
Journal of Business & Economics Research – February 2008 Volume 6, Number 2 

61 

Negative Scarcity And The Praxeology 

Of Open Source Software 
Adam Reed, (Email: Areed2@CalStateLA.edu), California State University, Los Angeles 

 

 

ABSTRACT 

 

Economics, which in its 20th-century sense deals only with optimizing the exchange of values, may 

be generalized to praxeology (von Mises 1949,) a comprehensive science of human action. Under 

a generalized praxeological definition of scarcity there are contexts in which the scarcity of 

software becomes negative, so that a rational maximization of return on investment in developing 

such software occurs when the software is opened to free distribution under a GPL-equivalent 

license. 

 

 

PRAXEOLOGY AND SCARCITY 

 

alues are states of being that one seeks to gain or to keep (Rand 1957, 1961; 121.)  Economics is the 

science of optimal allocation of resources for the attainment of values (Mises 1949; 3.)  When a 

separate science of economics began in the 18
th

 century, most of the resources used in the 

attainment of human values were allocated by individuals or within a household (hence the concept of, e.g., “home 

economics.”)  The study of trade and exchange, and of the production of goods and services for trade and exchange, 

was originally considered a mere branch of economics called catallactics (Whately 1831.)  In the course of the 19
th

 

century, efficiencies due to division of labor led to industrialization and increasing use of resources through 

monetary exchange.  By the end of the 19
th

 century “economics” had become identified, in normal usage, with what 

had been called “catallactics.”  When, in the 20
th

 century, further increases in the efficiency of production led to a 

shift of individual and family resources away from spending all of one’s waking hours in labor for monetary 

exchange, and toward increased allocation of time to recreation and leisure, and a corresponding shift in the use of 

monetary resources toward leisure and self-realization, the term “economics” proved surprisingly resistant to a 

broadening of late 19
th

 century usage.  To fill the gap,  Mises (1949) proposed the term “Praxeology,” so that 

“economics becomes a part , although the hitherto best elaborated part, of a more universal science, praxeology.” 

  

Exchangeable goods and services, the concern of traditional (catallactic) economics, do not lend themselves 

to simultaneous use by more than one person (I cannot use a computer keyboard that is being used by someone else) 

or (usually) for more than one purpose (I cannot use the same hour of my time both to deliver a lecture to my 

students and to play with my child.)  Giving away some of my property, or some of my time, without adequate 

compensation leaves me with less value – less of what I aim to gain or keep – than I would have had otherwise.  

This phenomenon – that one has less value left if one gives something away – is called scarcity.  Scarcity applies not 

only to material goods, but also to time – part of one’s finite lifetime on Earth – used to produce things or ideas (e.g. 

computer software) that might then be used without compensation by others.  It is because of the latter kind of 

scarcity that - in an economically rational society - the products of one’s time and work (including intellectual work) 

are protected by law against uncompensated appropriation by others.   Such laws recognize my right to condition the 

use of the use of intellectual property (such as software) produced by my work on conditions of my choice. 

 

 If the only value of software produced by my work were its exchange value (i.e. the only value considered 

by traditional, catallactic economics) then the only possible outcome of giving it away (or licensing its use without 

payment) would be to reduce the subsequent demand for (and therefore the market price of) future licenses to use 

the same software.  Therefore the subsequent value of the product of my work to me would decrease, in line with the 

traditional catallactic notion of scarcity.  However, when my software has value other than exchange value, it 

becomes possible for the value (to me) of my software to increase (rather than decrease) because I have made it 

V 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clute Institute: Journals

https://core.ac.uk/display/268111643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of Business & Economics Research – February 2008 Volume 6, Number 2 

62 

available to others without extrinsic payment.  If scarcity is understood as a decrease in value to me when my work 

becomes available to others without payment, this would be an example of negative scarcity. 

 

OPEN SOURCE AS A MECHANISM OF NEGATIVE SCARCITY 

 
 Consider anything that I make or improve for my own use.  Its value to me comes primarily from its 

usefulness in obtaining or keeping my (other) values.  That value – its utility to me – is not necessarily less if (as can 

be done with software) it is replicated without cost to me and used by others.  Indeed, my own values may be 

enhanced if other people, or other enterprises, can use it also to attain their values, especially if their values coincide 

with or help me gain mine.  The same is true of improvements that make some collection of software more useful, to 

me and to others, than it was before.  To be sure, if I permit this I can no longer claim the market exchange value of 

that software.  If the software is used in producing my other products, then I may also lose some of the competitive 

advantage I would have kept if I had kept my software to myself.  On the other hand, it is possible that my benefit, 

from getting to use the improvements that others will eventually make to my software, will be greater than my 

relative loss of licensing income or of competitive advantages.  This requires a license such as the GPL (GNU 

General Public License, see below) (Stallman 1989; Asay 2004; Wikipedia 2006) that protects my right to use 

improvements made to my software by others, and rational calculation of potential losses and benefits.  The benefits, 

however, can be considerable (Raymond 2001.)  To the extent that those benefits exceed costs, the value to me, of 

software that I have chosen to distribute on condition of benefiting from improvements made by recipients, will 

increase.  Another way to say this is that, with properly conditioned open source distribution, software exhibits 

negative scarcity. 

 

WHY RECIPIENTS WILL MAKE IMPROVEMENTS 

 
 The business case for choosing between proprietary and open-source software hinges on two sets of costs 

and two sets of benefits:  the cost and benefits of the obtained software in its original state, and the costs and benefits 

of making improvements to the software (also called “maintenance”.)  Sellers of proprietary software are fond of 

pointing out that, in the experience of many organizations, expenditures on making improvements to (nominally 

free) open-source software often exceed the combined cost of proprietary software and any additional payments to 

the vendor for maintenance.  This focus on “Total Cost of Ownership” (TOC) often obscures (or even prevents) 

consideration of the relative value of improvements that can be made.  Yet the cost of making improvements to 

open-source software is often greater because in the case of open-source software one can make improvements that 

are much more valuable to one’s business than those that can be reasonably expected from a vendor of proprietary 

software. 

 

 In the course of my own experience in industry, as a lead user of both proprietary and open-source 

software, and an occasional maintainer of the latter, it was often the case that a time-critical project could not 

proceed without changes to software.  In the typical case, as a major customer of the proprietary software vendor (I 

worked for an organization within Lucent Technologies) we would receive requested changes within two to four 

weeks of our request.  In several cases, I was able to shortcut this delay by replacing the proprietary software 

component with an open-source equivalent, and then coding and testing and delivering the needed changes in the 

space of one or two days.  Not only was it possible to use open-source software to avoid weeks of delay in time-

critical projects, but also we had much greater confidence in the quality of the resulting changes, since we made the 

improvements ourselves and were able to evaluate the quality of the code of our modifications. 

 

 I was originally surprised by the very high level of coding competence and readability that is evident in 

open-source code. As compared with proprietary code that was sometimes made available to us under non-

disclosure agreements, and at extra cost, it was clear that the writers of open-source software expected their code to 

be widely read, and to be the foundation of their personal reputations in the software community.  The result was a 

much lower incidence of obscure, abstruse, or unreliable code in open-source than in proprietary software.  Open-

source code was often an aesthetic pleasure to read, and nearly always easy to understand and, when needed, 

improve. 

 



Journal of Business & Economics Research – February 2008 Volume 6, Number 2 

63 

 Improvements that may be critically needed by user organizations tend to fall into one of 5 categories: 
 

Bug Fixes 
 

The software does not perform as expected because of a design or coding error.  Since the code is available 

for inspection, correction, and re-manufacturing, the error is usually found and corrected much faster than even the 

fastest turn-around times in vendor corrections to proprietary software. 
 

Vulnerabilities 
 

The software may be made to perform undesirable operations as a result of manipulation by third parties.  It 

is corrected so that the unauthorized operations will not be performed, while other operations will continue to be 

performed as expected. 
 

Flexibility And Customization Options 
 

Open-source software is often written for a specific project of its author, and originally accepts inputs and 

provides outputs in formats optimized for the original author’s purpose, but not optimal (or even usable) for the 

purposes of other users.  A user organization that needs to use the software for a different purpose may add options 

(typically controlled by environment variables, command-line language, or a customization file) to make input and 

output sources and formats more flexible and more readily customized. 

 

Additional Capabilities 
 

It is not unusual for available open-source software to contain most of the code that a user organization 

otherwise would have needed to write to implement an entirely new capability.  This can be achieved either by 

adding the new capability to one of the existing applications in an open-source package, or by re-packaging the 

shared code as a library and adding the new capability as a new application. 
 

Optimizations 
 

Because the time and effort spent in optimizing the performance of a segment of code will not pay back 

unless the code is invoked often enough in the context of its original application, software is written so that only the 

frequently repeated segments are optimized.  In the context of a new application, code segments that were rarely 

executed in previous contexts may now get executed often enough to justify, and even require, careful optimization.  

The newly optimized code will also improve somewhat the performance of the software in other contexts. 
 

OPEN-SOURCE RECIPIENTS AS TESTERS 
 

 Most users of open source software will not be interested in, or even capable of, coding improvements to 

the source to the source of the software.  They may nevertheless contribute to negative scarcity by serving as testers.  

Most proprietary software is only tested by a relatively small team of in-house testers, who practice a kind of testing 

triage, and actually test the product in only the subset of operational contexts that they expect to encounter most 

often when the software is deployed to their customers.  The free distribution of open-source software provides a 

much larger “testing team” than any vendor of proprietary software could possibly afford to hire.  Proprietary HTTP 

web servers, for example, are typically tested by a testing team of no more than a few hundred testers.  The open-

source Apache HTTP server, in contrast, is deployed in literally millions of user organizations, all of whom serve as 

a giant, multifaceted testing team.  
 

THE USERS’ INCENTIVE 
 

 The open-source negative scarcity cycle is completed when user organizations feed bug reports and 

contributed improvements back to the originator of the software distribution.  The incentive to report bugs is 

obvious: the bug is interfering with the user’s application of the software, and reporting the bug is a precondition of 

having it fixed in a subsequent update or release.  Similarly, the integration of improvements coded by a user 

organization with others’ improvements and bug fixes, in subsequent updates and releases of the software, is most 



Journal of Business & Economics Research – February 2008 Volume 6, Number 2 

64 

efficiently accomplished by feeding the improvements back to the author or owner of the open-source software 

package.  While it is theoretically possible to keep one’s improvements to oneself, one cannot subsequently benefit 

from improvements made by others without either contributing one’s improvements back to the author, or going 

through an expensive re-integration of one’s improvements with the newly updated package at every subsequent 

update or release.  These facts create an overwhelming incentive for user organizations to share their improvements 

with the distribution. 
 

THE GNU PUBLIC LICENSE (GPL) 
 

 The success of the current open-source paradigm depends on the legal recognition of intellectual property 

in software, and the consequent ability of the author of open-source code to impose conditions – most often the Gnu 

Public License – on others’ use of the results of her work.  Before Richard Stallman’s invention of the GPL, 

software placed in the “public domain” was available to anyone without any conditions at all.  This resulted in the 

intellectual-property equivalent of the “tragedy of the commons:”  anyone could, and some did, use public-domain 

code at will, but keep improvements – and the body of code incorporating the public-domain software with their 

improvements – secret; gaining a competitive advantage over the original author (and thus discouraging the free 

distribution of software) or even selling the marginally improved product back, at a price, to the organization that 

paid for writing most of it. 
 

 The GNU Public License obliges anyone who would re-distribute GPL-licensed software to make the 

source of any product that incorporates the original code openly available, and to license the result under GPL.  This 

prevents secondary authors from discouraging original contributions, either by gaining a competitive advantage over 

the original author by means of his own work, or by charging any contributor a payment for the use of his own 

contributions.  The GPL minimizes the contribution of these factors to the overall scarcity of the software.  In 

combination with the users’ incentives to share potential and actual improvements with the originator of the 

software, this creates the condition of negative scarcity that is now characteristic of open-source software projects. 
 

CONSORTIA AND COLLABORATIONS 
 

 The enterprise that sponsors an open source development project typically obtains, in return for its 

contributions, “ownership” in the sense of control over what user-contributed improvements are incorporated in the 

software distribution.  Large-scale projects are often shared among several enterprises that contribute the work of 

their employees in return for assurance that their interests are served by the direction of the project.  The Apache 

Software Foundation, which publishes the Apache HTTP server and several other open source projects, enjoys the 

participation of such companies as Lotus Development, IBM Corporation, Informatica, Red Hat Inc., Sun 

Microsystems, Transmeta Corporation, Fujitsu Siemens Computers, Novell Inc., and Google (Apache 2005.)  As 

sometimes happens, business praxis has overtaken economics.  The author hopes that this article, and especially the 

present conception of negative scarcity, will bring praxeological theory back into the picture. 
 

REFERENCES 
 

1. Apache Software Foundation.  Members of the Apache Software Foundation.  

http://www.apache.org/foundation/members.html 2005. 

2. Asay, Matt.  The GPL: Understanding the License that Governs Linux.  

http://www.novell.com/coolsolutions/feature/1532.html  January 16, 2004. 

3. Mises, Ludwig von.  Human Action.  New Haven: Yale University Press, 1949. 

4. Rand, Ayn.  Atlas Shrugged.  New York: Random House, 1957. 

5. Rand, Ayn.  For The New Intellectual.  New York: Random House, 1961. 

6. Raymond, Eric S.  The Cathedral and the Bazaar.  Sebastopol, California: O’Reilly Media, Inc., 2001. 

7. Stallman, Richard.  GNU General Public License Version 1. http://www.gnu.org/copyleft/copying-1.0.html 

1989.  

8. Whately,  Introductory Lectures on Political Economy.  London, 1831.  Cited in Mises 1949. 

9. Wikipedia.  GNU General Public License.  http://en.wikipedia.org/wiki/GNU_General_Public_License 

2006. 

 

http://www.apache.org/foundation/members.html
http://www.novell.com/coolsolutions/feature/1532.html
http://www.gnu.org/copyleft/copying-1.0.html

