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ABSTRACT 

 

The constraint structure of the transportation problem is so important that the literature is filled 

with efforts to provide efficient algorithms for solving it.  The intent of this work is to present 

various rules governing load distribution for alternate optimal solutions in transportation 

problems, a subject that has not attracted much attention in the current literature, with the result 

that the load assignment for an alternate optimal solution is left mostly at the discretion of the 

practitioner.  Using the Shadow Price theory we illustrate the structure of alternate solutions in a 

transportation problem and provide a systematic analysis for allocating loads to obtain an 

alternate optimal solution.  Numerical examples are presented to explain the proposed process. 
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1.   INTRODUCTION 

 

he transportation problem (TP) deals with the distribution of goods from several supply points 

(sources) to a number of demand points (destinations).  When addressing a TP, the practitioner 

usually has a given capacity at each supply point and a given requirement at each demand point.  

Many decision problems, such as production inventory, job scheduling, production distribution, and investment 

analysis, can be formulated as TPs.  Good financial decisions concerning facility location also attempt to minimize 

total transportation and production costs for the entire system. 

 

It is well known that a TP can be formulated as a linear program and solved by the regular simplex (big-M), 

the dual simplex method, or even an interior approach method.  The literature is filled with efforts to provide 

effective techniques for solving a TP.  The stepping-stone algorithm (SS) has proven very successful and has 

become the standard technique for several decades.  Many researchers have provided techniques for overcoming 

major obstacles of the SS algorithm, such as difficulties in identifying an initial basic feasible solution, resolving SS 

degeneracy, and enumerating SS paths [3, 4, 6-8].  Other researchers have provided a new outlook for the solution 

with other algorithms [5, 9].  Adlakha and Kowalski [1] provided a novel algorithm for solving the transportation 

problem based on the theory of absolute points.  The algorithm has a limited application to only those problems 

where absolute points can be identified.   

 

While the literature on the TP is abundant, discussion of alternate optimal solutions (AOSs) is very limited.  

Frequently in applications, there are more than two alternate optimal solutions.  Standard TP software packages 

deliver an optimal solution without any indication of the existence of alternate optimal solutions.  Consequently, two 

different software packages will often return dissimilar (alternate) optimal solutions to the same TP, potentially 

causing confusion for students and practitioners alike.  Even when there is an awareness of alternate optimal 

solutions, the determination of load assignment is left mostly at the discretion of the practitioner.   

 

In this paper we discuss the development of AOSs based on the Shadow Price theory.  We demonstrate that 

the distribution of AOSs is not at all random, but is governed by certain rules and easily can be determined through 

simple operations.  We further provide an algorithm to develop alternate optimal solutions systematically for load 

distributions to include cells chosen from the specific list.  In practice a decision maker wants to know if it is 

possible to use his/her “favorite” route. The proposed algorithm identifies the inherent structure of the AOSs to 
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determine commonality in these solutions by identifying the fixed cells, thereby empowering a practitioner with 

flexibility to allocate loads strategically on the basis of an analysis of alternate assignments.  

 

2.   THE TRANSPORTATION PROBLEM 

 

The transportation problem can be stated as a distribution problem in which there are m suppliers (sources) 

and n customers (destinations).  Each of the m suppliers can ship to any of the n customers at a shipping cost per unit 

cij (unit cost for shipping from supplier i to customer j).  Each supplier has ai units of supply, 1≤ i ≤ m, and each 

customer has a demand of bj units, 1≤ j ≤ n.  The objective is to determine which routes are to be opened and the size 

of the loads/shipment on those routes, so that the total cost of meeting demand, given the supply constraints, is 

minimized. 

 

TP formulation: 

minimize    Z = 


m

i 1



n

j 1

cij xij  (1) 

subject to    


n

j 1

xij = ai  for i = 1, 2, . . . , m (2) 

 




m

i 1

xij = bj for j = 1, 2, . . . , n (3) 

 

xij  0 for all (i, j) 

 

Without loss of generality, we assume that 




m

i 1

ai  = 


n

j 1

bj 

ai, bj,  cij  0 

 

From the Simplex theory approach to solving TPs, we know that there are N = (m + n -1) basic variables in 

any given distribution, i.e., there are (m + n -1) load assignments in the final optimal solution tableau.  This rule, and 

a determination about a minimum possible number of loads (non-zero basic variables), can also be derived through 

another, much simpler analysis based on the widely known Northwest Corner Pattern (NWCP), shown in Figure 1 

(assume n > m).  The rule starts with a load at cell (1, 1) and then continues loading the TP matrix along 

corresponding rows or columns while meeting demand and supply constraints.  Each load assignment results in 

introduction of either a new row or column with the total number of loads as N = 1 + (m - 1) + (n - 1) = (m + n -1).  

Note that it is possible to rearrange the order of columns and rows in any loaded TP tableau to create a NWCP. 

 

 

       1             n - 1  

  b1   -    br  -     -    bn   

1 

 

m - 1 

a1       

a2       

-       

am       

 

Figure 1.  Typical Northwest Corner Pattern 
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When N is less than (m + n - 1), as shown in Figure 2, then the solution to TP is degenerate, which in turn 

means that some of the basic variables are equal to 0. 
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am       

 

Figure 2.  Degenerate Solution with NWCP 

 

 

It might be the case in a TP that N is greater than (m + n -1).  Such a situation reflects a presence of an AOS 

where some rows/columns can be simultaneously loaded.  This phenomenon has two cases: simple SS chains as 

shown in Figure 3 or complex SS chains as shown in Figure 4.  An explanation of this phenomenon based on the 

theory of absolute points was provided by Adlakha and Kowalski [1].  In the Simplex analysis, such a situation 

corresponds with the presence of non-basic variables with cost coefficients equal to zero.  If more than one optimal 

solution exists, then many AOSs exist.  Any feasible positive-weighted average of the two basic optimal solutions 

also yields an AOS.  The resultant set of variables does not constitute a basis and contains more variables than the 

number of constraining relations, (m + n -1). 

 

 

  b1   -    br  -     -    bn  

a1       

a2       

-       

am       

 

Figure 3. NWCP with AOS involving simple SS chains. 
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Figure 4. NWCP with AOS with complex SS chains. 

 

 

It must be noted that there can also be a distribution comprising a combination of all three situations 

depicted in Figures 1, 2, 3 and 4. 

 

2.1.   Shadow prices 

 

 The process of calculating shadow prices requires that we define a dual price ui for each supply constraint 

and a dual price vj for each demand constraint.  Computing these ui and vj requires that for each basic cell the cost 

coefficient cij be equal to (ui + vj).  By setting any one ui = 0 or vj = 0, one can solve the system of equations for all 

remaining ui and vj values.  For each nonbasic cell, the net evaluation index, cij - (ui + vj), provides the incremental 

change in the total cost that will be obtained by allocating one unit of flow to the corresponding cell.  For an optimal 

solution, we use the term shadow price (SP) for (ui + vj) values and present these as a shadow price matrix (SP 
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matrix).  It is obvious that all shadow prices for all nonbasic cells are less than the corresponding cost coefficients 

cij.   

 

Definition 1: A shadow price in the SP matrix is called an optimal shadow price (optimal SP) if it equals the 

corresponding unit cost coefficient cij. 

  

By construction, the shadow prices for all basic cells are optimal SPs.  We analyze the SP matrix to identify 

the existence of AOSs by locating nonbasic cells with optimal SPs.  These cells represent the locations where loads 

may be moved to obtain an AOS.  

 

3.   ALTERNATE SOLUTION ANALYSIS 

 

A shadow price analysis of the optimal solution leads us to a situation from either Figure 1, 3, or 4.  Note 

that the situation in Figure 2 prohibits the creation of an SP matrix.  In such a case, dummy variables need to be 

introduced to bring the number of variables to (m +n  -1).  A systematic method for determining those dummy 

locations is presented by Adlakha et al. [2].  

 

Definition 2: A basic cell is referred to as fixed due to the absolute structure of the TP if it is loaded with the exact 

same amount in any optimal solution.  

 

Note that a cell (i, j) will be considered fixed due to the absolute structure of the TP only if there is only 

one optimal SP present in a given row/column of the SP matrix.  In this situation the cell must always be loaded with 

min(ai, bj) in any optimal solution.  At the start of AOS analysis, such cell (i, j) is identified and loaded with ai or bj.  

The corresponding satisfied row (or column) is eliminated from further consideration and the corresponding demand 

(or supply) is adjusted.  This operation can (but need not) create a new „one optimal SP‟ row or column in the 

revised SP matrix.  After depleting all „one optimal SP‟ rows and columns, all identified values are recorded as fixed 

due to the absolute structure of the TP.  The reduced SP matrix is carried on for further analysis. 

 

Definition 3: A cell is fixed due to the constraint structure of the TP if it is always to be loaded with at least some 

minimum specified amount in any optimal solution. 

 

Note that a cell (i, j) will be considered to be fixed due to the constraint structure of the TP when multiple 

optimal SPs are present in row i or column j of the SP matrix. 

 

3.1.   A pre-screening algorithm 

 

We introduce a pre-screening algorithm to identify cells which are fixed due to the constraint structure of 

the TP.  Consider the reduced SP matrix after deleting the rows/columns related to the cells fixed due to the absolute 

structure of the TP.  We want to determine the minimum amount of load, Xij, which must appear in every possible 

AOS.  To determine this amount, analyze every row and column of the reduced optimal SP matrix to determine a 

loaded cell, (s, t), where 
si

ai < bt or 
tj

bj < as.  Note that only loaded cells are considered in verifying this 

relationship.  After identifying cell (s, t), the value of Xst is set as follows:  

 

Xst = bt - 
si

ai       or     Xst = as - 
tj

bj (4) 

 

All loads Xst identified by the equalities (4) are recorded as fixed due to the constraint structure of the TP, 

and are subtracted from the corresponding supply and demand values.  The above operations lead to the following 

algorithm.  
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3.2.   An alternate optimal solutions algorithm  

 

To identify and develop alternate optimal solutions in a TP, the following algorithm is proposed: 

 

Step 1.   Solve the TP using any method to get an optimal solution. 

Step 2. Develop the SP matrix.  If all SP values for the nonbasic (not currently loaded) cells are less than the 

corresponding cost coefficients, no AOS exist. Otherwise, continue. 

Step 3. Search for a fixed due to the absolute structure of the TP cell.  If none, go to Step 5. 

Step 4. Assign maximum possible load at the selected cell and delete the corresponding row/column while 

adjusting the demand/supply for the associated column/ row.  Go to Step 3 with the reduced load matrix. 

Step 5.   Consider the current load matrix and set the loads for all cells corresponding to remaining optimal SPs as 0.  

We refer to this matrix as the pre-screening load matrix. 

Step 6.   Perform pre-screening analysis on this load matrix to determine cells that are fixed due to the constraint 

structure of the TP.  If none, go to Step 8. 

Step 7.   Load all locations identified in Step 6 as determined by Equation (4) and adjust the corresponding demands 

and supplies.  Go to Step 6. 

Step 8.   Assign the remaining loads in any manner within the constraints of supply and demand to obtain an 

alternate optimal solution. 

 

As a result of this algorithm we obtain the fixed part of the solution identified in Steps 4 and 7.  The loads 

remaining to be assigned after Step 7 constitute a floating part of the solution. 

 

4.   NUMERICAL EXAMPLE 

 

In this section we present a detailed example to illustrate the steps of the proposed alternate optimal 

solutions algorithm. 
 

 

Table 1.  Cost Matrix for the Numerical Example 

 b1 b2 b3 b4 b5 Supply 

a1 2 1 3 2 2 20 

a2 3 2 1 1 1 70 

a3 5 4 2 1 3 30 

a4 7 5 5 3 1 60 

Demand 50 30 30 50 20  

 

 

Step 1:  An optimal non-degenerate solution of this TP using the Management Scientist software with a total cost of $390 is 

obtained as follows: 

 

 

Table 2.  Optimal Solution for the Numerical Example 

 b1 b2 b3 b4 b5 Supply 

a1 20     20 

a2 30 30 10   70 

a3   20 10  30 

a4    40 20 60 

Demand 50 30 30 50 20  

 

 

Step 2:  The SP matrix is presented in Table 3.  The shadow prices corresponding to the optimal solution are marked by *.  Two 

additional optimal SPs are marked by superscript a. 
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Table 3.  The SP Matrix for the Numerical Example 

 v1 v2 v3 v4 v5 ui 

u1 2* 1a 0 -1 -3 -4 

u2 3* 2* 1* 0 -2 -3 

u3 4 3 2* 1* -1 -2 

u4 6 5a 4 3* 1* 0 

vj 6 5 4 3 1  

 

 

There are two non-basic cells, (1, 2) and (4, 2) with optimal SPs (the SP values equal to the corresponding 

costs of Table 1), thus indicating the presence of an AOS.  An alternate solution can be obtained by using a simple 

SS chain starting at cell (1, 2) and/or a complex SS chain starting at cell (4, 2). 

 

Step 3: Column 5 has only one SP.  Therefore, basic cell (4, 5) is fixed due to the absolute structure of the TP. 

Step 4:  Assign X45 = min (a4, b5) = 20.  Delete Column 5 and adjust a4 → 40.  There is no other cell which is fixed 

due to the absolute structure of the TP. 

Step 5:  The reduced load matrix with loads of 0 assigned to cells with optimal SPs is as follows. 
 

 

Table 4.  The Pre-Screening Analysis Matrix 

 b1 b2 b3 b4 Supply 

a1 0 0   20 

a2 0 0 0  70 

a3   0 0 30 

a4  0  0 40 

Demand 50 30 30 50  

 

 

Step 6 - 7: A study of Table 4 reveals that a1< b1.  Therefore assign X21 = (b1 - a1) = 30.  This is the minimum load 

value for this cell in any optimal solution.  Similarly, a3 < b4 and a4 < b4.  Assign loads X44 = (b4 – a3) = 20 and X34 = 

(b4 – a4) = 10.  Table 5 presents the modified pre-screening matrix after adjusting the demands and supplies where x 

marks the cells currently assigned with the required minimum load amounts. 
 

 

Table 5.  The Modified Pre-Screening Analysis Matrix 

 b1 b2 b3 b4 Supply 

a1 0 0   20 

a2 x 0 0  40 

a3   0 x 20 

a4  0  x 20 

Demand 20 30 30 20  

 

 

Looking at Table 5, we see that a3 < b3.  Therefore assign X23 = (b3 - a3) = 10 as the minimum load.  No further pre-

screening is possible for this load matrix.  Table 6 presents the load assignment fixed due to the absolute and 

constraint structures of the TP to assign 90 units at the cost of $130 and Table 7 presents the resultant floating loads 

matrix for the remaining 90 units.  
 

 

Table 6.  Fixed Load Assignment for an Optimal Solution 

 b1 b2 b3 b4 b5 Supply 

a1       

a2 30  10   40 

a3    10  10 

a4    20 20 40 

Demand 30  10 30 20  
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Table 7.  Floating Loads Matrix for the Numerical Example 

 b1 b2 b3 b4 b5 Supply 

a1 0 0    20 

a2 0 0 0   30 

a3   0 0  20 

a4  0  0 x 20 

Demand 20 30 20 20 x  

 

 

Step 8. A practitioner can now load the cells marked with zeros in any desired manner within the constraints of 

supply and demand.  All solutions obtained in this manner are optimal.  Two possible floating load assignments are 

as follows.   
 

 

 b1 b2 b3 b4 b5 Supply 

a1  20    20 

a2 20 10    30 

a3   20   20 

a4    20 x 20 

Demand 20 30 20 20 x  

 

 b1 b2 b3 b4 b5 Supply 

a1  20    20 

a2 20  10   30 

a3   10 10  20 

a4  10  10 x 20 

Demand 20 30 20 20 x  

 

 

Remark 1:  The floating load distribution can be split into floating sub-distributions along different stepping stone 

chains.  In our numerical example we can „extract‟ the SS chain comprising four cells -- (1, 1), (1, 2), (2, 1), and (2, 

2) -- and involving 50 units of load.  After adjusting the supplies and demands the remaining cells will constitute the 

second floating sub-distribution involving a complex SS chain. 

 

Finally, the two corresponding alternate optimal solutions are as follows: 
 

 

Table 8.  Alternate Optimal Solution 1 for the Numerical Example 

 b1 b2 b3 b4 b5 Supply 

a1  20    20 

a2 50 10 10   70 

a3   20 10  30 

a4    40 20 60 

Demand 50 30 30 50 20  

 

 

Table 9.  Alternate Optimal Solution 2 for the Numerical Example 

 b1 b2 b3 b4 b5 Supply 

a1  20    20 

a2 50  20   70 

a3   10 20  30 

a4  10  30 20 60 

Demand 50 30 30 50 20  

 

 

Remark 2:  In linear programming problems, if more than one optimal solution exists, then an infinite number of 

AOSs exist as any positive-weighted average of any two basic optimal solutions yields another AOS.  The same 
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does not always hold true for a TP due to integer restrictions on the load assignments.  However, it may be possible 

to find some feasible AOSs by taking the positive-weighted average of the two optimal solutions of a TP.  Since all 

load assignments in Table 8 and Table 9 are in the tens, any weighted average with a weight α/10, where α is an 

integer and 0 ≤ α ≤ 10 also provides an alternate optimal solution.   

 

5.   CONCLUSION 

 

This paper expands on the theory of transportation problems beyond the material currently available in the 

textbooks and other sources.  We introduce some of the already-known and some not-yet-known properties in a 

novel way, making them understandable to a wider spectrum of readers.  The „post optimal‟ analysis developed in 

the paper also provides a new view into the TP by demonstrating that some particular locations identified by the 

computational software as optimal can be loaded with greater or lesser amount or can even be omitted completely in 

an alternate equivalent solution.   

 

We have also developed an algorithm that presents systematic steps to determine cells with fixed load 

(fixed due to the absolute structure of the TP) and some cells with minimal load (fixed due to the constraint structure 

of the TP).  As a result, all floating cells are identified where a manager has the flexibility of allocation by 

identifying a minimum load for selected cells from the optimal solution, thereby empowering the manager to make 

load allocation decisions strategically, on the basis of an analysis of alternate assignments.  The proposed algorithm 

can even allow omitting some of the routes identified originally as part of the optimal solution.  The „post solution‟ 

analysis can be a valuable tool for managers to assess „parallel‟ solutions on the basis of an analysis of alternate load 

assignments. 
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