not enough spare bandwidth on any HSL group in the 
selected path. This examination continue until a path on every group with spare bandwidth is found; otherwise, 
trunks are added.  
 

THE SERVICE ALGORITHM 
 
Having determined the required spare bandwidth and a path that can provide this bandwidth, the derivation of an 
algorithm for solving the service problem follows: 
 
Letting 
 
ρ4	 =	 utilization factor of voice transmission,	
ρ5	 =	 utilization factor of data transmission,	

 
we allow a link utilization factor of 90%, that is 
 

ρ4 + ρ5 = .90 
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Keeping total link occupancy at 90% ensures the delay for voice and the mean data packet delay will satisfy their 
component objectives, as calculated from Eq. 1. If the utilization factor for the problem link is greater than one, then 
the only solution is to reroute traffic away from the problem link. Resolving the over-one utilization problem 
requires moving loads rom the problem link. 
 

DETERMINING LOADS TO BE REMOVED FROM THE PROBLEM LINK 
 
The determination of problem link loads for removal uses the following notation: 
 

l*
v and l*

d = the amounts of voice and data traffic, respectively, that can be carried on a problem link while 
meeting voice and data performance objectives. 

l*
v and l*

d = the amounts of voice and data traffic, respectively, that can be carried on a problem link while 
meeting voice and data performance objectives. 

 
Thus, the overload for data is 
 

𝜆" − 𝜆 ∗", 
 
and the overload for voice is 
 

𝜆< − 𝜆 ∗< 
 
By keeping the total link utilization at 90% (	ρ4 +	 ρ5= 90%), the delay for voice and data will meet their component 
objective, with a safety factor of 10%. When the actual utilization of link exceeds 90%, that is, (	ρ4 +	 ρ5= a), then 
the overload for voice becomes 
 

𝑝4/𝑎 ∗ 𝑎 − .90 = 𝑝4
𝑎 − .90
𝑎

, 
 
and the overload for data packets becomes 
 

𝑝5/𝑎 ∗ 𝑎 − .90 = 𝑝5
𝑎 − .90
𝑎

, 
 
both of which are proportional to their current utilizations, ρ4 and ρ5, respectively.  
 
The first choice to reduce these overloads is to reroute the extra loads from the problem link to a target path that can 
accommodate the overload.  
 

DETERMINING A TARGET PATH 
 
To reroute traffic, the HSL group that directly connects two nodes, designated here as node A and node Z is first 
displayed, if such a group is available. Where there is sufficient spare bandwidth on one or more HSLs in the group, 
chose the direct HSL group having the highest spare bandwidth. Otherwise, make successive path locations, either 
locating a suitable target path or determining that no such links are available. These determinations follow, in the 
order indicated: 
 

1. Same HSL group selection 
 
Reroute the overload from the problem link to another link in the same HSL group, if the candidate link has enough 
spare bandwidth. Then the amount of load that the candidate link can support is equal to the spare bandwidth of the 
link dived by the average bandwidth required by a path.  
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2. Direct Path Selection 
 
To reroute traffic, the HSL group that directly connects the starting and ending nodes of the problem path.is 
displayed, if such a group is available. If there is sufficient spare bandwidth on one or more HSLs in the group, 
chose the direct HSL group with the HSL that has the highest spare bandwidth in the selected. 
 

3. Two-Link Path Selection (3 nodes) 
 
Choosing from a set of three-node paths in which there is sufficient spare bandwidth, requires the following two 
steps:   
 
Step 1: First, the nodes of a path are determined based on the cost metric 𝑐B for HSL group g, which includes two 
parameters: the average spare bandwidth of an HSL in an HSL group that has spare bandwidths, and the distance 
between two nodes. Letting the cost metric in path g be denoted by 𝑐B, we have. 
 

𝑐B =
"C

DEFGC
C  (Eq.3) 

 
where 
 
𝑑B = the length of the HSL group, 
𝐵𝑊I<B

B  = the average spared bandwidth of the HSL group 
 

As shown in Eq.3, the cost metric, 𝑐B, is proportional to the length of the HSL group and inversely proportional to 
the available average spare band width available in the group. Note that 𝑑B for HSL group g is the same as 𝑑4 for 
HSL 1 in HSL group g. 𝑐B reflects the undesirability of using HSL group g as part of the path for the traffic.  Thus, 
the lower the value of 𝑐B (which may result from short distance and/or high average spare bandwidth), the more 
desirable group g is within its HSL group. 
 
The total cost metric for a path, 𝐶K, is simply the summation of the costs of its constituent HSL groups, 𝑐B,  
 

𝐶K = ΣBMK𝑐B (Eq.4) 
 
The selected path is the one having the smallest cost metric for each path under investigation. 
 
Three-Link Path (4 nodes) 
 
If no eligible two-link paths (three-nodes) exist, repetition of the above procedure proceeds for a set of four-node 
paths. Trunks are added if there are no four-node path with sufficient spare bandwidth.  
 

ADDING TRUNKS 
 
When the rerouting of loads from the problem path to another path is not achievable, the only choice is to add 
additional network trunks. The cost of an additional trunk is proportional to the length of the trunk; therefore, to 
minimize cost, the cost of adding each trunk in the candidate group is determined, followed by selection of the least 
expensive trunk addition. The following steps achieve this:  
 

Step 1: Calculate the cost of adding trunks within the problem link group. 
Step 2: Consider the cost of adding trunks in the direct path.  
Step 3: Compare the cost of additional trunks in two HSL paths, and select the smallest cost trunk. 
Step 4: Select the trunk having the smallest cost of each of the previous steps and add a sufficient number of trunks 
to accommodate the overload. 
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The additional trunks in a target HSL group can be determined by: 
 

𝑌 = .
#∗O

− 𝑡 (Eq.5) 
 
where 
 
y = number of trunks to add, 
b = maximum bits per second load offered to the HSL group, 
o = objective utilization for one trunk in the HSL group, 
s = speed of a trunk in the HSL group, 
t = total available trunks in the HSL group. 
 
Once the added trunks are determined, load rerouting takes place. This rerouting is from the problem link to the 
group with the newly added trunks, with the load being equally distributed among the links in this group.  
 

AN EXAMPLE 
 

Figure 3 illustrates a network consisting of 4 nodes. Assume that the length of HSL group 1, group 2, group 3, group 
4, group 5, and group 6 are 1000, 500, 1500, 900, 400, and 300 miles, respectively. For these distances, the 
utilization factors for both (ρ4) and data traffic (ρ5) are as shown in the figure. 
 
 

Figure 3. 
 

 
 
In Figure 3, problem path is 1-2-3-4 and the problem link is link 1 of group 2, because   ρ4+	ρ5=1.15.  The objective, 
as previously noted, is to keep the total utilization within a link at or below 90%, which ensures that delays for voice 
and data are within their component objectives. The removal of 25% utilization from this path achieves this 
maximum 90% utilization goal. For the data shown in Figure 3, this reduction should consist of 15% voice call 
[.7/(1.15*.25)=.15] and 10% data [(45/(1.15*.25)=.1], utilization. 
 
Providing link 2 of group 2 with a 90% utilization factor is accomplished by rerouting 10% data utilization from link 
1 of group 2 to link 2 of group 2. Here, the utilization factor of group 3 remains the same. Due to the delay 
sensitivity of voice traffic, rerouting 5% of voice traffic from 1-2-3-4 to group 4 reduces the utilization factor of path 
1-2-3-4 by 5%. Rerouting of the remaining 10% of voice traffic from the problem link then takes place. Candidate 
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paths for this rerouting are 1-2-4 and 1-3-4. Both paths have enough spare capacities to support 10% additional 
voice traffic. Using Eq. 4 the cost metric for path 1-2-4, C124, is 1000/.30+400/.10=7333, and the cost metric, C134, 
for path 1-3-4 is 300/.20+1500/.30= 6500. Thus, path 1-3-4 becomes the selected path because of its lower cost 
metric. 
 
Whenever there is insufficient spare capacities in the network to support the extra loads of the problem link, the cost 
of adding an additional HSL in the candidate groups is determined, with selection of the least expensive addition. In 
our example (Figure 3), the problem link is link 1 of group 2. The following steps are undertaken whenever there are 
insufficient capacities for rerouting traffic to reduce a link’s utilization to 90%:   
 
Step 1: Determine the cost of adding an HSL in the same group, c2=500*c 
Step 2: Determine the cost of adding HSL in group 5, c5=400*c 
Step 3: Determine the cost of adding HSL in group 4, c4=900*c 
Step 4: Determine the cost of adding HSL in group 6, c6=200*c, 
 
where 
 
c = the cost per mile of an HSL 
 
In our example, meeting the 90% criteria requires rerouting 25% utilization from link 1 of group 2. Thus, if all c’s 
are equal, then alternative 4 has the least cost. Therefore, adding one HSL has to group 6 in handles the extra load of 
path 1-2-3-4. The loads must them be distributed evenly within the group 6 links. 
 
Should two groups in a path be overloaded (group 2 and group 3 in path 1-2-3-4), then the following alternatives 
must be considered: 
 
Step 1: The cost of adding one HSL in group 2 and one HSL in group 3 is Tc=2000*c 
Step 2: The cost of adding one HSL in group 5 is Tc=400*c 
Step 3: The cost of adding one HSL in group 4 is Tc=900*c 
Step 4: The cost of adding one HSL in group 6 and one HSL in group 3 is Tc=1800*c 

 
Here, If all the c’s are equal, alternative 2 is the indicated selection because it has the smallest cost. Thus, adding one 
HSL to group 5, and rerouting 25% of the traffic load from path 1-2-3-4 to path 1-2-4 accomplishes the 90% goal. 
 

CONCLUSIONS 
 
A strategy, based on queuing theory, is developed and presented for the demand servicing process (traffic and 
service) of an ICN. This demand servicing process requires collecting and processing raw measurements to 
determine statistics on various end-to-end performance parameters. If any performance objectives, such as mean 
voice delay and mean data packet delay, are not satisfied, this servicing strategy determines the required corrective 
action for maintaining service quality. When rerouting changes are insufficient to restore service quality, the 
servicing involves changing traffic routing followed by network resizing. The advantage of this network strategy is 
its efficiency and flexibility in handling a variety of services and applications. 
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