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ABSTRACT 

 

Our study proposes firm bankruptcy prediction using logit analysis after the passage of the 

Sarbanes-Oxley (SOX) Act using 2008-2009 U.S. data.  The results of our logit analysis show an 

80% (90% with one year before bankruptcy data) prediction accuracy rate using financial and 

other data from the 10-K report in the post-SOX period.  This prediction rate is comparable to 

other data mining tools.  Overall, our results show that, as compared to the prediction rates 

documented by other bankruptcy studies before SOX, firm bankruptcy prediction rates have 

improved since the passage of SOX. Our findings shed light on the benefits of SOX by providing 

evidence that legislation makes the financial reporting more informative. This study is important 

for regulators to implement public policy.  Investors may be interested in our findings to better 

assess company risk when making portfolio decisions.   
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INTRODUCTION 

 

he Sarbanes-Oxley Act (SOX) of 2002 was introduced to require reporting on the effectiveness of 

any material weaknesses in internal controls over financial reporting by a firm’s top CEOs and 

accountants.  The objective of SOX is to enhance the reliability of financial statements. Therefore, 

SOX will improve the quality of financial reporting and deter corporate fraud in the U.S.; however, opponents have 

been concerned that the costs of implementing the provisions of SOX may outweigh the benefits.   This issue of 

costs and benefits of the SOX effect is still a controversial issue as the SEC recently excluded the implementation of 

SOX for small firms with sales less than 75 million (Solnik, 2010).  

 

One major benefit of SOX is the improvement of financial reporting quality, thereby enabling investors or 

other decision makers to sort out good and bad companies.  In this study, we examine firm bankruptcy after the 

passage of SOX and compare the overall prediction accuracy rates with those of general bankruptcy studies before 

SOX.  We use logit analysis in this study because it enables us to identify the specific variables that contribute to 

bankruptcy prediction. Based on the logit model, we find an 80% (90% with one year before bankruptcy data) 

prediction accuracy rate using financial and other data from the 10-K report after SOX.  This prediction rate is 

comparable to other data mining tools.  Overall, our results show that, compared with other previous logit 

bankruptcy studies, firm bankruptcy prediction rates improved after the passage of SOX. 

 

This paper adds to a growing body of research that documents the benefits of SOX.  Evidence on the 

bankruptcy prediction accuracy is likely to be of interest to standard setters.  The improved accuracy in predicting 

firm bankruptcy after the passage of SOX helps investors better evaluate the distress risk of companies when making 

portfolio decisions.  In this sense, the findings of this study have implications in making investment decisions. 

 

The next section presents the background and prior research relevant to our study, followed by a section 

describing our sample data and reports our empirical results, and concluding with a summary of our findings and 

future research avenues. 

 

T 
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BACKGROUND AND PRIOR RESEARCH 

 

 SOX was introduced to minimize financial fraud and reestablish investor confidence after major scandals 

such as Enron and Worldcom at the turn of century, but after another market crash in 2008, investors doubted the 

true impact of SOX.   The benefits of SOX are supposed to improve corporate governance mechanisms and improve 

the quality of financial reporting for investors.  However, costs of SOX are not trivial for small firms and the SEC 

finally excluded small firms from the SOX implementation.  SOX was fully implemented in the U.S. in 2008 for 

medium or large firms and our study tries to measure the benefits of SOX using the firm bankruptcy study context. 

 

 There are two types of errors (Type-I and Type-II) involved in general prediction studies like ours.  Type-I 

error refers to false rejection error.  For example, in a bankruptcy prediction study, we reject the null hypothesis that 

a firm is a non-bankrupt firm even though the firm is actually a bankrupt firm.  This type of error will be very costly 

for a decision maker.  A Type-II error is the opposite case.  For example, we predict a firm to be a bankrupt firm, 

even though the firm is not a bankrupt firm.  In the Type-II error case, the cost of misclassification is not as severe 

as in the Type-I error case.  For our study, we focus on overall prediction accuracy and Type-I errors because the 

cost of misclassifying can be significant. 

 

 Altman (1968) originally used multiple discriminant analysis (MDA) by using five financial ratios to 

predict firm bankruptcy using a manufacturing sample and matching control firms.  Ohlson (1980) later used a logit 

model that does not require any assumptions about the prior probability of the bankruptcy sample.  However, as 

Grice and Dugan (2001) later pointed out, hold-out sample tests are potentially upwardly biased.   Platt and Platt 

(1990) also suggested that the differences in the macro economic factors are sensitive to specific time periods.  

Therefore, Grice and Ingram (2001) empirically tested and reported that Altman’s (1968) study using a small sample 

of 33 manufacturing firms and the use of an equal sample size of bankrupt and non-bankrupt firms using a sample 

from 1958 to 1961 reported 83.5% overall accuracy.  However, Altman’s model using the 1988-1991 test period 

showed that the overall correct classification rate dropped to 57.8%.  Begley et al. (1996) also reestimated both 

Altman’s (1968) and Ohlson’s (1980) models using 1980 data and reported that Ohlson’s model showed a Type-I 

error rate of 29.2% and a Type-II error rate of 14.9% at the cutoff point of 0.061.  They suggested that both models’ 

accuracy rates drop as they are applied in different time periods, but Ohlson’s model is a preferred model because it 

does not require any assumptions about the prior probability of bankruptcy sample.  In our study we also want to 

compare both models after the passage of SOX to test this issue. 

 

Goal programming (GP) was proposed by Freed and Glover (1986) to minimize misclassifications of Type-

I and Type-II errors.   However, the GP approach is not practical because of computational problems around that 

time (Koehler and Erenguc, 1990).   

 

Shumway (2001) proposed a simple hazard model to be better for bankruptcy prediction studies like ours, 

but we do not have longitudinal data to apply his model and we decided to use the traditional logit model for this 

study to check which variables are contributing to bankruptcy prediction. 

 

Recently, several researchers had compared machine learning, neural networks, case-based reasoning, and 

statistics approaches using experiments to predict bankruptcy, but their results are not conclusive as to which 

methods outperform the other methods (see, Sung et al., 1999, Yip, 2006 and Peng et al., 2009, for example).  

Rough sets theory is also proposed because a cause-effect relationship between factors and the actual occurrence of 

bankruptcy is not easy (McKee, 2000), but empirical study showed 61% and 68% accuracy rates using this theory 

(McKee, 2003).  Duffie et al. (2007) proposed a multi-period bankruptcy model would be better using large sample 

firms. Generally, bankruptcy prediction rates around 85% are acceptable and some data mining method prediction 

rates are context specific.   

 

SAMPLE DATA, VARIABLES, AND EMPIRICAL RESULTS 

 

 In this paper, we used the data search engine DirectEDGAR (2008) to identify 35 (130 for three-year data) 

firms that filed bankruptcy in 2008 and 2009.  Next, we collected more than double the number of matching control 

firms based on firm size and the two-digit industry codes that had no bankruptcy filing to emulate the real world 
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context.  We started with more than double the number of control firms, because the three years of financial data for 

some firms are not available and these control firms are excluded from further analyses.  Our final control firms are 

composed of 306 firm-year observations for the three years that have available financial and other data in Form 10-

K filings using DirectEDGAR and Compustat. 

 

In selecting variables that may help predict firm bankruptcy after SOX, we included Altman et al.’s (1968) 

variables and Ohlson’s (1980) variables because these variables have proven to be useful in bankruptcy prediction 

studies.   

 

 First, we run our logit model using five variables as Altman (1968) did in his study.    

 

Bankruptcy (1), otherwise (0) = α0 +Σ β Altman’s five ratios (X1,……, X5)  + ε  (1) 

 

X1 =Working capital divided by total assets (WCA_TA) 

X2 = Retained earnings divided by total assets (RE_TA) 

X3 = Earnings before interest and taxes divided by total assets (EBIT_TA) 

X4 = Market value of equity divided by book value of total debt (MKV_TD) 

X5 = Sales divided by total assets (SALES_TA) 

 

The ratio of working capital to total assets (WCA_TA) is a proxy for firm liquidity.  The working capital 

ratio measures the ability of a company to pay its incoming debt. The lower the working capital, the higher the 

possibility of being bankrupt.  The ratio of retained earnings to total assets (RE_TA) captures the extent to which 

assets have been paid for by cumulative profits. Altman (1968) finds that younger firms have a higher risk of 

bankruptcy than older firms due to a lack of time to build up cumulative profits. Earnings before interest and taxes, 

scaled by total assets (EBIT_TA), is used to measure operating efficiency apart from any tax and leveraging factors.  

This is an important predictor of firm bankruptcy, given the fact that a firm’s existence depends on the earning 

power of its assets. We use market value of equity, divided by book value of total debt (MKV_TD), to proxy for firm 

leverage. A low equity/debt ratio increases the risk of insolvency. Finally, asset turnover ratio, defined as sales 

divided by total assets (SALES_TA), is included to evaluate the firms’ effectiveness in managing assets. The higher 

the assets turnover ratio, the better the management's capability to generate revenues. 

 

 Next, we run our model using Ohlson’s (1980) nine variables.     

 

Bankruptcy (1), otherwise (0) = α0 +Σ β Ohlson’s nine ratios (Y1,……, Y9)  + ε                 (2) 

 

Y1:  Size, measured as the logarithm of total Assets (SIZE) 

Y2:  Total liabilities divided by total assets (TL_TA) 

Y3:  Working capital divided by total assets (WCA_TA) 

Y4:  Total current liabilities divided by total current assets (CL_CA) 

Y5:  Net income divided by total assets (NI_TA) 

Y6:  If TL_TA>1 then OENEG=1; else OENEG=0 

Y7:  Funds from operations divided by total liabilities (FU_TL) 

Y8:  If Net Income<0 or lag (Net Income) <0 then INTWO=1; else INTWO=0 

Y9:  CHIN= (Net Income- lag (Net Income))/ [absolute (Net Income) + absolute (lag Net Income)] 

 

 As documented by Ohlson (1980), smaller firms (SIZE), firms with higher financial leverage (TL_TA), 

firms with current liquidity problems (lower WCA_TA and/or higher CL_TA), and firms with poorer performance 

measures (NI_TA and/or FU_TL) increase the likelihood of business failure.  

 

In addition to the above bankruptcy prediction variables, we included internal control weakness, stock 

market return, and dividend missing variables.  These variables were useful in firm bankruptcy prediction in 

previous studies (see, Sun, 2007; Hammersley, et al. 2008, for example).  However, our sample firms near 

bankruptcy stage are missing most of the return data. 
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Table 1 shows the descriptive statistics. As shown, all variables between bankrupt firms and non-bankrupt 

firms are significantly different except for Size (SIZE), Funds from operations/Total liabilities (FU_TL), Changes in 

income/Average Income of two years (CHGREIN),  firm’s Market value of equity/Total debts (MKV_TD), 

Sales/Total assets (SALES_TA), and Annual market return data (RET).  Size is not supposed to be different as we 

matched control firms based on total assets.  Annual market return data are not significant because of a lot of 

missing data for bankrupt firms.  As we matched based on size and industry, bankrupt firms and non-bankrupt 

Market value of equity/Total debts and Sales/Total assets are similar as we expected.  For one-year data, the results 

are similar except Funds from operation/Total liabilities and Market return data are marginally significant compared 

with 3-year data and not reported for brevity.  However, Total liabilities/Total assets > 1 ratio is not significant.  In 

addition, Earning before interest and taxes/Total assets and Internal control weakness variables are marginally 

significant. 
 

Table 1:  Descriptive Statistics With Firm Year Data 

Bankrupt =1 
      

Variable N Mean Std Dev Minimum Maximum t-stat (1) 

SIZE 130 3.036 0.670 1.067 4.251 1.88 

TDEBT_TA 130 0.522 0.373 0.000 2.365 6.54*** 

WCA_TA 130 0.004 0.366 -2.356 0.574 -5.30*** 

CL_CA 130 1.325 1.917 0.139 13.667 3.46*** 

NI_TA 130 -0.128 0.238 -1.367 0.544 -4.99*** 

FU_TL 130 33.568 347.968 -52.720 3949.740 -0.70 

LOSS 130 0.815 0.389 0.000 1.000 11.59*** 

OENEG 130 0.085 0.279 0.000 1.000 2.98** 

CHGREIN_TA 130 -3.045 27.966 -198.828 110.229 -1.24 

EBIT_TA 130 -0.014 0.131 -0.924 0.171 -5.49*** 

MKV_TD 130 42.646 410.251 0.000 4648.890 -1.35 

SALES_TA 130 1.235 0.858 0.016 4.439 1.82 

RE_TA 130 -0.593 1.168 -7.327 0.470 -5.04*** 

IC 130 0.208 0.407 0.000 1.000 4.71*** 

DIV 128 0.758 0.430 0.000 1.000 3.38*** 

RETX 28 -0.489 0.938 -2.371 1.086 -1.84 

Bankrupt =0 
      

Variable N Mean Std Dev Minimum Maximum 
 

SIZE 306 2.899 0.768 -0.220 5.301 
 

TDEBT_TA 306 0.292 0.229 0.000 1.080 
 

WCA_TA 306 0.186 0.215 -0.670 0.824 
 

CL_CA 306 0.728 0.681 0.093 9.785 
 

NI_TA 306 -0.006 0.219 -2.188 0.589 
 

FU_TL 306 83.021 1119.380 -78.358 19433.310 
 

LOSS 306 0.314 0.465 0.000 1.000 
 

OENEG 306 0.010 0.099 0.000 1.000 
 

CHGREIN_TA 304 0.004 0.068 -0.248 0.365 
 

EBIT_TA 306 0.071 0.182 -2.160 0.889 
 

MKV_TD 306 386.955 4421.000 0.002 75722.150 
 

SALES_TA 306 1.081 0.668 0.080 3.137 
 

RE_TA 306 -0.013 0.919 -11.439 1.558 
 

IC 306 0.033 0.178 0.000 1.000 
 

DIV 306 0.598 0.491 0.000 1.000 
 

RETX 212 -0.153 0.644 -4.071 1.608   
(1) t-value for testing mean differences between bankrupt and non-bankrupt firms 
*: p< 0.10 
**: p < 0.05 
***: p < 0.001 

Variable Descriptions: 

Size = the log of total assets 

TDEBT_TA = total debt divided by total assets (Ohlson 1980 ratio) 

WCA_TA = working capital divided by total assets (Altman 1968 ratio and Ohlson 1980 ratio) 
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CL_CA = total current liabilities divided by total current assets (Ohlson 1980 ratio) 

NI_TA = net income divided by total assets (Ohlson 1980 ratio) 

FU_TL = funds from operations divided by total liabilities (Ohlson 1980 ratio) 

LOSS = if net income<0 or lag (net income) <0 then INTWO=1; else INTWO=0 (Ohlson 1980 dummy 

variable) 

OENEG = if TL/TA>1 then OENEG=1; else OENEG=0 (Ohlson 1980 dummy variable) 

CHGREIN = (net income- lag (net income))/ [absolute (net income) + absolute (lag net income)] (Ohlson 

1980 ratio) 

EBIT_TA = earnings before interest and taxes divided by total assets (Altman 1968 ratio) 

MKV_TD = market value of equity divided by book value of total debt (Altman 1968 ratio) 

SALES_TA = sales divided by total assets (Altman 1968 ratio) 

RE_TA = retained earnings divided by total assets (Altman 1968 ratio) 

IC = If internal control weaknesses are mentioned in 10-K then IC=1; 0 otherwise 

DIV = If the dividend is missing then 1; 0 otherwise 

RETX = the firm’s annual average market return 
 

 

 Table 2 presents our results using Altman’s (1968) five ratios.  This model is significant as maximum 

rescaled R-square is 22%, Likelihood Chi-Square is 73.61, and Wald’s Chi-Square is 42.93 and significant at less 

than .001.  The overall prediction rate is 75% (one-year data prediction rate is 83% and not reported here) and this 

rate is comparable with that of a similar data mining bankruptcy study by Kwak et al. (2012). Not surprisingly, we 

find that the coefficient on MKV_TD (market value of equity divided by total debts) is not significant given that as 

shown in Table 1.  MKV_TD is not significantly different between bankrupt and non-bankrupt firms.  The result 

indicates market value of a firm is not important for bankruptcy prediction. 
 

Table 2:  Logit Regression Analysis Using Altman’s Five Predictor Variables With 3-Year Data (N = 436) 

Parameter Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept -1.1077 0.2231 24.6579 <.0001 

EBIT_TA -2.4221 1.1390 4.5220 0.0335 

MKV_TD -0.00081 0.000835 0.9408 0.3321 

SALES_TA 0.5399 0.1640 10.8338 0.0010 

WCA_TA -2.6565 0.6335 17.5862 <.0001 

RE_TA -0.3393 0.1724 3.8724 0.0491 

Likelihood Chi-Square                                     73.61 

Wald’s Chi-Square                                           42.93 

Max-rescaled R-Square                                  0.2206 

Overall prediction rate                                       75% 

Variables are defined in Table 1. 

 

 Table 3 presents logit analysis results with Ohlson’s (1980) nine-variable model.  Overall, this model is 

significant as the maximum rescaled R-square is 37%, Likelihood Chi-Square is 131.35, and Wald’s Chi-Square is 

86.84 and significant at less than .001.  The overall prediction rate is 77% (one-year prediction rate is 84% and not 

reported here). As expected, the prediction rate of Ohlson’s (1980) model is 2% higher than Altman’s (1968) model.  

However, variables CL_CA (current liabilities divided by current assets), FU_TL (funds from operation divided by 

total liabilities), and OENEG (if TL/TA>1 then OENEG=1; else OENEG=0) are not significant in predicting 

business failure.   
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Table 3:  Logit Analysis Using Ohlson’s Nine Predictor Variables With 3-Year Data (N=434) 

Parameter Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept -3.3930 0.7249 21.9061 <.0001 

SIZE 0.3397 0.1809 3.5248 0.0605 

TDEBT_TA 1.2728 0.6242 4.1578 0.0414 

WCA_TA -1.8096 0.8832 4.1983 0.0405 

CL_CA 0.0137 0.1571 0.0076 0.9306 

NI_TA 1.2142 0.7390 2.6999 0.1004 

FU_TL 0.00007 0.00013 0.2761 0.5993 

LOSS 2.1535 0.3222 44.676 <.0001 

OENEG 0.4756 0.8848 0.2889 0.5909 

CHGREIN -0.0199 0.00910 4.7929 0.0286 

Likelihood Chi-Square                                      131.35 

Wald’s Chi-Square                                              86.84 

Max-rescaled R-Square                                     0.3704 

Overall prediction rate                                        77%  

Variables are defined in Table 1. 

 

 Table 4 presents the combined variable model and maximum-scaled R-square as 45.38%.   Likelihood ratio 

and Wald test show 167.36 and 93.91, respectively, and significant at less than .001.  The overall prediction rate is 

80% (one-year prediction rate is 90% and not reported here) for this model.  We conclude the logit model performs 

better consistently as firms approach near bankruptcy stage.  Size is not significant as we expected.  Similar to the 

results presented in each individual model, we find that CL_CA (current liabilities divided by current assets), 

FU_TL (funds from operation divided by total liabilities), OENEG (if TL/TA>1 then OENEG=1; else OENEG=0), 

and MKV_TD (Market value of equity divided by total debts) are not significant at the conventional levels.  

 

 Table 5 reports the combined model with other variables proven to be significant in previous bankruptcy 

prediction studies.  Maximum-rescaled R-square is 57.6% and Likelihood ratio and Wald test are 84.16 and 33.00, 

respectively, and significant at the .01 level.  The overall prediction rate is 73.9% (one-year prediction rate is 

81.7%).  This is not surprising because we lose a lot of data entered in the analysis.  Interestingly, the internal 

control variable is significant at the .05 level and the dividend missing variable is marginally significant.  However, 

the market return variable is not significant because of missing values of  near-bankrupt firms.   Each variable 

contributing to the overall model is consistent with previous model, except that NI_TA (Net income divided by total 

assets) and EBIT_TA (Earnings before interest and taxes divided by total assets) variables are not significant.   

 

Most of the bankruptcy predictors are strongly correlated with each other.  The high correlation raises the 

problem of multicollinearity. Although multicollinearity does not decrease the predictive power of the model as a 

whole, the regression coefficients may be biased and, therefore, we are unable to determine the attributes that are 

associated with bankruptcy. To address the issue of multicollinearity, we perform a principal component factor 

analysis. The factor analysis reduces a set of observable variables to a small number of factors. The extracted 

common factors reflect the underlying dimensions of the economic determinants of firm bankruptcy. Following the 

Kaiser (1960) rule, we retain all factors with eigenvalues greater than one. This process gives us three factors. Table 

6 Panel A shows that the three factors explain 91 percent of the total variance in the data with the combined Altman 

(1968) and Ohlson (1980) variables. Then the reduced three factors are rotated using an oblique rotation. The 
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oblique rotation allows the factors to be correlated with each other. In our case, the correlations among the three 

factors are less than 0.1, suggesting the extracted three factors are essentially orthogonal.  
 

Table 4:  Combination Of Altman’s And Ohlson’s Predictor Variables With 3-Year Data (N=434) 

Parameter Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept -4.1255 0.8076 26.0972 <.0001 

SIZE 0.2507 0.2200 1.2983 0.2545 

TDEBT_TA 2.0512 0.7157 8.2144 0.0042 

WCA_TA -1.9557 0.9582 4.1660 0.0412 

CL_CA 0.0164 0.1545 0.0112 0.9156 

NI_TA 3.4068 0.9847 11.9695 0.0005 

FU_TL 0.0057 0.007 0.6670 0.4141 

LOSS 2.0999 0.3523 35.5363 <.0001 

OENEG 0.2250 0.9080 0.0614 0.8043 

CHGREIN -0.0218 0.0098 4.8856 0.0271 

EBIT_TA -3.7374 1.4830 6.3510 0.0117 

MKV_TD -0.0033 0.0052 0.4124 0.5208 

SALES_TA 0.8328 0.2230 13.9498 0.0002 

RE_TA -0.2400 0.1679 2.0442 0.1528 

Likelihood ratio Chi-Square                             167.36 

Wald’s Chi-Square                                             93.91 

Max-rescaled R-Square                                    0.4538 

Overall prediction rate                                         80% 

Variables are defined in Table 1.  

 

To interpret the factors, we examine the association between the combined Altman (1968) and Ohlson 

(1980) variables and each factor. We link each factor with those variables when the coefficient of each factor 

loading is greater than 0.4 in absolute value and is significantly different from zero at conventional levels. Table 6 

Panel B presents the association between each factor and the resulting variables. The first factor explains 47% of 

total variation in the four variables, with loadings for LOSS, NI_TA, EBIT_TA, and RE_TA of -0.55, 0.70, 0.86, 

0.79, and 0.74, respectively. Variables WCA_TA, TDEBT_TA, and CL_TA load strongly on the second factor, with 

loadings of 0.91, -0.61, and -0.69, respectively.  The third factor has two variables, FU_TL and MKV_TD, with 

loadings of 0.88 and 0.75, respectively. Based on the characteristics of the variables that are related to each factor, 

we conclude that factor 1 captures the notion of firm profitability. The higher value of factor 1 implies higher net 

income and hence higher retained earnings. Factor 2, on the other hand, seems to capture the notion of firm liquidity. 

The higher value of factor 2 suggests a larger margin of safety where the company is able to cover its debts.  Finally, 

factor 3 appears to capture firm financial leverage.  
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Table 5:Combination Of Altman’s And Ohlson’s Models With Other Control Variables 

Parameter Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept -11.0940 2.6711 17.2496 <.0001 

SIZE 1.6419 0.6691 6.0221 0.0141 

TDEBT_TA 4.2971 1.6079 7.1418 0.0075 

WCA_TA -5.1853 2.4744 4.3915 0.0361 

CL_CA -0.2247 0.2926 0.5902 0.4424 

NI_TA 2.0735 3.1013 0.4470 0.5037 

FU_TL 0.0157 0.0418 0.1407 0.7076 

LOSS 2.0575 0.8103 6.4483 0.0111 

OENEG -0.6038 2.1665 0.0777 0.7805 

CHGREIN 0.1017 0.0610 2.7830 0.0953 

EBIT_TA 0.1062 3.7459 0.0008 0.9774 

MKV_TD -0.0082 0.0313 0.0695 0.7921 

SALES_TA 0.6763 0.6462 1.0952 0.2953 

RE_TA 0.5144 0.7566 0.4623 0.4966 

RETX 0.3489 0.4341 0.6463 0.4215 

IC 2.8552 1.1766 5.8883 0.0152 

DIV 1.1998 0.6923 3.0040 0.0831 

Likelihood ratio Chi-Square                                 84.16 

Wald’s Chi-Square                                               33.00 

Max-rescaled R-Square                                      0.5761 

Overall prediction rate                                         73.9%  

Variables are defined in Table 1. 

 

 Table 6 Panel C shows the regression results using the extracted common factors. This model is significant 

as maximum rescaled R-square is 31.87%. The likelihood Chi-Square is 83.75 and Wald’s Chi-Square is 51.62.  We 

find that the coefficients on factor 1 and factor 2 are significantly negative, suggesting that firms with poorer 

performances and firms with liquidity problems have a higher incidence of bankruptcy.  However, factor 3 is 

insignificant in predicting business failure. The overall prediction rate is 75.8% with three-year data and 83.4% with 

one-year data.  In short, the results presented in Table 6 Panel C suggest the extracted factors affect the accuracy of 

bankruptcy prediction. 
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Table 6:  Factor Analysis: Combination Of Altman’s And Ohlson’s Models 

 

Panel A: Component Factors 

Factor Eigenvalue Percentage Explained Cumulative Percentage 

1 3.47 0.47 0.47 

2 1.98 0.27 0.74 

3 1.25 0.17 0.91 

 

Panel B:  Component Loading Analysis 

Factor Component Loading 

Factor 1 (Profit)   

LOSS -0.55 

NI_TA 0.86 

EBIT_TA 0.79 

RE_TA 0.74 

Factor 2 (Liquidity) 

 WCA_TA 0.91 

TDEBT_TA -0.61 

CL_TA -0.69 

Factor 3 (Leverage) 

 FU_TL 0.88 

MKV_TD 0.75 

 

Panel C: Association Between Extracted Factors And The Likelihood Of Bankruptcy 

Parameter Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept -1.7302 0.1977 76.607 <.0001 

Factor1 -0.5818 0.1582 13.52 0.0002 

Factor 2 -0.5826 0.2032 8.2252 0.0041 

Factor3 -0.00005 0.00014 0.1246 0.7241 

Likelihood ratio Chi-Square                                 83.75 

Wald’s Chi-Square                                               51.62 

Max-rescaled R-Square                                      0.3187 

Overall prediction rate                                         75.8%  

Variables are defined in Table 1. 
 

Finally, we conduct a supplementary factor analysis with the combined model and other control variables, 

such as internal control weakness, stock market return, and dividends. We find qualitatively similar results as Table 

6. Untabulated results show that the loadings of these control variables are less than 0.20 in absolute value, 

suggesting that the control variables have insignificant associations with the extracted factors. Taken together, our 

factor analysis provides consistent results on the determinants in predicting firm bankruptcy based on past financial 

data. 

 

SUMMARY AND CONCLUSIONS 

 

Our findings will justify the benefits of SOX and it will be important for regulators for implementing public 

policy.  Investors may be interested in our findings to better assess the distress risk of companies when they make 

portfolio decisions.  It is still a controversial issue that benefits of SOX will improve the quality of corporate 

financial reporting and enhance investor confidence, but costs of compliance are not trivial.  In this paper, we used 

logit analysis to predict bankruptcy after SOX using 2008-2009 data.  The results of our logit analysis in bankruptcy 

prediction study show 80% accuracy rate (90% for one year before bankruptcy data) and is comparable with other 

data mining approaches. 

 

 Our paper has several limitations.  We only have a small sample of bankrupt firms and most market return 

data are missing.  Another limitation is that bankrupt firms and non-bankrupt firms are heterogeneous and their 

actual probabilities of bankruptcy are non-observable (Baixauli and Modica-Milo, 2010).  We may need other 

variables to improve the overall prediction accuracy and minimize the type-I error rate.    
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