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Abstract 

 

This article revisits the topic of two-state pricing of currency options.  It examines the models de-

veloped by Cox, Ross, and Rubinstein, Rendleman and Bartter, and Trigeorgis, and presents two 

alternative binomial models based on the continuous and discrete time Geometric Brownian Mo-

tion processes respectively.  This work generalizes the standard binomial approach incorporating 

the main existing models as particular cases.  The proposed models are straightforward, flexible, 

accommodate any drift condition and afford additional insights into binomial trees and lattice 

models in general.  Further, the alternative parameterizations are free of the negative aspects as-

sociated with the Cox, Ross, and Rubinstein model. 

 

Introduction 

 

After the seminal article by Black and Scholes (BS) (1973), several methods for valuing derivative securi-

ties have been proposed.  In Merton (1973) the BS model is extended to include valuing an option on a stock, or in-

dex, that pays continuous dividends.  Feiger and Jaquillat (1979) and, later, Garman and Kohlhagen (1983) and Bi-

ger and Hull (1983) extended the BS model to value currency options.  Barone-Adesi and Whaley (1987) utilized a 

quadratic approximation approach to extend the BS framework to the valuation of American options.  Cox, Ross, 

and Rubinstein (CRR) (1979), and Rendleman and Bartter (RB) (1979) pioneered the two-state lattice approach, 

which is a powerful tool that can be used to value a wide variety of contingent claims. In the binomial setting, valua-

tion by arbitrage arguments is clear.  This technique is based on the formation of a risk-free portfolio by combining a 

currency and an option on this currency.  Such a portfolio should earn the risk-free interest rate.  The idea was not 

new and its genesis is the partial differential equation developed by BS.  With specific parameters, CRR and RB 

show that option values from their flexible binomial models converge to the adjusted “celebrated BS model” values 

described in Feiger and Jaquillat. 

 

The CRR and RB methodology has been later used, slightly modified or extended by, among others, Hull 

and White (1998), and Boyle (1986).  Tian (1993) proposed an alternative binomial model and compared its perfor-

mance to that of the CRR model.  However, the results were later criticized in Easton (1996).  Trigeorgis (1991) de-

lineated a log-transformed variation of the binomial model, which supposedly overcomes the problems of consisten-

cy, stability and efficiency associated with the CRR specification and various other numerical techniques.  Accord-

ing to Trigeorgis (1991, pp. 319), this methodology relative to that of CRR’s “compares favorably in terms of com-

putational efficiency due to the log-transformation.”   

 

This article revisits two-state option pricing and presents two alternative models based on continuous and 

discrete time Geometric Brownian Motion processes respectively.  The proposed methodology proves extremely 

flexible as it accommodates any centering condition.  This flexibility is achieved by solving for two parameters as a 

function of the third.  Additionally, the RB model is extended and the log-transformed parameterization suggested 

by Trigeorgis is shown to be mathematically identical to a particular case of the extended RB model.  Thus the en-

hanced computational efficiency attributed to the log-transformation proves mistaken, as it is the result of an exact 

solution and the specified centering condition.   

 

The main contribution of this work is pedagogical in nature.  The proposed parameterizations are simple 

and flexible alternatives to the popular existing specifications and afford additional insights into binomial trees and 

lattice models in general. 
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The format of this paper is as follows: the first section swiftly reviews the continuous time Geometric 

Brownian Motion (GBM) process; the second presents the RB and CRR models; the third discusses the continuous 

time GBM process and presents the alternative binomial model (the “ABMC”); the fourth provides the discrete time 

GBM process and presents the alternative binomial model (the “ABMD”); the fifth reviews the log-transformed bi-

nomial model and proves this to be a particular case of an extended RB parameterization; the sixth revisits binomial 

models, extends the RB model to accommodate numerous centering conditions and compares it to the ABMC and 

ABMD models; the seventh provides the conclusions. 

 

Continuous Time Geometric Brownian Motion 

 

In a risk-neutral world, if one assumes that the spot exchange rate S follows a continuous-time Geometric 

Brownian Motion process (GBM) then: 

 

SdzSdtrdS  ~
 (1) 

 

where:  frrr ~
, 

 r is the instantaneous domestic risk-free interest rate, 

 fr is the instantaneous foreign risk-free interest rate, 

  is the instantaneous volatility of the spot exchange rate, 

 dt is an infinitely small increment of time, and 

 dz is a Wiener process. 

 

By using Ito’s Lemma, one can show: 

 

dzdtrSd 












2

~)ln(
2

 (2) 

 

or: 

 

dzdtdX    (3) 

where 









2

~  and  ),ln(
2

 rSX .  As a result, )ln(S  follows a generalized Wiener process for the time 

period  t,0 , where t is a point in time, and the variable 











0

0 lnˆ
S

S
XXX t

t  is normally distributed with a 

mean of t   and a variance of t2 , and 0S  and tS  represent the spot exchange rate at time 0 and t respectively.  

More succinctly: 

 

X̂   ttN  ,   (4) 

 

The continuously compounded rate of return (R) realized during the period ),0( t can be defined by the following 

equation: 

 
Rt

t eSS 0   (5) 

 

accordingly: 
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X
tS

S

t
R t ˆ1

ln
1

0











  (6) 

 

or: 

 

XRt ˆ  (7) 

Thus, the continuously compounded rate of return R  is normally distributed with a mean of 
2

~
2

  r  and a 

variance of 
t

2
.  Taking the expected value of both sides of equation (7) one can obtain: 

 

  




















0

lnˆ)(
S

S
EXEtRtE t  (8) 

 

In a binomial model, the spot exchange rate can either move up from 0S  to 0Su  or down to 0Sd  , where u and d 

are two parameters such that u is greater than one and d is less than one.  Since the spot exchange rate follows a  

binomial model, the variable 










0S

S t
 has the following distribution: 

 





 )1(y probabilit neutral -risk      with 

y probabilit neutral-risk      with 

pd

pu
  (9) 

 

and for the lattice approach: 

 

)ln()1()ln(ln
0

dpup
S

S
E t 










 (10) 

 

or: 

 

  DppUXE )1(ˆ   (11) 

 

where: 

  

)ln(  ),ln( dDuU   (12) 

 

Therefore, the variable X̂  follows the distribution provided below: 

 





 )1(y probabilit neutral -risk     with 

y probabilit neutral -risk      with 

pD

pU
  (13) 

 

It can be shown that the variance, for the lattice approach, of the variable 

0

ln
S

S t
 is given by the following: 
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2

0

ln)1(ln 



















d

u
pp

S

S
Var t

 (14) 

 

or: 

  

  2)()1(ˆ DUppXVar   (15) 

 

 

The RB and CRR Models 

 

RB (1979) and CRR (1979) proposed the following system: 

 

tdpup
S

S
E t 








 )ln()1()ln(ln
0

 (16) 

 

  tdupp
S

S
Var t 








 22

0

)/ln()1(ln   (17) 

 

where t is equal to nT / , T is the time to maturity and n is the number of time steps.   

 

RB (1979, p. 1101) suggest the following value for  : 

 
































































Tp

p

p

p

p

p

p

p

p

p

p

p
Tr

1

1

1
1

1

1

4

1

1

1

2

1~ 2

  (18) 

 

and indicate that “the best approximation would occur if  
2

~
2

  r ” which implies that 
2

1
p .  This should 

not be an approximation because by substituting t for t  in equation (8) one can obtain: 

 






















2

~ln
2

0


 rtt

S

S
E t

  (19) 

Therefore, in a risk-neutral world 


 
2

~
2

r  is not just the best approximation; it is the only correct value 

for equation (16).  

RB suggest the following exact solution to the system (16, 17): 

 

tbttat edeu         ,  (20) 
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where 
)1(

  and ,
)1(

)1(

pp

p
b

pp

p
a







 .  If one sets 

2

1
p  then the values u and d are given by the  

following
1
: 

 

ttrttr

edeu








































2

~

2

~
22

     ,  (21) 

 

CRR suggest different parameters as a solution to the system (16, 17): 

 

tt edeu         ,  (22) 

 

tp 




2

1

2

1
 (23) 

 

These values for u, d and p from (22, 23) satisfy equation (16) exactly and equation (17) approximately.  Substitut-

ing the values for u, d and p from (22, 23) into the left-hand side of (17) one obtains the following: 

 








 


2

2
2 1






t
t  (24) 

 

and when terms of higher order than t are ignored: 

 

ttt
t

t 






 
 2222

2

2
2 )(1 




  

 

For sufficiently small t , equation (17) can be approximately satisfied.  However, when 01
2

2








 




 t
, that is 

2

2




t , the left-hand side of equation (17), which is the variance of the lattice distribution, is negative and equa-

tion (17) can not be satisfied. While CRR suggests a value for p given by (23), the following value is actually  

applied: 

 

du

de
p

tr






~

 (25) 

 

If
2

2

~r
t


  the CRR model gives negative probabilities because: 

1

~











tt

ttr

ee

ee
p





 

 

thus: 

                                                           
1
 The property that the risk-neutral probability is equal to one-half is generally attributed to Jarrow and Rudd (1983). 
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01  p  

 

As direct consequence of the approximate solution to equation (17), for the CRR model, the actual volatility at any 

node of the lattice is downward biased unless t is sufficiently small.  This is not the case for the RB model, be-

cause if 
2

1
p  then 

2

~
2

  r  and (21) is an exact solution to the system (16, 17).  Thus, the RB parameters 

have the same mean and variance of the underlying lognormal diffusion process for any step size and the CRR pa-

rameters result in the same mean for any step size but the same variance only in the limit.  

 

The Alternative Binomial Model for Continuous Time Geometric Brownian Motion (ABMC) 

 

In a risk-neutral world, the expected value and the volatility ( ) of the spot exchange rate at time tt   are given 

by (see Appendix): 

 

 
tr

ttt eSSE 

 
~

)(   (26) 

)1()(
2~

 



ttr

ttt eeSS   (27) 

 

where t is the current time, and t is a relatively short period of time.  Therefore
2
: 

 











 

t

tt

t

tt

S

S
E

S

SE
tr ln

)(
ln~

 (28) 

 

As a direct consequence of the binomial distribution (9), one obtains the following:  

 

dppu
S

S
E

t

tt )1( 











 (29) 

 

By using (26) and (29) one can find: 

 
tredppu 

~

)1(  (30) 

 

The central moment of order n consistent with distribution (9) is given by: 

 
nn

n mdpmupM ))(1()(   (31) 

where m denotes the expected value of 











t

tt

S

S
: 

 

dppum )1(   

 

                                                           

2
  According to equation (28), 










 

t

tt

S

S
Etr ln~

.  It is tempting to assume that 









 

t

tt

S

S
Etr ln~

. However, 













t

tt

S

S
Eln 












t

tt

S

S
E ln = 












2

~
2

rt as a result of equation (8). 
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By substitution: 

 
nnnn

n duppppM )]()1()1)[(1( 11  
 

 

thus: 

 

3

3

2

2

1

))(21)(1(

 ,))(1(

,0

dupppM

duppM

M







 

  

In order to match the variance (V) (or volatility ( )) of the spot exchange rate with the lattice parameters, using the 

second central moment, one has to satisfy the following equation: 

 











 

t

tt

S

S
VduppM 2

2 ))(1(              

 

or, 

teee
S

S
dupp trttr

t

tt 









    ~)1()()1(

~~ 2

  (32) 

 

where )1(~ 2

  tet  3
. 

 

By solving the system (30, 32) with respect to u and d, one can obtain the following parameters for the ABMC mod-

el: 

 

tebedteaeu trtrtrtr    ~     ,~ ~~~~

 

 

or, 

 

)~1(     ),~1(
~~

tbedtaeu trtr     (33) 

 

where 
)1(

  and ,
)1(

)1(

pp

p
b

pp

p
a







 . 

 

The Alternative Binomial Model for Discrete Time Geometric Brownian Motion (ABMD) 

The discrete-time version of GBM process for a sufficiently short period of time, t , is given by:  

ttr
S

S

S

SS

tt

ttt 



 ~

 

 

where   is a random drawing from a standard normal distribution )1,0(N .  It assumes that the proportional 

                                                           

3
 If terms of order 

2)( t are ignored then tet t     )1(~ 2

. 
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change in the spot exchange rate 

tS

S
 is normally distributed with a mean of tr~

and standard deviation of 

t , that is, 

t

tt

S

S 
 is normally distributed with the mean of 1+ tr~

and the same standard deviation
4
 of 

t .  Analogous to the case of the ABMC, in order to match the expected value and volatility of the spot ex-

change rate to the lattice parameters for the ABMD, one has to solve the following system: 

 

trdppu  ~1)1(   (34) 

tdupp  )()1(  (35) 

 

By solving the system (34, 35) with respect to u and d, we obtain the following parameters for the ABMD model: 

 

tbtrdtatru   ~1     ,~1   (36) 

where 
)1(

  and ,
)1(

)1(

pp

p
b

pp

p
a







 . 

 

The Log-Transformed Binomial Method 

 

 Trigeorgis’ log-transformed binomial model is based on equation (11) and (15).  For the period of 

time
n

T
t  , where T is the time to maturity and n is the number of time steps, the system can be given as fol-

lows: 

 

  tDppUXE  )1(  (37) 

    tDUppXVar  22
)1(   (38) 

 

where 









 

0

ln
S

S
X t

.  By solving the system (37, 38) with respect to U and D, one can obtain the following pa-

rameters for the log-transformed binomial model: 

 

tbtDtatU        ,   (39) 

 

or, according to (12): 

 

tbttat edeu         ,   (40) 

 

where 
)1(

  and ,
)1(

)1(

pp

p
b

pp

p
a







 .  Comparing equations (20) and (40) one can conclude that the 

log-transformed binomial model is equivalent to the RB model adjusted for the parameter   (   ) and subject 

to a drift-free constraint.  Given the additive nature afforded via the log-transformation, the condition 1du  is 

                                                           
4
 The discrete time process is lognormal in the limit because the )1ln( x x  as x 0 .   Thus as n – the 

number of steps - increases and t 0 , the discrete time process approximates the lognormal diffusion process. 
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equivalent to the condition that 0 DU  suggested by Trigeorgis.  Thus, in short, the stated “increased numeri-

cal efficiency” provided by the log-transformed model is not the result of the alternative specification but the exact 

solution to the system and the specified centering condition.    

 

Binomial Models Revisited 

 

The values u and d proposed by RB (21) and CRR (22) are different.  The reason for this is that the former is an ex-

act solution of the system (16, 17) and the latter is an approximation.  For CRR, negative probabilities and variance 

of the lattice distribution under specific conditions are the direct result of this approximation.  

 

However, there is no need for approximations to solve the system (16, 17).  The drift-free condition, 

 

1du  (41) 

 

specified by the CRR model and implied in (22), can be easily replicated by both the extended RB, ABMC and 

ABMD models.  This can be achieved by determining the appropriate value of the probability p.  To find this value 

for p, one must substitute the values u and d from (20), (33) and (36) into (41) for the extended RB, ABMC and 

ABMD models respectively and solve these equations for p.  After basic mathematical transformations, one can ob-

tain the following: 

 


















24
1

2

1

q

q
p  (42) 

 

where for the RB model: 

 

t

tr
qRB








 )~2( 2

 

 

for the ABMC model: 
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trtrtr

ABMC
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eeet
q








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~~~22

~
)~1(




 

 

and for the ABMD model: 

 

ttr

trt
qABMD










)~1(

)~1()1( 22

 

 

Note that when terms of higher order than t are ignored: RBABMDABMC qqq   and subsequently, all three 

models have the same probability.  Equation (42) gives a unique value for p, which cannot be negative or greater 

than one, and satisfies the drift-free condition (41) for all models considered
5
.   

 

Another example of the flexibility of the RB, ABMC and ABMD models is that one may also grow the tree along 

the forward.  One may set: 

 

                                                           
5
 According to equation (42), )1 ,0(p .  Moreover, the smaller t the closer p to 0.5. 
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tredu 
~2

 (43) 

 

This can be achieved by determining the appropriate value of the probability p.  To find this value, one must substi-

tute the values of u and d from (20), (33) and (36) into (43) for the extended RB, ABMC and ABMD models respec-

tively and solve for p.  After algebraic manipulation, one obtains the following for the RB model: 

 

tqRB   

 

for the ABMC model: 

 

tqABMC ~  

 

and for the ABMD model: 

 

tr

t
qABMD




 ~1


 

 

Lastly, rather than imposing conditions (41) or (43), one may select a value for p that corresponds to the drift para-

meter of the GBM process, which is consistent with the BS model.  This is achieved by setting the third central mo-

ment of the lattice distribution equal to zero.  This implies 
2

1
p .  Subsequently, the RB model has the following 

two parameters, which are also given by (21): 

 

tttt edeu         ,  (44) 

 

and: 

 
teud  2
 (45) 

 

The values u and d proposed for the ABMC model for the case 
2

1
p  are given by: 

 

)~1(     ),~1(
~~

tedteu trtr     (46)  

 

and: 

 

)~1( 2~2 teud tr     (47) 

 

Finally, the values u and d proposed for the ABMD model for the case 
2

1
p  are given as follows: 

 

ttrdttru   ~1     ,~1   (48) 

 

and: 

 

ttrud  22)~1(   (49) 
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Thus, when terms of higher order than t are ignored for all models: 

 

ttrud 







 


21
2

~21
2

 (50) 

 

where t2 represents the drift for the time period t2 .  Note that in all of the cases presented, the ABMC, 

ABMD, RB, and extended RB models will not under any circumstance give negative probabilities.  Further, the va-

riance of the lattice distribution, and the local volatility at each node is precise.  This is a direct result of the exact so-

lutions proposed and the underlying methodology.  Given the system proposed by CRR and RB, one has three un-

knowns and only two equations.  CRR and RB both initially imposed a constraint on the solution by choosing a val-

ue for one of the unknowns a priori.  Contrary to this, it is obvious that one can first solve the system for two un-

knowns as a function of the third one and then select a desired value for this unknown.   

 

Conclusions 

 

Two alternative binomial lattice models are developed in this article.  While for option pricing purposes, 

the binomial lattice has been supplanted by more sophisticated techniques, it is still the most widely used device for 

pedagogical purposes.  

 

It is widely recognized that convergence of a discrete time lattice model to the continuous time Black-

Scholes model is ensured as long as in the limit the first two moments of the discrete time process are consistent 

with the lognormal diffusion process of the continuous time GBM.  While the CRR result is asymptotic, this study 

demonstrates that the specification of the parameters is the result of an unnecessary approximation.   For the CRR 

model, negative probability and downward biased variance are a direct result of the approximate solution to the spe-

cified system.  It is true that the consequences are of minimal concern, yet an exact solution, which is free of the 

negative aspects of approximations, is always preferable.  It is often argued that the drift free condition is preferred, 

as it is easier to calculate the hedge parameters from this specification.  This article demonstrates that the drift free 

condition is easily obtainable without approximations.  By solving for two parameters – u and d – as a function of 

the third – p – the methodology employed in this article affords one the flexibility to specify any centering condi-

tion. 

 

This study also shows that while RB believed that the “best approximation would occur” if the drift para-

meter was set equal to the drift of the GBM process, this is the only correct value for their system.  The RB model is 

extended to accommodate numerous centering conditions.  Lastly, the log-transformed binomial model delineated 

by Trigeorgis is shown to be mathematically identical to the case of the extended RB model with the drift parameter 

set equal to zero.  That is, the log-transformation is not the source of increased numerical efficiency as suggested by 

Trigeorgis but the result of an exact solution and specified centering condition.  

 

In conclusion, it is obvious that the binomial-pricing method has three independent parameters subject to 

only two constraints, which are the mean and variance converge in the limit to the appropriate diffusion process.  

This work demonstrates that the proposed alternatives, which are exact solutions based on continuous and discrete 

time GBM and implemented on a lattice, not only converge to the appropriate diffusion process but, are simple, flex-

ible alternatives, free of the negative aspects associated with the CRR parameterization and theoretically tractable.         
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Appendix 

Consider a variable w that is normally distributed with a mean of zero and a variance of one: w    1 ,0 N , and an 

arbitrary constant a.  The expected value of the variable A = 
wae 

 is given by:   
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  (A.1) 

 

Substituting awx  , one can obtain: 

 

222

222

2

1
)(

axa
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
  (A.2) 

 

According to equation (2),  

 

dzdtSd  )ln(  (A.3) 

 

where 









2

~
2

 r . 

 

Integrating the previous equation we have, 

 

 

TTT

dzdtSd
000

)ln(   (A.4) 

equivalently,  

 

T
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and thus, 



International Business & Economics Research Conference Las Vegas, Nevada 2002 

 13 

TzT

T eSS





0  (A.5) 

 

Given this, the expected value and variance of the spot exchange rate at the time T are: 

 

)()()( 00

wbTzT
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 (A.6) 
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  (A.7) 

 

where 
T

z
w T ,  Tb . 

According to (A.2) 
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  (A.9) 

 

Thus, the standard deviation of the spot exchange rate at the time T is: 

)1()(
2~

0   TTr

T eeSS   (A.10) 


