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ABSTRACT 

 

This paper deals with the simultaneous optimization of prices and shipment quantities in a supply 

network when the supplier has the market power to set prices, thereby influencing demand directly.  We 

focus on the distribution stage of the supply chain where the firm’s products are shipped from several  

locations (plants, warehouses) to various independent markets, and address the following questions: (i) 

what is the best price at each market?, and (ii) what is the best distribution plan given these prices?   

The combined problem can be modeled as a nonlinear optimization problem.  For its solution, we 

propose an iterative linear programming approach that utilizes shadow price information from a series 

of successive transportation problems.  To evaluate the heuristic’s effectiveness, we compare it with a 

“brute-force” enumeration using a grid-search.  The grid-search is implemented on a spreadsheet with 

a programming loop to facilitate repeated invocation of the transportation problem solver routine. 

 

 

INTRODUCTION 

 

acing ever-increasing competition in today’s markets, companies now realize that improvements of 

internal operations and cost reduction measures alone are not adequate to stay competitive.  Beyond the 

implementation of manufacturing management philosophies and technologies such as just-in-time 

manufacturing, total quality management, and enterprise resource planning, companies in recent years have broadened 

their attention to all linked business processes and activities required to meet customers’ requirements.  As a result, supply 

chain management has become a major focus of today’s business management in order to further reduce costs, increase 

market share, and improve profits. 

 

A successful supply chain requires strong linkages of all stages of the chain, both between organizations and 

within a particular organization.  This paper is concerned with the distribution stage of the supply chain where a firm’s 

products are shipped from several supply locations (plants, warehouses) to be sold in various independent markets.  The 

standard transportation linear programming model is usually adequate to solve the problem of minimizing the cost of 

satisfying total demand at all markets subject to supply limitations at the sources [Chopra and Meindl (2004)].  In 

conventional formulations of this problem, the supply and demand quantities are assumed to be fixed and known in 

advance.  Such an assumption may be valid for commodity products, but when the firm has market power and is able to 

influence demand through price setting, the static demand assumption is unrealistic.  The marketing literature abounds 

with models for matching pricing strategies to markets [e.g. Duke (1994)] but our focus here is on the effect of the price on 

demand and, consequently, its effect on an operational decision.  In a previous study, Dökmeci (1998) considered the 

effect of a uniform price (across several markets) on the facility location decision.  Here, we examine the effect of price on 

demand allocation given that the locations of the supply facilities have already been well established.  Also, in contrast to 

the Dökmeci paper, we assume that different prices may be set at different markets. 

 

The key issues in the demand allocation problem when prices can vary are: (i) what is the best set of prices for a 

given set of markets? (the pricing subproblem), and (ii) what is the best shipping plan at these prices? (the distribution 

subproblem).  In this paper, we provide a mathematical programming formulation for the problem of simultaneously 

optimizing prices and shipment quantities when demand is a function of the price set by the decision maker.  Since the 

incorporation of variable pricing causes the loss of linearity in the model, one cannot use standard linear programming (LP) 

techniques to solve it.  We propose, instead, a heuristic methodology that is based on solving a series of fixed-demand 
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transportation subproblems to iteratively adjust prices and demands in the broader model.  Starting at an arbitrary but 

feasible price vector, the heuristic uses shadow price information gleaned from the optimal solution to the corresponding 

transportation problem to modify the market demands.  The transportation problem is then re-solved with these new 

demand quantities in order to generate a fresh set of shadow prices, and the cycle repeated until there is no further 

improvement in the objective function value.  To evaluate the efficacy of our approach, we compare it with a ―brute-force‖ 

grid search strategy.  The grid search is implemented on Microsoft Excel enhanced with programming extensions provided 

by VBA (Visual Basic for Applications).  VBA enables the use of a programming loop to repeatedly invoke the LP solver, 

and to keep track of the best solution. 

 

The rest of this paper is organized in the following sequence: formulation of the model, development of the 

heuristic methodology, numerical example, grid search, and concluding comments. 

 

FORMULATION 

 

We begin with the following notation for a standard transportation problem with a profit maximization 

objective: 

 

I  set of sources  m,2,1 indexed by i  

J  set of markets  n,2,1 indexed by j  

iS  supply at the 
thi  source 

jD  demand at the 
thj  market 

ijc  cost of transporting one unit of product from the 
thi  source to the 

thj  market 

jP  price of the product at the 
thj  market 

ijX  quantity shipped from the 
thi  source to the 

thj  market 

 

When prices, and hence demands, are fixed the standard linear programming transportation model can be 

written as: 

 

(P1) 
 


Ii Jj

ijij

Jj

jj XcDPZMaximize 1                  (1) 

subject to: 

 iSX i

Jj

ij 


                  (2) 

 

 jDX j

Ii

ij 


                 (3) 

 

          jiX ij ,0                  (4) 

 

Now suppose that jD is a function of the price charged at the 
thj  market, i.e. ),( jjj PfD  with a linear 

functional form: 

 

 jPbaD jjjj                     (5) 
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 jPPP
U

jj

L

j                     (6) 

 

where 0, jj ba  for all j . The model can then be recast as: 

  


 


Ii Jj

ijij

Jj

jjjj XcPbaPZMaximize )(2                 (7) 

 subject to: 

 iSX i

Jj

ij 


                 (8) 

 

(P2) jaPbX j

Ii

jjij 


][                (9) 

 

jiX ij ,0                 (10) 

 

   jPPP
U

jj

L

j                 (11) 

 

Note that while model (P1) is a linear program, model (P2) is a linearly constrained program with: (i) a 

quadratic objective function due to the 
2

jP  term in eq. (7), and (ii) simple bounds on the variables (eq. (11)).  Note 

also that the standard transportation model structure of the constraints is lost due to the additional jP  variables in eq. 

(9). 

 

HEURISTIC METHOD 

 

This section gives the technical details of the proposed heuristic for solving model (P2).  The method attempts to 

find the best market demands (and corresponding market prices) in model (P2) by using shadow price information from 

model (P1).  

 

Method 

 

According to linear programming theory, the shadow price of a constraint is defined as the change in objective 

value per unit change in the RHS-value of that constraint.  Let the shadow price of the 
thj  market demand constraint in 

the standard transportation model, i.e., eq. (3) in model (P1), be jSP , with a reported range of validity of ],[ maxmin

jj DD .  

Suppose now that demand at this market is increased (within the above range of validity) by j , the change in objective 

function value can be computed as: 

 

jjSPZ  1                       (12) 

 

Note that this expression includes the amount jjP   representing the increase in revenue due to the increased 

demand, and is computed on the basis of a fixed market price of jP . However, since price must decrease in order to 

induce this increase in demand (eq. (5)), the amount jjP   is an overestimate of the true increase in revenue and an 
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adjustment should be made to the computation of 1Z  in eq (12) to account for this.  Let jP  be the price when demand is 

jjD  .  From eq. (5): 

 

jjjjj PbaD     

 

jjjjj DaPb   

 

)/( jjjj bPP                        (13) 

 

Let the true increase in revenue as a result of a price change from jP to jP  be .R  R is given by: 

 

jjjjj DPDPR  )(   

 

jjjjjjj DPDbP  )()]/([   [from eq. (13)] 

 

=  ))(/( jjjjjj DbP                       (14) 

 

The change in the objective function value, eq. (12), should then read:   

 

 jjSPZ 1  true increase in revenue – erroneous estimate of increase in revenue 

 

 =   jjjj PRSP    

 

=   jjjjjjjjjj PDbPSP   )()/(  [from eq. (14)] 

 

=   )()/( jjjjjj DbSP                      (15) 

 

We define an adjusted shadow price ( ASP ) by letting j , the change in the RHS value of the constraint,  be 

equal to 1.  Thus, 

 

)1()/1(  jjjj DbSPASP                     (16) 

 

From eqs. (5) and (6), the range of possible demand values at the 
thj  

market is in the range: ],[ L

jjj

U

jjj PbaPba  .  

Combining this range with the range of validity of the corresponding shadow price, ],[ maxmin

jj DD , the effective lower 

and upper limits of demand in market j for jASP  are as follows (see also Figure 1). 

 

}],min{},,{[max maxmin L

jjjj

U

jjjj PbaDPbaD                    (17) 
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The proposed heuristic method uses these ASPs to iteratively modify market demands within their effective 

ranges.  The steps are as follows: 

 

 Step 1: In model (P1), set each market’s price to the midpoint of its permitted range.  Solve the resulting 

transportation LP. 

 Step 2: Use the shadow price information from the LP to compute ASPs  [eq. (16)].  Choose the market with the 

largest absolute value of ASP and adjust it’s demand to the effective upper limit of validity if the chosen ASP is 

positive, or effective lower limit of validity if the ASP is negative [eq. (17)]. 

 Step 3: Solve the modified transportation problem.  If the objective function value has improved, go to Step 2; 

else, STOP. 

 

 
Figure 1:  Effective Limits Of Validity For Adjusted Shadow Prices 

 
 

 

Numerical Example 

 

Tables 1 and 2 give the data for a sample problem.  The price-elastic demand functions for Markets 1 and 2 are 

depicted in Figure 2 for illustration. 

 

 
Table 1:  Demand Function Data For Sample Problem 

Market Market 1 Market 2 Market 3 Market 4 

Demand Function 

Intercept 6020 4020 2020 1520 

Slope -400 -200 -120 -50 

Price Range 

Minimum $10 $8 $9 $11 

Maximum 11 10 11 13 

 

Table 2:  Unit Transportation Costs And Supply Limits For Sample Problem 

Source Market 1 Market 2 Market 3 Market 4 Supply 

Source 1 $3 $4 7 11 5000 

Source 2 4 3 5 8 6000 

Source 3 5 2 4 7 2500 

Range of Shadow Price Validity 

Effective 

Lower 

Limit 

Range of Demand Function 

Effective 

Upper 

Limit 
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Figure 2:  Demand Functions At Markets 1 And 2 

 
 

 

First, the price at each market is set at the midpoint of the corresponding price range (e.g., for Market 1, it is set at 

$10.50).  The resulting demands at the four markets are 1820, 2220, 820, and 920, respectively.  Hence, we solve the 

following transportation problem: 

 

 

Source Market 1 Market 2 Market 3 Market 4 Supply 

Source 1 $3 $4 $7 $11 5000 

Source 2 4 3 5 8 6000 

Source 3 5 2 4 7 2500 

Demand 1820 2220 820 920  

Price $10.50 $9.00 $10.00 $12.00  

 

The optimal objective function value is $ 37,250.  The optimal flows are shown below: 
 

Source Market 1 Market 2 Market 3 Market 4 Supply 

Source 1 1820 0 0 0 5000 

Source 2 0 0 820 640 6000 

Source 3 0 2220 0 280 2500 

Demand 1820 2220 820 920  

 

Sensitivity information reported by the LP solver is as follows: 
 

Cell 

Final 

Value 

Shadow 

Price 

Constraint 

R.H. Side 

Allowable 

Decrease 

Allowable 

Increase 

Source 1 Shipped 1820 0 5000 3180 1E+30 

Source 2 Shipped 1460 0 6000 4590 1E+30 

Source 3 Shipped 2500 1 2500 280 640 

Received Market 1 1820 7.5 1820 1820 3180 

Received Market 2 2220 6 2220 640 280 

Received Market 3 820 5 820 820 4540 

Received Market 4 920 4 920 640 4540 

 

 

 

       10             11 

 

 

2020 

 
1620 

Demand 

Price 

Market 1 

         8        9       10 

 

2420 

 
2020 

Demand 

Price 

Market 2 
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From this information, we can use eq. (16) compute the adjusted shadow prices and effective limits of validity as 

follows: 

 

Market LP-Reported Shadow 

Price 

ASP Effective Lower Limit 

of Demand 

Effective Upper Limit 

of Demand 

Market 1 7.5 2.95 1620 2020 

Market 2 6 -5.10 2020 2420 

Market 3 5 -1.84 700 940 

Market 4 4 -14.42 870 970 

 

From the above calculations, we see how profit changes at each market with one unit change in delivered 

quantity.  Since Market 4 has the biggest absolute value for ASP, we choose Market 4 for demand modification.  For this 

market, note that the effective range of ASP was computed as: [max{920–640, 1520 – 5013}, min{920+4540, 1520–

5011}] = [870,970].  Since ASP4 is negative, D4 should be decreased as much as possible.  Therefore, we set D4 to its 

effective lower limit of 870 and re-solve the transportation problem, and repeat the cycle.  The iterations of the heuristic 

are: 

 
Iteration 1: Objective Value $37,250 

Market Current Price Current Demand Shadow Price ASP Remark 

Market 1 $10.50 1820 7.5 2.95  

Market 2 9.00 2220 6 -5.10  

Market 3 10.00 820 5 -1.84  

Market 4 12.00 920 4 -14.42 Set D4 = 870 

(at P4 = $13) 

for the next 

iteration 

 

Iteration 2: Objective Value $37,920 

Market Current Price Current Demand Shadow Price ASP Remark 

Market 1 $10.50 1820 7.5 2.95  

Market 2 9.00 2220 6 -5.10 Set D2 = 2020 

(P2 = $10) 

Market 3 10.00 820 5 -1.84  

Market 4 13.00 870 5 -12.42 Blocked  

(already at the 

lower limit) 

 

At Iteration 2, Market 4 had the highest absolute value for ASP.  Since this value (-12.42) is negative, it indicates 

that we should decrease the demand at Market 4 to its effective lower limit.  However, this demand quantity is already at 

its effective lower limit of 870 and, hence, is blocked.  So we proceed with the next best ASP (Market 2 with -5.10).  The 

effective lower limit at this market is 2020, so we set D2 to 2020 (corresponds to a price of $10). 

 
Iteration 3: Objective Value $38,740 

Market Current Price Current Demand Shadow Price ASP Remark 

Market 1 $10.50 1820 7.5 2.95 Set D1 = 2020 

(P1 = $10) 

Market 2 10.00 2020 7 -3.10 Blocked 

Market 3 10.00 820 5 -1.84  

Market 4 13.00 870 5 -12.42 Blocked 

 

At Iteration 3, both Markets 2 and 4 are blocked, so we are forced to choose the third best ASP (Market 1). We 

increase the demand at Market 1 (its ASP is positive) to its effective upper limit of 2020 (this corresponds to a price of $10).    
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Iteration 4: Objective Value $39,230 

Market Current Price Current Demand Shadow Price ASP Remark 

Market 1 $10.00 2020 7 1.95 Blocked 

Market 2 10.00 2020 7 -3.10 Blocked 

Market 3 10.00 820 5 -1.84 Set D3 = 700 

(P3 = $11) 

Market 4 13.00 870 5 -12.42 Blocked 

 

At Iteration 4, the only available choice is Market 3 whose demand should be reduced to 700 (at a price of $11). 

 
Iteration 5: Objective Value $39,330 

Market Current Price Current Demand Shadow Price ASP Remark 

Market 1 $10.00 2020 7 1.95 Blocked 

Market 2 10.00 2020 7 -3.10 Blocked 

Market 3 11.00 700 6 0.16 Set D3 = 940 

(P3 = $9) 

Market 4 13.00 870 5 -12.42 Blocked 

 

At Iteration 5, we reset the demand of Market 3 this time to its upper limit of 940 (at a price of $9). 

 
Iteration 6: Objective Value $38,890 

Market Current Price Current Demand Shadow Price ASP Remark 

Market 1 $10.00 2020 7 1.95 The method 

terminates here 

because the 

objective function 

value is worse than 

at the previous 

iteration. 

Market 2 10.00 2020 7 -3.10 

Market 3 9.00 940 4 -3.85 

Market 4 13.00 870 5 -12.42 

 

This is the first iteration at which the objective function value has failed to improve, so the method is terminated.  

The best solution found is the one at the previous iteration (Iteration 5) with a price vector of ($10, $10, $11, $13) at the 

four markets. The corresponding demand quantities are: 2020, 2020, 700, and 870, respectively.  The objective function 

value is $39,330.  The progress of the heuristic is depicted in Figure 3. 

 

GRID SEARCH 

 

To evaluate the effectiveness of the heuristic method, we solve model (P2) using an alternative method—a 

―brute-force‖ enumeration using a grid search.  At each grid point (price vector), the corresponding standard transportation 

problem (P1) is solved using Excel Solver [see e.g. Ragsdale (2004)] and the optimal objective value is recorded.  Using 

integer step-sizes for the price at each market, there are 2 x 3 x 3 x 3 = 54 price vectors.  The maximum among these 54 

optimal transportation problem objective function values determines the optimal solution to (P2). A final iteration then re-

creates the optimal transportation model solution corresponding to the best price vector found.  To carry out the grid search 

efficiently, we used VBA (Visual Basic for Applications) to provide a programming loop that enabled the repeated 

invocation of Solver and to keep track of the objective values at the intermediate steps. Details of VBA programming may 

be found in Albright (2001).  While we have assumed linearity of the demand function for convenience, the search strategy 

can be employed for any type of function including ones defined only empirically.  The results of the grid search (Table 3) 

indicate that the optimal solution is at price vector 27.  This is precisely the same solution as the one obtained by the 

heuristic in only 6 iterations.  The savings in computational effort due to the heuristic is, therefore, [54 – 6] / 54, or 89%, 

over a full search.   
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Table 3:  Results Of Grid Search 

Price Vector 

Price At Objective 

Function 

Value Market 1 Market 2 Market 3 Market 4 

1 $10 $8 $9 $11 $35,410 

2 10 8 9 12 36,180 

3 10 8 9 13 36,850 

4 10 8 10 11 35,750 

5 10 8 10 12 36,520 

6 10 8 10 13 37,190 

7 10 8 11 11 35,850 

8 10 8 11 12 36,620 

9 10 8 11 13 37,290 

10 10 9 9 11 36,630 

11 10 9 9 12 37,400 

12 10 9 9 13 38,070 

13 10 9 10 11 36,970 

14 10 9 10 12 37,740 

15 10 9 10 13 38,410 

16 10 9 11 11 37,070 

17 10 9 11 12 37,840 

18 10 9 11 13 38,510 

19 10 10 9 11 37,450 

20 10 10 9 12 38,220 

21 10 10 9 13 38,890 

22 10 10 10 11 37,790 

23 10 10 10 12 38,560 

24 10 10 10 13 39,230 

25 10 10 11 11 37,890 

26 10 10 11 12 38,660 

27 10 10 11 13 39,330 

28 11 8 9 11 34,230 

Figure 3.  Trajectory of Heuristic

$35,500

$36,000

$36,500

$37,000

$37,500

$38,000

$38,500

$39,000

$39,500

$40,000

1 2 3 4 5 6

Iteration

Objective Value   
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29 11 8 9 12 35,000 

30 11 8 9 13 35,670 

31 11 8 10 11 34,570 

32 11 8 10 12 35,340 

33 11 8 10 13 36,010 

34 11 8 11 11 34,670 

35 11 8 11 12 35,440 

36 11 8 11 13 36,110 

37 11 9 9 11 35,450 

38 11 9 9 12 36,220 

39 11 9 9 13 36,890 

40 11 9 10 11 35,790 

41 11 9 10 12 36,560 

42 11 9 10 13 37,230 

43 11 9 11 11 35,890 

44 11 9 11 12 36,660 

45 11 9 11 13 37,330 

46 11 10 9 11 36,270 

47 11 10 9 12 37,040 

48 11 10 9 13 37,710 

49 11 10 10 11 36,610 

50 11 10 10 12 37,380 

51 11 10 10 13 38,050 

52 11 10 11 11 36,710 

53 11 10 11 12 37,480 

54 11 10 11 13 38,150 

 

 

CONCLUSION 

 

In this paper, we have developed a heuristic approach to the problem of simultaneously determining prices and 

shipment quantities in a supply network consisting of multiple sources and markets.  The heuristic is based on shadow 

price information that can be obtained from a linear programming solution of the underlying transportation model.  By 

analyzing the shadow prices, a trajectory can be chosen for improving the objective function value.  The method is 

illustrated on a numerical example that demonstrates the potential for huge savings in computational effort over a full 

search.  This approach can easily be extended to any type of demand function: linear, nonlinear, discrete, or even empirical.  

It can also be extended to the supply side to incorporate production functions. 
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