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ABSTRACT 

 

In a rough economic environment and increased competition, one issue critical to many 

businesses is to achieve an optimum balance between supply and demand.  Double-ended queuing 

structure, where demand and supply occur simultaneously, can be utilized to model various 

manufacturing and service activities.  By associating costs per time unit due to a unit of excess of 

supply or demand, the total cost will include now costs due to imbalance of demand and supply. 

The authors examine the queuing behavior and how to minimize the above total cost by advanced 

planning aimed to hold imbalance costs at a minimum. 

 

In this paper, the main focus will be on situations where a stochastic system has become unstable 

due to demand exceeding supply.  To determine how sensitive optimal solutions are to changes in 

model parameters, for each policy, either decreasing demand or increasing supply, exact optimal 

solutions were found for a large number of scenarios and then used this scenarios database to fit 

the best possible regression model.  The paper ends illustrating the use of the model to research 

funding where typically proposals compete for scarce funding resources. 
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1.  INTRODUCTION 

 

n many business organizations, balancing demand and supply is an important consideration.  If the 

demand is higher than the supply, a policymaker has two choices - increase the supply or decrease the 

demand.  On the other hand, if the supply is higher than the demand, the policymaker may choose to 

lower the supply or promote more demand.  In either case, there is a cost associated with the balancing and the 

optimum decision then depends on the total cost which may be incurred as a result of selecting one of the above 

policies. 

 

Supply and demand of goods and services has been modeled by many researchers who analyzed and 

described their behavior and proposed various ways to control supply and demand imbalances.  In particular, 

double-ended models with finite queues have been considered by Brandt and Brandt (1999), Brandt and Brandt 

(2004), and Connolly, Parthasarathyb, and Selvarajub (2002).  Kim, Yoon, Mendoza, and Sedaghat (2010) examined 

the system’s behavior through the Monte Carlo simulation. 

 

The “double-ended (or synchronization) queue” is a model for a variety of service demanding/providing 

systems.  It was first introduced through the taxi-stand example by Kashyap (1966).  In an orderly taxi rank at an 

airport, on one side a queue is formed by the arrival of a stream of passengers who wait for taxis, while on the other 

side, a queue of taxis wait for passengers. A similar situation exists at a stock exchange - one side is a queue of stocks 

waiting for sale, while the other queue consists of potential buyers of those stocks. 

 

This article presents a double-ended queuing model for stochastic supply/demand systems where supply 

and demand queues have finite maximum possible lengths.  Excess supply results in a positive queue while excess 
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demand results in a negative queue.  If instant pairing off is assumed, the queue can be either positive or negative, 

but not both at the same time.  By associating costs per time unit due to a unit of excess of supply or demand, the 

total cost will include costs due to imbalance of demand and supply.  The paper examines the queuing behavior and 

determines how to reduce the above total cost by advanced planning aimed to hold imbalance costs at a minimum.  

Finding the policy that minimizes the cost function requires familiarity with numerical optimization techniques.  To 

facilitate the use of the proposed model by practitioners and to determine which of the model parameters are most 

important in the determination of the optimal policy, the authors generated a number of scenarios and for each the 

optimal policy factor was found.  The results of the analyses of those scenarios were used to find regression 

equations that express the policy factors in terms of the most relevant model parameters. 
 

2. THE MODEL 
 

Initially, the authors consider a simple system with only one kind of commodity and many consumers.  

Both supply and demand are assumed to take place one unit at a time.  When there is a demand of one unit, it will be 

satisfied by commodities in stock, and if there is no item in stock, the demand joins the queue in the demand side 

and will wait until the commodity becomes available.  On the other hand, when the commodity is available and there 

is no immediate demand for it, it will join the queue on the supply side and will wait until the arrival of the next 

demand.  If a consumer (demand) arrives while k' consumers are already in the queue, it leaves the system.  

Similarly, when k" units of the commodity (supply) are already in the queue, there will be no more supply to the 

system.  Figure 1 illustrates the model with four demand units waiting for a supply unit to serve. 
 

It will be assumed that units of supply (of commodity, personnel, service, etc.) arrive according to a 

Poisson process with average rate  while units of demand of the same kind arrive according to a Poisson process 

with average rate .  A unit of demand (supply) would be instantly paired off, at time of arrival, with a unit of 

supply (demand), provided that there is at least one unit of supply (demand) in the system, waiting to be distributed.  

Otherwise, that unit of demand (supply) would join the queue on the demand (supply) side.  The system is said to be 

in state "-m", m = 0, 1, …, k', if there are m units of excess demand in the queue, and in state "m", m = 1, 2, …, k", 

if there are m units of excess supply.  Both k' and k" are assumed to be finite. 
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3. ANALYTICAL FORMULATION 
 

Strategies to control costs due to imbalance of supply and demand have been considered by Bollapragada and 

Rao (2006), DeCroix and Arreola-Risa (1998), and Leeman (1964).  Mendoza, Sedaghat, and Yoon (2009) considered 

the effects of managing excess supply.  In this paper, the authors focus their attention on situations where demand is 

higher than supply; that is, when μ > .  In these situations, either of two policies may be chosen - reducing the 

demand, say by increasing the price, or increasing the supply.  These two policies and their mathematical formulations 

are considered next. 

 

3.1 Case I: Balance by Discouraging Demand 

 

Suppose that c' is the cost per time unit of one unit of excess demand in the queue, c" is that of a unit of 

excess supply in the queue, γ is the demand reduction factor (γ is applied to the given rate μ of demand and the new 

demand rate becomes γμ, 0 < γ < 1), and cγ is the cost incurred per time unit in reducing the demand rate by one 

unit. Let Pm be the probability that the system is in state m, where m = -k’,…, 0,…, k".  If ρ = /(γμ) denotes the 

utilization factor, the expected total cost when a demand reduction factor is applied is” 

 

               -1                      k" 

C(γ) = c' Σ (-m) Pm + c" Σ m Pm   + cγ μ(1 – γ) (1) 

             m=-k'                 m=1 

 

where the first summation is the expected undersupply cost, the second is the expected oversupply cost, and the third 

term is the expected cost of  reducing the demand rate from μ to γμ. 

 

The proposed model can be used to find stationary and transient probability distributions.  This paper focus on 

the stationary probabilities of being in a given state after the system is in operation long enough that all influences of 

the initial states have become negligible.  If Pm now denotes the steady-state probability that the system is in state m, 

where m = -k’,…, 0,…, k", it can be found using balance arguments that the balance equations for steady-state are: 

 

  P-k' = γμ P-k'+1 

 

( + γμ) Pm =  Pm-1 + γμ Pm+1 

 

  Pk"-1 = γμ Pk" (2) 

 

The analytical solution to the above system of linear equations can be obtained based on balance arguments 

in Markov chains Stewart (1999) and Stewart (1994).  If ρ = /(γμ), the solution is given by: 

 

Pm = ρ 
m + k' 

(1 - ρ) / (1 - ρ 
k' + k" +1

) if ρ  1 (3) 

 

 = 1 / (k' + k" + 1) if ρ = 1. (4) 

 

If the above expressions for Pm are substituted in Equation (1), the expected total cost to the system when a 

demand reduction factor is applied is given by: 

 

C(γ) = [c' k' (k' + 1) + c" k" (k" + 1)] / [2(k' + k"+ 1)] + cγ μ(1 – γ) if ρ = 1 (5) 

 

 = f(ρ) / g(ρ) + cγ μ (1 – γ) if ρ  1 (6) 

 

where: 

 

f(ρ) = - c’ (-k' + ρ + k' ρ – ρ 
k' + 1

) + c”[ ρ 
k' + 1 

- (1 + k") ρ 
k' + k" + 1

 + k" ρ 
k' + k" + 2

 ] 

 

and 
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g(ρ) = (1 - ρ) (1 - ρ 
k' +  k" + 1

) . 

 

3.2 Case II: Balance by Increasing Supply 

 

In this model, the rate of demand μ remains unchanged, but the expansion of supply  is replaced by  and 

the last term of Equation (1) is replaced by c (-1).  Here,  is the supply expansion factor ( > 1) and c denotes the 

cost incurred per time unit to increase the supply by one.  The utilization factor is now ρ = ()/ and the expected 

cost, when a supply expansion factor is applied, becomes: 

 

              -1                        k" 

C() = c' Σ  (-m) Pm + c" Σ  m Pm   + c  ( - 1) (7) 

            m=-k'                 m=1 

 

The first summation is the expected undersupply cost, the second is the expected oversupply cost, and the 

third is the expected cost of increasing the supply rate from  to . 

 

If Pm now denotes the steady-state probability that the system is in state m, where m = -k’,…, 0,…, k", the 

balance equations for steady-state are: 

 

  P-k' = μ P-k'+1 

 

( + μ) Pm =  Pm-1 + μ Pm+1 

 

  Pk"-1 = μ Pk" (8) 

 

The solution to Equations (8) with ρ = ()/μ is given by: 

 

Pm = ρ 
m + k' 

(1 - ρ) / (1 - ρ 
k' + k" + 1

) if ρ  1 (9) 

 

 = 1 / (k' + k" + 1) if ρ = 1. (10) 

 

If the above expressions for Pm are substituted in Equation (7), the expected total cost to the system, when 

a supply expansion factor is applied, is given by: 

 

C()  = [c' k' (k' + 1) + c" k" (k" + 1)] / [2(k' + k"+ 1)] + c  ( - 1) if ρ = 1 (11) 

 

 = f(ρ) / g(ρ) + c  ( - 1) if ρ  1 (12) 
 

where: 
 

f(ρ) = - c’ (-k' + ρ + k' ρ – ρ 
k' + 1

) + c”[ρ 
k' + 1 

- (1 + k") ρ 
k' +  k" + 1

 + k" ρ 
k' + k" +  2

] 
 

and 
 

g(ρ) = (1 - ρ) (1 - ρ 
k' + k" + 1

).  
 

4. ANALYTICAL OPTIMAL POLICIES 
 

The expected total costs C(γ) in Equations (5) and (6) and C() in Equations (11) and (12) were minimized for 

a number of combinations of the model parameters. Table 1 presents the values of the parameters that were used to 

generate 1,440 scenarios where demand equals or exceeds supply (μ > ).  Unitary costs c” and cγ (c in Case II below) 

are given as multiples of c’. Consequently, total costs are all expressed in c’ units. The optimal γ that minimizes C(γ) 

depends on the relative costs c”/c’ and cγ/c’, but not on c’.  However, to remind readers that all costs are in c’ units, c’ 

will be set equal to 1 for all scenarios. 
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Table 1: Parameter Values used to Generate 1,440 Scenarios 

Parameter Initial Increment Final 

k’ 5 10 25 

k” 5 10 25 

  1.00 0.20 1.20 

 1.20 0.20 2.20 

c’ 1.00 0.00 1.00 

 c” 0.50 0.25 1.25 

(*) 0.50 0.25 1.25 

 (*) c for Case I and cδ  for Case II. 

 

The exact values of γ and  that minimize such expected total costs were found by iteration using procedure 

NLP in SAS. Information about procedure NLP can be found visiting the Website http://support.sas.com/rnd/ 

app/index.html.  A discussion and summary of such exact numerical results for Policies I and II are presented below. 

 

4.1 Optimal Solution for Case I 

 

For each scenario, the value of  between 0 and 1 that minimizes C() was found.  Figure 2 illustrates typical 

shapes of the relationship between the minimum expected total cost C() and the demand reduction factor .  Table 2 

specifies the parameter values for the chosen three scenarios of Figure 2.  Scenarios 929 and 1440 in Figure 2 

correspond to the approximately 93% of instances where C() has two inflection points, its minimum occurs at a  

value between 0 and 1 and whose value is considerably lower than C(1) where no demand reduction is applied (i.e.,  = 

1).  Scenario 337 illustrates the approximately 1% of instances where C() has one inflection point, its minimum occurs 

at a value of  close to 1, and C(1) is barely higher than the minimum. 

 

 
Figure 2: Total Cost against Gamma Values 
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Table 2: Parameter Values for Figure 2 

Scenario # k’ k” c’ c” μ  γ Min C(γ)  

337 5 25 1 0.50 1.4 1.0 0.8909 3.0290 

929 15 25 1 0.50 2.0 1.2 0.6041 7.2790 

1440 25 25 1 1.25 2.2 1.2 0.5556 15.3265 

 

4.2 Optimal Solution for Case II 

 

For each scenario, the value of  greater than 1 that minimizes C() was found. Figure 3 corresponds to the 

same scenarios displayed before for Case I (with c instead of c) and illustrates typical shapes of the relationship 

between the minimum expected total cost C() and the demand expansion factor .  Table 3 specifies the parameter 

values for the chosen three scenarios of Figure 3.  Scenarios 929 and 1440 illustrate the approximately 95% of 

scenarios where C() has two inflection points, the minimum occurs at a  value greater than 1.  Scenario 337 

illustrates instances where C() has a minimum at a value of  slightly greater than 1 and where C(1) is barely higher 

than the minimum. 

 

Figure 3: Total Cost against Delta Values 
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Table 3: Parameter Values for Figure 3 

Scenario # k’ k” c’ c” μ   Min C() 

  337 5 25 1 0.50 1.4 1.0 1.1239 3.0139 

  929 15 25 1 0.50 2.0 1.2 1.6540 7.2761 

1440 25 25 1 1.25 2.2 1.2 1.7984 15.3037 

 

5. APPROXIMATE OPTIMAL POLICIES  BY REGRESSION 

 

To determine the model parameters that most affect the optimal γ and , the exact optimal values found for 

γ and  in the previous section were regressed on all model parameters.  These fitted regressions may appeal to some 

practitioners as easy-to-use formulas to get good approximate optimal values for γ and  and the corresponding 

minimum expected total costs.  Since the computer simulation leads to computational burden, an analytical 

approximation solution is sought.  To get approximate optimal values for γ and  that make the minimum expected 

total costs, the exact optimal values simulated for γ and  in the previous section were regressed on all model 

parameters. 

 

5.1 Regression Solution for Case I 

 

From the 1,440 original scenarios, 1,401 of them led to feasible solutions that minimized C(γ), including 56 

scenarios where γ is greater than 1. Regressions based on these 1,401 scenarios lead to the following best estimate for 

the optimal γ in terms of the model parameters: 

 

γ-hat = 1.512592 + 0.208415 * (k”/k’) + (-0.0240428) * (k”/k’)
 2
 + 0.120488 * c” + 0.020565 4* cγ 

     [0.0357]      [0.0031]                        [0.0005]                          [0.0041]             [0.0041]
 

 
 

+ (-1.093527) * (/) + 0.211927 * (/)
2 
 (13) 

      [0.0424]                    [0.0125] 

 

It has coefficient of determination R
2 

 = 0.9440 and standard error of estimate se = 0.0421.  The figures in 

square parentheses are the regression coefficients’ standard errors.  The regression identifies (k”/k’), (k”/k’)
2
, c”, cγ, 

(/), and (/)
2
 as the most important regressors in determining the optimal γ.  The most significant predictors of the 

optimal policy are the ratio of the supply queue length over the demand queue length and its square.  The next two 

best predictors are the ratio of the supply rate  over the demand rate  and its square.  The last two best predictors 

are c”, per time unit of excess supply in the queue, and cγ, the cost incurred per time unit in reducing the demand rate 

by one.  If the parameters of a user lie within the parameter space used to fit the regression (Table 1), the user can 

use equation (13) to get approximate values of γ and the corresponding expected total cost for the parameter values that 

he or she has, while the standard errors of the coefficients indicate how sensitive γ-hat is to errors in estimating these 

regressors. In situations where equation (13) leads to an estimated demand reduction factor greater than 1, use γ-hat 

= 1. 

 

5.2 Regression Solution for Case II 

 

As in Case I, the exact optimal values found for  were regressed on the environmental model parameters.  

The fitted regression equation allows a user to get approximate values of the optimal  and the corresponding expected 

total cost for the parameter values that he or she has. 

 

From the 1,440 original scenarios, 1,410 of them led to feasible solutions that minimized C(), including 44 

scenarios where  is between 0.9 and 1.  Regressions based on these 1,410 scenarios lead to the following best 

estimate for the optimal  in terms of the model parameters.  The authors report the regression fitted using the full set 

of 1410 feasible scenarios to have greater parameter coverage: 
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-hat = 2.220880 + (-1.985561) * (/)
2
 + .573832 * (k'/ k") + (-0.273416) * c” + (-.0713564) * c 

             [0.0249]       [0.0198]                      [0.0162]                      [0.0100]                 [0.0100] 

 

+ (-0.061702)* (k'/ k")
2
 + (-0.100368)* (k”/ k’) + 0.020213 * k” + (-0.013816) * k’ (14) 

      [0.0023]                         [0.0053]                        [0.0011]               [0.0011] 

 

It has coefficient of determination R
2 
= 0.9433 and standard error of estimate se = 0.1049.  It identifies (/), 

(k'/ k"), k', k”, and c”, the opportunity cost per time unit of one unit of excess supply in the queue, as the most 

important factors in determining the optimal . However, c , the cost incurred per time unit to increase the supply by 

one unit, is not an important factor in predicting the optimal .  

 

If the parameters of a user lie within the parameter space used to fit the regression (Table 1), the user can 

use (14) to get approximate values of the optimal  and the corresponding expected total cost for the parameter values 

that he or she has.  The standard errors of the coefficients indicate how sensitive -hat is to errors in estimating these 

regressors.  In situations where equation (14) leads to an estimated demand expansion factor less than 1, use -hat = 

1. 

 

6. AN ILLUSTRATION 

 

A typical case of excess demand is research funding where research proposals compete for scarce funding 

resources.  Research funding is obtained through a competitive process in which potential research proposals are 

evaluated and only some of the most promising proposals receive funding.  An interesting example occurs when 

researchers request a granting agency to financially support their proposals. 

 

Consider a system where a university/sponsor relationship exists.  First, let’s define what sponsorship is.  

To sponsor something or somebody is to support an event, activity, or organization financially or through the 

provision of products or services.  A sponsor is the individual or group that provides the project funding.  When a 

sponsor is willing to provide sponsorship, it is entered in the supply side of a centralized database.  If there are less 

than k” sponsors in the supply queue, the organization becomes the next candidate for sponsorship.  Otherwise, it 

will remain in the supply side of the university database until there are less than k” sponsors.  Assume that the 

arrival of sponsors into the queue follows a Poisson process with supply rate λ.  On the demand side, assume that 

proposal X needs a sponsor and is entered in the demand side of the database.  If there are less than k’ unfilled 

sponsorship proposals, proposal X joins the demand queue and becomes the next proposal to be potentially 

sponsored.  Otherwise, it will remain in the demand side of the database until there are less than k’ proposals waiting 

for sponsorship.  Eventually, if there is at least one sponsor waiting in the supply queue and no other yet unfunded 

proposal registered ahead of proposal X, then the first sponsor waiting in the supply queue will sign the sponsorship 

contract for proposal X.  It will be assumed that proposal requests for sponsorship follow a Poisson process with 

demand rate μ.  When there are organizations waiting to offer sponsorship, the supply queue is of positive length. 

When there are proposals waiting for sponsorship, the demand queue is of positive length. 

 

Suppose that proposal requests for sponsorship follow a Poisson process with demand rate μ = 648 

proposals per year and that the arrivals of sponsors into the queue follow a Poisson process with supply rate λ = 432 

donors per year. The university currently devotes enough resources to simultaneously examine, at most, 15 

proposals (i.e., k’ = 15) and pursue a maximum of 15 sponsors (i.e., k” = 15).  Assume that the annual cost of a unit 

of excess demand in the queue (not having a donor to fund a proposal) is c’ = $1,000 (which includes the cost of 

inquiries about the researcher(s)'s background and proposal’s potential; the cost of personnel, facilities, equipment, 

supplies, and time used to review an extra proposal and maintain it in the demand queue) and that the annual cost of 

a unit of excess supply in the queue is c” = $1,250 (which includes the cost of maintaining an additional fund 

provider in the supply queue). Finally, assume that the annual cost of reducing the demand rate by one proposal is cγ 

= $1,250 (marginal cost of vetting but not funding a proposal) and that the annual cost of increasing the supply rate 

by one sponsor is c = $1250 (marginal cost of looking for an extra sponsor). It will be assumed that there are 360 

days in a year so that on a per day basis the demand and supply rates become μ = 648/360 = 1.8 proposals/day, λ = 

432/360 = 1.2 donors/day. Similarly, let’s express the costs in c’ units: c’ = 1, c” = 1.25, cγ = 1.25, and c = 1.25. 
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The models will find the level of demand reduction or supply increase that minimizes the total operational cost of 

successfully matching one proposal and a donor.  

 

With these parameter values, a non-linear minimization procedure, such as NLP in SAS, can be used to 

obtain the exact values of γ and  that minimize the total cost C(γ) and C(), respectively. Those optimal values are 

demand reduction factor γ* = 0.6893 with total cost = $9.2698 per day or $3,337 per year and supply expansion 

factor * = 1.4479 with total cost = $9.2462 per day or $3,329 per year.  The total operational costs to successfully 

match a proposal to a donor are very similar because cγ and c are both equal to 1.25, so the decision on whether to 

reduce demand or increase supply would be based on other considerations. For instance, what would be preferable - 

to limit proposals by 31.1% [= (1-0.689310)*100] or to look for additional resources to obtain 44.8% [= (1.447943 – 

1)*100] additional donors? 

 

Alternatively, approximate optimal solutions can be found more easily using regression Equations (13) and 

(14) which lead to the following approximate solutions: Estimated Demand Reduction Factor: γ–hat = 0.709827, 

estimated total cost = 9.3979 and estimated supply expansion factor –hat = 1.4151, estimated total cost = 9.3256.  

 

Next, the authors compare the performance of the exact and the regression solutions above with the solutions 

found ignoring the stochastic nature of the model by setting the utilization factor ρ equal to 1.  That is, γ = / for Case 

I and  = μ/ for Case II.  Table 4 tabulates results from three strategies - Exact, regression, and non-stochastic. It can 

be seen that for both policies’ scenarios, regression estimates led to slightly higher minimum costs while the “naïve” 

solution (found setting ρ equal to one) led to even higher minimum costs. 

 

Since failing to use a willing sponsor is highly undesirable, k” should be chosen large enough to make the 

chance of such an event, Pk”, rather small. Hence, another potential inquiry that the university is interested in is the 

effect of increasing the maximum number of sponsors to be pursued from k” = 15 to k” = 25.  The last column of 

Table 4 tabulates the parameter models, the factors and costs for the revised scenario.  It can be seen that the 

minimum cost has to increase to accommodate large donor pool in the revised scenario, but the required reduction 

and expansion rates are smaller than the original scenario. 

 

Discrepancies of the naïve estimates, with respect to the exact solution, are more noticeable in the revised 

scenario where k” = 25. The authors recommend using the regression equations only within the parameter space 

defined in Table 1. Otherwise, γ and  should be found by iteration or simulation. In general, results found by setting 

ρ equal to one are uniformly inferior to regression solutions. 

 
Table 4: Comparing Results for Three Strategies  

Reduction/Expansion Factor and  

Expected Total Cost 
Case 

Original Scenario 

(k” = 15) 

Revised Scenario 

(k” = 25)  

(a) Exact: γ * I 0.689310 0.733018 

 C(γ*) I 9.269804 10.276767 

(b) Regression Estimate: γ–hat I 0.709827 0.806028 

 C(γ-hat) I 9.397856 11.265384 

(c) Naïve Estimate: γ = /μ I 0.666667 0.666667 

 C(/μ) I 9.459677 13.585366 

(a) Exact: * II 1.447943 1.363031 

 C(*) II 9.246242 10.223097 

(b) Regression Estimate: -hat II 1.415150 1.360322 

 C(-hat) II 9.325632 10.223097 

(c) Naïve Estimate:  = / II 1.500000 1.500000 

 C(/) II 9.459677 13.585366 

 

7. CONCLUDING REMARKS 
 

This paper presents a queuing model for stochastic supply/demand systems.  In particular, the authors 

consider situations with excess demand where inter-arrival time of units of demand and supply are assumed to be 
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exponentially distributed.  Further, supply and demand queues are assumed to have finite maximum lengths k’ and 

k”, respectively; c’ and c” are variables costs per unit due to a unit of excess of demand and supply, respectively; 

and cγ and c represent the costs incurred per time unit in reducing the demand rate by one unit or increasing the 

supply by one unit, respectively. Relying on those assumptions and notations, formulas were derived for the long-

run total cost to balance the unbalancing demand and supply as a function of either the demand reduction factor (0 < 

γ < 1) or the supply expansion factor ( > 1.).  These formulas can be used to find, numerically, the policy factors 

that would minimize the expected total cost to balance the unbalancing queuing system.  By comparing the 

minimum expected total costs, either by increasing supply or by decreasing demand, the best policy is the one leading 

to the smaller expected total unitary cost. 

 

For the practitioners’ convenience, regression equations were derived to estimate the optimal policy factors 

based on exact results found in a large number of scenarios. Overall measures of goodness of fit and detailed 

performance comparisons of representative scenarios indicate that policies based on regression estimates are, in 

most situations, very close to policies based on exact values and much better than those found setting the utilization 

factor ρ equal to 1. 

 

It is possible to apply the proposed model to bigger scale situations where fulfillment of demand and supply 

occur simultaneously; for instance, balancing numbers of sellers and buyers in the stock market, balancing Panama 

Canal operations between number of waiting ships, and flexible canal capacity.  More challenging extensions are the 

use of more general distributions for the queues or the study of the transient behavior of the system before 

stationarity is achieved. 
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