
Journal of Business & Economics Research – November 2013 Volume 11, Number 11

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 455

Multi-Mode Resource-Constrained Project-

Scheduling Problem With Renewable

Resources: New Solution Approaches
Selcuk Colak, Cukurova University, Turkey

Anurag Agarwal, University of South Florida, USA

Selcuk Erenguc, University of Florida, USA

ABSTRACT

We consider the multi-mode resource-constrained project scheduling problem (MRCPSP) with

renewable resources. In MRCPSP, an activity can be executed in one of many possible modes;

each mode having different resource requirements and accordingly different activity durations.

We assume that all resources are renewable from period to period, such as labor and machines.

A solution to this problem basically involves two decisions – (i) The start time for each activity

and (ii) the mode for each activity. Given the NP-Hard nature of the problem, heuristics and

metaheuristics are used to solve larger instances of this problem. A heuristic for this type of

problem involves a combination of two priority rules - one for each of the two decisions.

Heuristics generally tend to be greedy in nature. In this study we propose two non-greedy

heuristics for mode selection which perform better than greedy heuristics. In addition, we study

the effect of double justification and backward/forward scheduling for the MRCPS. We also study

the effect of serial vs. parallel scheduling. We found that all these elements improved the solution

quality. Finally we propose an adaptive metaheuristic procedure based on neural networks which

further improves the solution quality. The effectiveness of these proposed approaches, compared

to existing approaches in the literature, is demonstrated through empirical testing on two well-

known sets of benchmark problems.

Keywords: Project Management; Scheduling; Heuristics; Metaheuristics; Multi-Mode Resource-Constrained

Project-Scheduling

1. INTRODUCTION

anaging projects efficiently and effectively is critical to organizational success in today’s highly

competitive business environment. We study the multi-mode resource-constrained project-

scheduling problem (MRCPSP) which is a generalization of the classical resource-constrained

project-scheduling problem (RCPSP). In RCPSP, activities of a project follow some precedence constraints and are

processed in some predetermined duration of time using some predetermined amounts of resources. Resources are

assumed to be limited for each period. The activities can be scheduled as they become resource and precedence

feasible. The objective is to minimize the project completion time or makespan. The generalization of RCPSP

occurs on two dimensions - first, in MRCPSP, each activity can be processed in multiple modes. A mode implies a

certain level of resources used. The activity durations vary with the levels of resources used. Allocating more (or

better quality) resources can accelerate activity duration. For example, an activity which takes two days to complete

with three workers (mode 1) may be completed in only one day with six workers of the same skill level (mode 2) or

with four workers of a higher skill level (mode 3). The second generalization has to do with the nature of resources.

In MRCPSP, three types of resources are considered – renewable, non-renewable and doubly constrained

(Slowinski, 1980). Renewable resources are available in limited quantities for each time period and are renewable

from period to period (e.g. labor, machines). Non-renewable resources are limited for the entire project (e.g. project

budget). Doubly-constrained resources are limited both for the entire project as well as for each period.

M

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Clute Institute: Journals

https://core.ac.uk/display/268112638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

456 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

The first generalization, the one that allows use of different levels of resources to be allocated to activities,

makes the MRCPSP of much greater practical significance to the project manager than the single-mode version of

the problem, the RCPSP. This is because in the real world, managers generally enjoy the prerogative of

manipulating resource levels in order to accelerate critical activities to reduce the overall project duration. Yet, the

MRCPSP is not as widely studied as the RCPSP. As far as the second generalization, which takes into account

renewable, non-renewable and doubly-constrained resources, the renewable resource problem is most commonly

found in practice because most resources are procured in markets through funding. Of course, if funding is limited,

then all resources become non-renewable.

To the best of our knowledge, while the most general MRCPSP problem has received wide attention, the

problem of only renewable resources has received very little attention in the literature. The only studies, to the best

of our knowledge, on MRCPSP with only renewable resources are by Boctor (1993, 1996a and 1996b), Mori and

Tseng (1997) and Alcaraz et al. (2003). Further, of the 19 sets of benchmark MRCPSP instances in PSPLIB, only

one set is devoted to only renewable resources. Boctor (1993) has also developed a set of benchmark problems for

the MRCPSP problems with renewable-only resources. Given the practical significance of this problem, there is a

need to explore better solution approaches. In this paper, we develop new solution approaches for solving the

MRCPSP with renewable resources only, hereafter MRCPSP-RR. The objective is to determine the execution mode

and the start time of each activity in order to minimize the project completion time or the makespan, while satisfying

the precedence and resource constraints. Activities are assumed to be non-preemptive, a common assumption in the

literature. The MRCPSP-RR is a strongly NP-Hard problem as it is a generalization of the RCPSP which itself is

strongly NP-Hard.

Formally, the MRCPSP-RR can be described as follows: A project consists of N activities represented by

index i = 1, …, N. The N
th

 activity is the dummy terminal activity with no successors and a duration of zero. Each

activity can be executed in one of j modes, where j goes from 1 to Mi, where Mi is the number of possible modes for

activity i. Once a mode has been selected for an activity, it must be finished without switching the mode. The

duration of activity i executed in mode j is dij. The non-preemptive assumption implies that once an activity i has

been assigned mode j, it must be executed for dij consecutive time units without interruption. Activity i cannot start

before all of its predecessors have been completed. We assume there are Rkt amount of renewable resources of type

k available in time period t. Index k goes from 1 to K, where K is the total number of resource types. Activity i

executed in mode j requires rijk resource units per period for resource type k. The activity durations, resource

availabilities and resource requirements per activity are non-negative integers. Further assume that Ei is the earliest

finish time and Li the latest finish time of activity i. Ei is calculated using a forward pass of the PERT chart using

the critical path method assigning the fastest mode to each activity. LN is then set equal to an upper bound T where

T is the sum of activity durations of all activities with the slowest execution modes. Li for the rest of the activities

are calculated using a backward pass of the PERT chart assuming the slowest resource mode is assigned to

activities. Also let Pi be the set of all preceding activities of activity i. We also define xijt as a 0-1 binary variable

which assumes a value of 1 if activity i is assigned to mode j having a finish time of t and zero otherwise. The

integer programming formulation of the problem is described as:

Minimize: ..
N

N

L

N t

t E

t x




Subject to:

1

1 1,...,
i i

i

M L

ijt

j t E

x i N
 

  (1)

1 1

. (). 1,..., ,
p p i i

p i

M L M L

ijt ij ijt i

j t E j t E

t x t d x i N p P
   

     (2)

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 457

1

1 1

. 1,..., , 1,...,
iji

t dMN

ijk ijs kt

i j s t

r x R k K t T

 

  

    (3)

Constraint set (1) ensures that each activity is executed only once, set (2) ensures that the precedence

constraints are satisfied and set (3) ensures that the resource constraints are satisfied. For large N the problem is

difficult to solve optimally and therefore heuristics are used.

In solving this problem heuristically, two decisions are involved – (i) which activity to be assigned if two or

more activities are precedence and resource feasible and (ii) which of the several feasible modes of execution to

select for the assigned activity. Two priority rules are therefore needed to solve the problem - one for activity

selection and one for execution-mode selection. These two priority rules working in tandem constitute a heuristic

for solving this type of problem. If we considered x number of rules for activity selection, and y for mode selection,

then the total number of rule combinations (heuristics) for the MRCPSP with renewable resources would be x * y.

In this paper, we (i) two non-greedy heuristics (priority rules) for mode selection and a new greedy rule for activity

selection, (ii) study the effect of double justification, (iii) study the effect of forward/backward scheduling, (iv) study

the effect of serial vs. parallel scheduling and (v) propose an adaptive metaheuristic, based on neural network

principles, to solve the problem iteratively using weighted activity-durations. While the effect of double

justification and serial vs. parallel scheduling have been studied for the RCPSP, they have not been studied for the

MRCPSP.

In the next section (Section 2), we review the relevant literature for the general MRCPSP as well as the

MRCPSP with only renewable resources. Section 3 describes the existing heuristics in the literature and also the

new heuristics developed in this study. The proposed adaptive metaheuristic is detailed in Section 4. In Section 5

we present the results of our computational experiments and compare our results with those of previous approaches

in the literature. Summary and concluding remarks appear in Section 6.

2. RELEVANT LITERATURE

The MRCPSP was first introduced by Elmaghraby (1977). Talbot (1982) was the first to propose an exact

solution method using the implicit enumeration scheme. Patterson et al. (1989, 1990) presented a more powerful

backtracking procedure for solving the problem. These approaches, however, were unable to solve instances with

more than 15 activities in reasonable computation time. Demeulemeester and Herroelen (1992) had proposed a

branch-and-bound procedure for the RCPSP, which was extended to the MRCPSP by Sprecher et al. (1997).

Hartman and Drexl (1998) compared the existing branch-and-bound algorithms and presented an alternative exact

approach based on the concepts of mode and extension alternatives. Sprecher and Drexl (1998) proposed an exact

solution procedure by extending the precedence-tree guided enumeration scheme of Patterson et al. (1989, 1990).

Although their approach was the most powerful procedure, it was unable to solve the highly resource-constrained

problems (more than 20 activities and two modes per activity) in reasonable computational times.

Several heuristics and metaheuristics have also been proposed in the literature for this problem. Drexl and

Grunewald (1993) presented a stochastic scheduling method. Ozdamar and Ulusoy (1994) proposed a local

constraint based approach that selects the activities and their respective modes locally at every decision point.

Kolisch and Drexl (1997) developed a local search method that first finds a feasible solution and then performs a

neighborhood search on the set of feasible mode assignments. Different genetic algorithms for solving the MRCPSP

have been developed by Mori and Tseng (1997), Ozdamar (1999), Hartmann (2001) and Alcaraz et al. (2003).

Simulated annealing algorithms are one of the most common heuristic procedures applied to MRCPSP. Slowinski et

al. (1994), Bouleimen and Lecocq (2003) and Jozefowska et al. (2001) have suggested simulated annealing

algorithms. Nonobe and Ibaraki (2002) proposed a tabu-search procedure for this problem. More recently, Lova et

al, (2009) have proposed a hybrid genetic algorithm and Barrios et al. (2011) have proposed a Double genetic

algorithm for this problem.

As far as MRCPSP_RR, Boctor (1993) was the first to consider that problem. He proposed and developed

seven rules for prioritizing activities and three for prioritizing modes for a total of 21 different rule combinations.

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

458 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

Details of these rules are presented in the next section. In a follow-up study, Boctor (1996a) proposed

backward/forward scheduling to improve the results and also proposed a new priority rule for mode selection. The

new rule, although very complex, gave better results. Boctor (1996b) proposed a simulated annealing approach and

Alcaraz et al. (2003) proposed a genetic algorithm approach for this problem. Both simulated annealing and genetic

algorithms improved the results from single-pass heuristics significantly.

In the next section, we will briefly describe the heuristics that have been used to solve MRCPSP problem

and explain our proposed greedy and non-greedy heuristics.

3. HEURISTIC METHODS FOR MRCPSP-RR

3.1 Existing Heuristics

In the existing literature, parallel schedule generation scheme is used. In this scheme, a clock is maintained

which is moved to a point when the next activity or activities become precedence-feasible and resource-feasible.

Assignment takes place from amongst the activities that are ready for assignment, based on an activity priority rule.

Note that for each precedence-feasible activity, not all execution modes may be feasible at a given time. Once an

activity is selected, the mode-selection priority rule is applied to choose one of several feasible execution modes.

Boctor (1993) used seven rules for prioritizing activities and three for prioritizing execution modes resulting in

twenty one heuristics. The seven rules for prioritizing activities were minimum total slack (Min-SLK), minimum

latest finish time (Min-LFT), maximum number of immediate successors (Max-NIS), maximum remaining work

(Max-RWK), maximum processing time (Max-PTM), minimum processing time (Min-PTM) and maximum number

of subsequent candidates (Max-CAN). Of these seven, Min-SLK, Max-RWK, Max-CAN and Min-LFT performed

better than the other three. The three rules for prioritizing execution modes were: shortest feasible mode (SFM),

least criticality ratio (LCR) and least resource proportion (LRP). Of these three, the SFM rule dominated the other

two. So, the four best heuristics (or rule combinations) were Min-SLK/SFM, Max-RWK/SFM, Max-CAN/SFM and

Min-LFT/SFM. Boctor, in a follow-up study (Boctor, 1996a), focused on these four heuristics and improved the

results by solving twice: once forward and once backward and using the better of the two solutions. He also

proposed a new rule for execution-mode selection, which we will call Boct96Rule, which gave better results than the

SFM heuristic. This new rule attempted to prioritize execution modes based on certain conditions of non-dominated

activity-mode combinations. Although complex to implement, this rule gave good results.

3.2 Proposed Heuristics

We propose several new heuristics for prioritizing activities and also for prioritizing execution modes. The

rules for execution modes are non-greedy in nature and are designed to take into account the criticality of an activity

when deciding on the execution mode. In addition, we propose the use of serial schedule generation scheme (SSGS)

which has not been used for this problem. The seven activity priority rules by Boctor (1993) all employ parallel

schedule generation scheme. In SSGS, the priority order of the activities is predetermined using a priority rule;

assignment of activities occurs in that order at the first possible resource and precedence feasible opportunity. For

details of SSGS see Kolisch (1996). To improve the solution quality, we also employ forward and backward

scheduling as proposed by Boctor (1996a). In backward scheduling the precedence relationships of all activities are

reversed. In other words, the direction of arrows on the PERT chart is reversed for each arrow and scheduling

performed normally, treating the problem as a forward scheduling problem. Using the backward scheduling

approach, for the same heuristic, a different schedule is generated with a different makespan. Probabilistically,

therefore, fifty percent of the time, the backward schedule gives better solution than the forward schedule. We

consider the better of forward and backward schedules. We also apply backward-forward improvement (BFI), also

known in the literature as double justification. BFI has not been applied to the MRCPSP or the MRCPSP-RR

problem in the literature. In BFI, once the forward schedule is generated using any heuristic, a backward schedule is

generated using the activity priority rule of highest finish time using the actual finish times obtained during the

forward schedule. This is followed by another pass of forward scheduling using the rule of lowest start times for

activities using the start times obtained during the backward pass. The BFI procedure is an attempt to reduce the

makespan, without altering the priority order of the activities. It basically tries to remove any unnecessary empty

spaces in the Gantt chart. Valls et al. (2005) applied the BFI procedure for the RCPSP problem.

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 459

As far as the rules for prioritizing activities, we use the best of the seven rules proposed by Boctor (1993),

namely Max-RWK. We propose a new heuristic called minimum latest start time (Min-LST). This rule has been

used in many other types of scheduling problems, so it is not new to the scheduling literature, but is new for

MRCPSP-RR and it gave better results than the other seven activity priority rules used in Boctor (1996a).

For prioritizing execution modes we propose two new, non-greedy approaches which take into account the

criticality of an activity. The non-greedy approaches differ from existing greedy approaches in that, a precedence-

feasible activity may not be scheduled in spite of being resource feasible for some execution mode. In the first non-

greedy rule, if the feasible execution mode is not the fastest execution mode, we take into account the time the

activity would have to wait for the resources for the fastest mode and the difference between the activity durations

between the fastest mode and the fastest feasible mode. Clearly, if it has to wait less than the difference between the

activity durations, it makes sense to wait. The waiting strategy is what makes the rule non-greedy.

In the second non-greedy rule, a precedence-feasible activity considers all modes faster than the fastest

feasible mode and checks against each one the difference between the activity durations and the amount of waiting.

If the fastest mode is not worth waiting for then perhaps the next fastest mode might be worth waiting. The first

non-greedy rule, discussed earlier, would not wait for the second fastest mode but the second rule would.

We call the first non-greedy rule for prioritizing execution mode the “Shortest Feasible Mode with

Conditional Wait for the Fastest Mode” or SFM-CWFM, and the second rule “Shortest Feasible Mode with

Conditional Wait for a Better Mode” or SFM-CWBM. We recommend taking the best of three mode selection rules

– SFM, SFM-CWFM and SFM-CWBM. Figure 1 shows the pseudo-code of the proposed heuristic using SFM-

CWFM rule and Figure 2 shows the same with the SFM-CWBM rule.

 Create a serial list of activities in the order determined by activity priority rule.

 Do until all activities assigned

 { Determine the next activity to be assigned (from the serial list)

 If Resources unavailable for any execution mode for this activity

 { Loop until resources become available

 Advance clock till a currently assigned activity finishes

 End Loop

 }

 If Resources for the fastest mode available then

 { assign activity to fastest mode

 }

 Else

 { Calculate DiffActDur = (ActDur)fastestfeasible mode – (ActDur)fastest infeasiblemode

 Calculate TimeToWait for the fastest mode

 If TimeToWait for fastest mode < DiffActDur

 { Loop until resources for fastest mode become available

 Advance clock till a currently assigned activity finishes

 End Loop

 assign activity to fastest mode

 }

 Else

 { assign activity to fastest feasible mode

 }

 }

 }

Figure 1: Algorithm for the SFM-CWFM Rule

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

460 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

 Create a serial list of activities in the order determined by activity priority rule.

 Do until all activities assigned

 { Determine the next activity to be assigned (from the serial list)

 If Resources unavailable for any execution mode for this activity

 { Loop until resources become available

 Advance clock till a currently assigned activity finishes

 End Loop

 }

 If Resources for the fastest mode available then

 { assign activity to fastest mode

 }

 Else

 {

 For each infeasible mode j (starting with fastest mode) faster than the fastest feasible mode

 {

 Calculate DiffActDurj = (ActDur)fastestfeasible mode – (ActDur)j

 Calculate TimeToWait for j

 If TimeToWait for j < DiffActDurj

 { Loop until resources for mode j become available

 Advance clock till a currently assigned activity finishes

 End Loop

 assign activity to mode j

 }

 }

 If activity not assigned then

 { assign activity to the fastest feasible mode

 }

 }

 }

Figure 2: Algorithm for the SFM-CWBM Rule

We call this proposed approach ACE-SP (Agarwal, Colak and Erenguc – Single Pass). It consists of serial

schedule generation scheme, better of backward and forward schedule and BFI or double justification and best of

three mode selection rules. ACE-SP-LST is basically ACE-SP with Min-LST activity priority rule and ACE-SP-

RWK is ACE-SP with Max-RWK activity priority rule. The next section describes the adaptive metaheuristic we

use.

4. ADAPTIVE METAHEURISTIC

Metaheuristics provide a good way to improve upon a heuristic solution iteratively in reasonable amount of

computing time. We propose an adaptive metaheuristic in conjunction with each of the two heuristics (ACE-SP-

LST and ACE-SP-RWK) to improve the solution quality. We call the proposed metaheuristic the ACE-AM

approach. ACE-AM-LST is the metaheuristic with Min-LST while ACE-AM-RWK is with Max-RWK. In this

approach, a weight factor is used with each of the activity durations. Using the weighted activity durations, one of

the basic heuristics such as Max-RWK/SFM or Max-RWK/SFM-CWBM or ACE-SP-LST or ACE-SP-RWK is

applied. For the first iteration, the weights for all the activities are the same, hence the first iteration solution is

identical to the single-pass heuristic solution. In the subsequent iterations, the weights are modified and weighted

processing times recalculated and the same heuristic is applied. This approach allows a non-deterministic local

search in the neighborhood of the heuristic solution. The basic idea in this approach is similar to neural networks

where perturbation in the weight vector is used as a means of non-deterministic local search. The weight vector is

modified using a weight modification strategy to find improved neighborhood solution in subsequent iterations.

Using this adaptive search approach, the gaps are reduced significantly. This approach was first applied in Agarwal

et al. (2006) for the flow-shop scheduling problem.

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 461

The adaptive metaheuristic is explained next, using the following notation:

k Iteration counter

kmax Max number of iterations

dij Activity duration of activity i executed in mode j.

wi Weight associated with the activity i.

wdij Weighted activity duration of activity i executed in mode j.

LSTi Latest start time of activity i.

RWKi Maximum remaining work for activity i.

MSk Makespan in the current iteration

MSB Best makespan

 Search coefficient

WB Best weights

Step 1: Initialization

a. Initialize wi = 1, i = 1, …, N

b. Initialize the iteration counter k to 1.

Step 2: Calculate weighted processing times

a. Calculate wdij = wi * dij , i = 1, …, N

Step 3: Determine priority list

a. Determine the priority list for the activities using a priority rule such as Min-LST or Max-RWK, where

LST and RWK are calculated using wdij instead of dij.

Step 4: Determine makespan

a. Find a feasible schedule using serial schedule generation scheme, using the priority list. In other

words, schedule each activity at its earliest possible time given precedence and resource constraints

using one of the three mode selection priority rules (SFM, SFM-CWFM, SFM-CWBM). This

schedule gives us the makespan msk.

Step 5: Apply search modification strategy and modify weights

a. If MSk is the best makespan so far, save the current weights as best weights (WB) and the makespan as

the best makespan (MSB).

b. If k = kmax, go to Step 7.

c. If k < kmax, modify the weights using the following strategy:

a. Generate a random number RND between 0 and 1 using uniform distribution.

i. If RND > 0.5 then (wi)k+1 = (wi)k + RND *  * error

ii. If RND <= 0.5 then (wi)k+1 = (wi)k – RND *  * error

iii. error is the difference between the current makespan (MSk) and the lower bound (LB) for

the problem in question.

Step 6: Next iteration

a. Increment k by one and go to step 2.

Step 7: Display Solution

a. MSB is the solution. The schedule is generated using the WB.

The search coefficient () used in Step 5c determines the degree of weight change per iteration. A higher

coefficient leads to a greater change and vice versa. One could therefore control the granularity of the search by

varying . The search coefficient should neither be too low nor too high. A low  will slow down convergence and

make it difficult to jump local minima, while a high  will render the search too erratic or volatile to afford

convergence. With some empirical trial and error, we found that a rate of 0.005 worked well for all the problems.

5. COMPUTATIONAL EXPERIMENTS AND RESULTS

Two benchmark problem sets are available in the literature for the MRCPSP-RR. The first one was created

by Boctor (1993) and the second one is part of the PSPLIB (Kolisch and Specher, 1997) problems. In Boctor’s set,

there are 240 problem instances. These problems have been used by researchers as benchmark to demonstrate the

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

462 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

effectiveness of their proposed approaches. These problems were generated randomly and are divided into two main

subsets - 120 instances of fifty-activities and 120 of one hundred-activities. In each subset, there are 40 instances

each with respectively 1, 2 and 4 resource types. The average number of immediate successors is 2 and the number

of execution modes for each activity is uniformly generated from 1 to 4.

The PSPLIB benchmark problems are mainly for the general MRCPSP. There are 19 sets of problems,

each set having roughly 400 to 600 problems. One of the 19 sets of problems (set n0.mm) has instances with only

renewable resources. There are 470 problems in this set. Results on these 470 problems using other approaches are

not available explicitly in the literature.

Our heuristics were coded in Visual Basic .Net running on Windows-XP® operating system and

implemented on a Pentium-4 PC.

5.1 Results for Boctor’s Benchmark Problems

Results for the Boctor’s benchmark problems are presented now. Table 1 shows the average percent

deviation from the critical-path based lower bound for the six single-pass heuristic combinations Min-LST-SFM,

Min-LST-SFM-CWFM, Min-LST-SFM-CWBM, Max-RWK-SFM, Max_RWK-SFM-CWFM and Max-RWK-

SFM-SWBM. The lower bound is calculated using the shortest mode for each activity and assuming infinite

resources.

Table 1: Comparison of Proposed Single-Pass Greedy and Non-Greedy Heuristics

Average Percentage Deviation from the Critical-Path Based Lower Bound

Table 2 provides a comparison of these results with Boctor’s results on the average percent deviation

measure. When we take the best of six heuristics, the average gap for all problems is 31.4 percent compared to

Boctor’s best results of 34.4 percent. Even individually, the average gaps for the six heuristics range from 32.00 to

33.23, all being better than the 34.4 percent.

Table 2: Comparison of Single-Pass Heuristics Average Percentage Deviation from the Critical-Path Based Lower Bound

 Boctor

(1996a)

Boctor

(1996a)

Boctor

(1996a)
ACE-SP ACE-SP ACE-SP

Num of

Activities

Num of

Resource Types

Min-

SLK-SFM

Max-

RWK-SFM

Boct96

Rule
Min-LST Max-RWK

Best of

Two

50 1 21.9 22.8 20.2 17.0 17.4 16.7

50 2 36.3 35.6 33.9 32.3 32.4 31.7

50 4 49.2 48.1 46.4 44.3 44.5 43.6

100 1 22.7 22.9 20.4 16.9 17.0 16.5

100 2 40.3 40.5 37.4 35.5 35.8 35.0

100 4 50.6 50.3 47.8 46.0 45.6 45.1

All probs. 36.8 36.7 34.4 32.0 32.1 31.4

Num

of

Activities

Num of

Resource

Types

Min-

LST-

SFM

Min-

LST-

SFM-

CWFM

Min-

LST-

SFM-

CWBM

Min-

LST

Best of

Three

Max-

RWK-

SFM

Max-

RWK-

SFM-

CWFM

Max-

RWK-

SFM-

CWBM

Max-

RWK

Best of

Three

50 1 18.46 17.81 17.86 16.99 18.66 18.19 18.19 17.44

50 2 33.50 33.85 33.68 32.32 33.59 33.94 33.75 32.36

50 4 45.08 45.79 45.87 44.31 45.38 45.72 45.79 44.48

100 1 18.31 17.25 17.27 16.91 18.15 17.38 17.35 16.95

100 2 36.68 36.23 36.23 35.50 37.05 36.29 36.29 35.84

100 4 47.38 46.39 46.39 45.96 47.02 46.07 46.04 45.65

All probs. 33.23 32.89 32.88 32.00 33.31 32.93 32.90 32.12

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 463

Table 3: Comparison of Single-Pass Heuristics Maximum Deviation from the Critical-Path Based Lower Bound

 Boctor

(1996a)

Boctor

(1996a)

Boctor

(1996a)
ACE-SP ACE-SP

Num of

Activities

Num of

Resource Types

Min-

SLK-SFM

Max-

RWK-SFM

Boct96

Rule

Min-

LST

Max-

RWK

50 1 35.9 41.8 30.4 28.0 29.1

50 2 50.5 52.6 46.0 48.8 47.3

50 4 67.9 59.8 60.3 57.8 57.4

100 1 33.4 34.3 31.1 25.9 27.1

100 2 55.0 54.3 48.5 52.4 53.3

100 4 66.7 69.3 60.2 59.0 58.2

All probs. 67.9 69.3 60.3 59.0 58.2

Table 4: Comparison of Single-Pass Heuristics Minimum Deviation from the Critical-Path Based Lower Bound

 Boctor

(1996a)

Boctor

(1996a)

Boctor

(1996a)
ACE-SP ACE-SP

Num of

Activities

Num of

Resource Types

Min-

SLK-SFM

Max-

RWK-SFM

Boct96

Rule

Min-

LST

Max-

RWK

50 1 10.9 8.9 11.3 5.7 7.2

50 2 22.5 18.2 18.8 17.3 18.6

50 4 35.6 35.6 32.8 32.3 31.9

100 1 14.1 14.9 12.8 8.6 8.2

100 2 28.0 27.4 27.4 21.4 23.5

100 4 41.2 41.3 39.7 37.9 37.0

All probs. 10.9 8.9 11.3 5.7 7.2

Tables 3 and 4 compare the ACE heuristics with Boctor’s results on two other measures - maximum and

minimum deviations from the lower bound. The maximum deviations for the two ACE-SP heuristics are 59% and

58.2% compared to 60.3% obtained by Boctor96 rule. The minimum deviations are 5.7% and 7.2% compared to

11.3% of Boctor96 rule.

The results of the adaptive metaheuristic (ACE-AM) are now explained. For the adaptive metaheuristic,

the search coefficient  was set to 0.005 and the weights were initialized at 1. The determination of the best value

of the search coefficient required some trial and error on a small set of problems. We report results for solutions

obtained using 5,000 iterations. Average CPU times of our adaptive metaheuristic with Min-LST were 6.7 seconds

for 5,000 iterations. The evaluation criterion we use is the average percentage deviation from the critical-path-based

lower bound. Table 5 shows the results of ACE-AM for LST and RWK heuristics for 5,000 iterations. The results

of this study are compared with those of the simulated-annealing approach of Boctor (1996b) and genetic algorithm

approach of Alcaraz et al. (2003). For the entire set of 240 problems, the best of ACE-AM-LST and ACE-AM-

RWK gives a deviation of 25.8% from the lower bound while the same deviations using simulated annealing and

genetic algorithms were 26.5% and 27.8%, respectively. Even without considering the best of Min-LST and Max-

RWK, each of the proposed approaches outperforms the existing approaches.

Table 5: Comparison of Metaheuristics Average Percentage Deviation from the Critical-Path Based Lower Bound

Boctor

(1996b)
Alcaraz et al. (2003) ACE-AM ACE-AM ACE-AM

Num of activities
Num of

Resource types
Sim. Anneal.

GA

5000 Iter

LST

5000 Iter

RWK

5000 Iter

5000

Iter

50 1 14.1 NA 13.1 13.2 12.8

50 2 25.9 NA 25.5 25.5 25.1

50 4 37.1 NA 36.8 36.9 36.7

All 50 25.7 26.5 25.1 25.2 24.9

100 1 14.2 NA 13.9 13.9 13.6

100 2 29.4 NA 29.2 29.4 28.9

100 4 38.0 NA 38.1 38.2 37.8

All 100 27.2 29.2 27.1 27.2 26.8

All problems 26.5 27.8 26.1 26.2 25.8

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

464 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

5.2 Results for PSPLIB Problems

There are 470 problems in the n0.mm dataset of the PSPLIB benchmark problems for MRCPSP. Results

for these 470 problems do not appear explicitly in the literature. Optimum solutions using exact approaches are

known. The number of activities in these problems range from 12 to 22. So they are not quite as large as Boctor’s

problems and are therefore solvable optimally using exact methods. We provide the gaps from the optimal solutions

and also show how many of the 470 problems were solved to optimality. Table 6 shows the results of using Parallel

and Serial SGS, with various combinations of forward/backward and BFI and Mode selection heuristics.

Table 6: Average Gap from Optimal and Number of Problems Solved to Optimality for PSPLIB n0.mm Dataset Using

Various Procedures

SGS
Fwd or

Fwd/Bwd

BFI or

not

Greedy or Non-

Greedy Mode

Selection Rule

Single-Pass Or

Metaheuristic

Number

Of

Iterations

Average Gap

in Percent

from Optimal

Number of

Optimal Solutions

Found (out of 470)

Par Fwd only No BFI Greedy Single-LFT 1 10.88 226

Par Fwd only No BFI Non-Greedy Single-LFT 1 4.77 276

Par Fwd-Bwd No BFI Greedy Single-LFT 1 6.91 263

Par Fwd-Bwd No BFI Non-Greedy Single-LFT 1 3.31 306

Par Fwd-Bwd BFI Greedy Single-LFT 1 6.28 275

Par Fwd-Bwd BFI Non-Greedy Single-LFT 1 2.65 326

Par Fwd-Bwd BFI Non-Greedy Meta-LFT 1000 1.82 350

Par Fwd-Bwd BFI Non-Greedy Meta-LFT 5000 1.12 371

Ser Fwd only No BFI Greedy Single-LST 1 11.35 233

Ser Fwd only No BFI Non-Greedy Single-LST 1 5.12 280

Ser Fwd-Bwd No BFI Greedy Single-LST 1 7.74 266

Ser Fwd-Bwd No BFI Non-Greedy Single-LST 1 3.48 308

Ser Fwd-Bwd BFI Greedy Single-LST 1 5.25 286

Ser Fwd-Bwd BFI Non-Greedy Single-LST 1 2.77 326

Ser Fwd-Bwd BFI Non-Greedy Meta-LST 1000 1.25 371

Ser Fwd-Bwd BFI Non-Greedy Meta-LST 5000 0.69 404

Although for single-pass, parallel SGS performed marginally better than serial SGS. For example, parallel

SGS for single pass gave a 2.65 percent gap vs. a 2.77 percent gap by serial SGS. For the adaptive metaheuristic,

Serial SGS gave much superior results. For 5000 iterations, serial SGS gave an average gap of only 0.69 percent

compared to a gap of 1.12 percent for parallel SGS. Introduction of Non-Greedy rule for model selection resulted in

significant improvement. For example, for parallel SGS, for forward only and no BFI procedure, the gap reduced

from 10.88 percent to 4.77 percent. For serial SGS, the non-greedy procedure helped reduce the gap from 11.35

percent down to 5.12 percent. Use of Forward-Backward scheduling also resulted in significant improvements. For

example, for parallel SGS, the gap reduced from 10.88 percent to 6.91 percent by applying forward-backward

procedure. Use of BFI resulted in marginal improvements. For example, for parallel SGS, use of BFI reduced the

gap from 6.91 percent down to 6.28 percent. Of course, the use of adaptive metaheuristic further improved the

results. The improvement owing to metaheuristics is particularly remarkable with the Serial SGS (from 2.77 down

to 0.69 percent) compared to Parallel SGS (from 2.65 percent to 1.12 percent). The average CPU time for the

single-pass heuristics were 0.0002 seconds. For the metaheuristics, for 1000 iterations it was 0.181 seconds and for

5000 iterations it was 0.821 seconds.

6. SUMMARY AND CONCLUSIONS

In this paper, we have considered the multi-mode resource-constrained project-scheduling problem with

only renewable resources. This problem, we argue is of greater importance to the project manager than the RCPSP

in which only single mode of execution is considered. We proposed several new solution approaches which include

(i) a new greedy rule for prioritizing activities, (ii) two non-greedy rules for prioritizing execution modes, (iii) an

adaptive metaheuristic, (iv) serial schedule generation scheme, (v) backward-forward scheduling and (vi) double

justification or backward-forward improvement. The new greedy rule for prioritizing activity is called the

‘Minimum Latest Start Time’ or Min-LST. The non-greedy rules for mode selection use a waiting strategy, in

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 465

which, a precedence-feasible activity may not be scheduled in spite of being resource feasible for at least one

execution mode and waits for the fastest mode or one of the faster modes if the wait is worth it. These rules are

called shortest feasible mode with conditional wait for fastest mode (SFM-CWFM) and shortest feasible mode with

conditional wait for better mode (SFM-CWBM). We also proposed an adaptive metaheuristic, in which we use

weighted activity-durations instead of given activity durations. A single-pass heuristic is applied iteratively to the

problem using weighted activity-durations. The weights, which are the same for all activities for the first iteration,

are modified at the end of each iteration. We also studied the effect of applying serial schedule generation scheme

and found that it gave better results than parallel schedule generation scheme. Backward forward scheduling and

double justification schemes were also applied, each of which provided some improvement.

The proposed algorithms were tested on two sets of benchmark problems from the literature. The results

demonstrated that for Boctor’s benchmark problems, the non-greedy rules for mode selection were slightly better

than their greedy counterparts, the proposed greedy rule for activity selection performed slightly better than

previously proposed rules and the adaptive metaheuristic outperformed the simulated annealing algorithm of Boctor

(1996b) and genetic algorithm of Alcaraz et al. (2003). The gaps between the obtained solution and the critical path

based lower bound using the proposed approaches was about 10% lower than the competitive approaches in the

literature. Each element of the proposed approach contributed a little towards the reduction in the gap. For the

PSPLIB benchmark problems, our approach was within 1.5% of the optimal, with 374 problems solved to optimality

using 1000 iterations.

From the managerial perspective, such significant reductions in the makespan can amount to huge cost

savings for the project. In a competitive business environment in which project completion deadlines are strictly

imposed and penalties for missing the deadlines can be high, generating a better schedule can help avert those

penalties. In competitive bidding environment, organizations can bid lower to win contracts.

We encourage more future research in this area. To many project managers a criterion other than

makespan minimization might be of more interest. To some, a multi-criteria objective may be important. Heuristics

and metaheuristics for these different objectives need to be developed for this problem.

AUTHOR INFORMATION

Selcuk Colak is an Associate Professor in the Department of Business at the Cukurova University, Adana, Turkey.

His current research interests are: heuristics and metaheuristics, genetic algorithms, neural networks, project and

machine scheduling, distribution planning. Professor Colak teaches Operations Management, Project Management

and Logistics Management courses both undergraduate and graduate level. Selcuk Colak received his B.S. in

Electrical and Electronics Engineering in 1997 from the Cukurova University in Adana, Turkey. He received his

M.S. in Electrical and Computer Engineering in 2000 and his Ph.D. in Information Systems and Operations

Management in 2006 from the University of Florida, Gainesvlle, FL, USA. E-mail: scolak@cu.edu.tu

Dr. Anurag Agarwal is a Professor in the Department of Information Systems and Decision Sciences at University

of South Florida, Sarasota, FL, USA. He earned his Ph.D. from The Ohio State University, Columbus, OH, USA

(1993) and an MBA from the University of Wisconsin, La Crosse, WI, USA (1988). He teaches a variety of courses

in Information Systems, Statistics and Operations Management, both at the undergraduate and graduate levels. His

primary research interests are in heuristics and metaheuristics for various optimization problems. E-mail:

agarwala@sar.usf.edu (Corresponding author)

Selcuk Erenguc is a Full Professor and the Senior Associate Dean at the Warrington College of Business

Administration at the University of Florida. He has a DBA in Quantitative Business Analysis from Indiana

University (1980) and an MBA from American University of Beirut (1974). His primary research interests are in

manufacturing planning and control, project planning and scheduling and supply chain management. E-mail:

Selcuk.erenguc@warrington.ufl.edu

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/
mailto:agarwala@sar.usf.edu

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

466 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

REFERENCES

1. Agarwal, A., Colak, S. and Eryarsoy, E. (2006). Improvement Heuristic for the Flow-Shop Scheduling

Problem: An Adaptive-Learning Approach. European Journal of Operational Research. 169(3): 801-815.

2. Alcaraz, J., Maroto, C. and Ruiz, R. (2003). Solving the Multi-Mode Resource-Constrained Project

Scheduling Problem with genetic algorithms. Journal of the Operational Research Society. 54(6): 614-626.

3. Barrios, A., Ballestin, F. and Valls, V. (2011). A double genetic algorithm for the mrcpsp/max. Computers

& Operations Research. 38(1): 33-43.

4. Boctor, F.F. (1993). Heuristics for scheduling projects with resource restrictions and several resource-

duration modes. International Journal of Production Research. 31(11): 2547-2558.

5. Boctor, F.F. (1996a). A new and efficient heuristic for scheduling projects with resource restrictions and

multiple execution modes. European Journal of Operational Research, 90(2): 349-361.

6. Boctor, F.F. (1996b). Resource Constrained Project Scheduling by simulated Annealing. International

Journal of Production Research. 34(8): 2335–2351.

7. Boulemein, K. and Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-

constrained project scheduling problem and its multiple-mode version. European Journal of Operational

Research. 149(2): 268-281.

8. Demeulemeester, E. and Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource

constrained project scheduling problem. Management Science. 38(12): 1803-1818.

9. Drexl, A. and Grunewald, J. (1993). Nonpreemptive multi-mode resource-constrained project scheduling.

IIE Transactions. 25(5): 74-81.

10. Elmaghraby, S.E. (1977). Activity Networks: Project Planning and Control by Network Models. Wiley,

New York, 1977.

11. Hartmann, S. and Drexl, A. (1998). Project scheduling with multiple modes: a comparison of exact

algorithms. Networks. 32(4): 283–297.

12. Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operational

Research. 102(1): 111–135.

13. Jozefowska, J., Mika, M., Rozycki, R., Waligora, G. and Weglarz, J. (2001). Simulated annealing for

multi-mode resource-constrained project scheduling. Annals of Operational Research, 102(1): 137–155.

14. Kolisch, R., (1996). Serial and parallel resource-constrained project scheduling methods revisited.

European Journal of Operational Research. 90(2): 320-333.

15. Kolisch, R. and Drexl. A. (1997). Local search for non-preemptive multi-mode resource-constrained

project scheduling. IIE Transactions. 29(11): 987-999.

16. Kolisch, R. and Sprecher, A. (1997). PSPLIB --- a project scheduling problem library. European Journal of

Operational Research. 96, 205-216.

17. Lova, A., Tormos, P., Cervantes, M, and Barber, F. (2009) An efficient hybrid genetic algorithm for

scheduling projects with resource constraints and multiple execution modes. International Journal of

Production Economics. 117(2): 302-316.

18. Mori, M. and Tseng, C.C. (1997). A genetic algorithm for multi-mode resource constrained project

scheduling problem. European Journal of Operational Research. 100(1): 134–141.

19. Nonobe K. and Ibaraki, T. (2002) Formulation and tabu search algorithm for the resource constrained

project scheduling problem. Essays and Surveys in Metaheuristics. Eds. Ribeiro and P. Hansen, Kluwer

Academic Publishers.

20. Ozdamar, L. (1999). A genetic algorithm approach to a general category project scheduling problem.

IEEE Transactions on Systems, Man, and Cybernetics Part C. 29(1): 44-59.

21. Ozdamar, L. and Ulusoy. G. (1994). A local constraint based analysis approach to project scheduling under

general resource constraints. European Journal of Operational Research. 79(2): 287-298.

22. Patterson, J.H., Slowinski, R., Talbot, F.B. and Weglarz, J. (1989). An algorithm for a general class of

precedence and resource constrained scheduling problem. Advances in Project Scheduling. Eds. Jan

Weglarz and Joanna Jozefowska. Elsevier: Amsterdam. 3-28.

23. Patterson, J.H., Talbot, F.B., Slowinski, R. and Weglarz, J. (1990). Computational experience with a

backtracking algorithm for solving a general class of precedence and resource-constrained project

scheduling problem. European Journal of Operational Research. 165(2): 375-386.

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 467

24. Slowinski R., Soniewicki, B. and Weglarz, J. (1994). DSS for multiobjective project scheduling. European

Journal of Operational Research. 79(2): 220–229.

25. Sprecher, A. and Drexl, A. (1998). Multi-mode resource-constrained project scheduling by a simple,

general and powerful sequencing algorithm. European Journal of Operational Research. 107(2): 431-450.

26. Sprecher, A., Hartmann, S. and Drexl, A. (1997). An exact algorithm for project scheduling with multiple

modes. OR Spektrum. 19, 195-203.

27. Talbot, F.B. (1982). Resource-constrained project scheduling with time-resource trade-offs: the non-

preemptive case. Management Science. 28(10): 1197–1210.

28. Valls, V., Ballestin, F. and Quintanilla, S. (2005). Justification and RCPSP: A technique that pays.

European Journal of Operational Research. 165(2): 375-386.

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business & Economics Research – November 2013 Volume 11, Number 11

468 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

NOTES

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

