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ABSTRACT 

 

We propose using the cross-sectional (daily) average conditional volatility of commercial bank 

stock returns as a measure of systemic risk for the U.S. banking industry. The performance of this 

measure is tested using data from the 2008 pre-crisis period. The measure is shown to incorporate 

individual bank risk as well as the cumulative riskiness of a cross-section of banks. Cross-

sectional regressions indicate that individual bank’s probability of default is unrelated to the 

bank’s conditional volatility during times of low, industry wide risk (as measured by average 

conditional volatility). However, the bank’s conditional volatility significantly affects its 

probability of default when the industry is experiencing a high level risk. Regardless of the 

industry level risk, a bank’s probability of default has a significant negative relation with its 

capital adequacy (as measured by the proportion of equity capital). Additionally, at an aggregate 

level, Granger causality tests indicate that the conditional volatility of ‘big’ banks causes the 

riskiness of medium and small banks to increase. 
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1. INTRODUCTION 

 

he financial crisis that began in 2008 has made clear that evaluating systemic risk is an important 

issue facing regulators and other stake holders in the banking system. Risk measures such as distance 

to default and probability of default at an individual bank level have been proposed. These measures 

do not provide systemic information and rely partly on accounting data that is infrequently available.  In this paper, 

we empirically examine the information content of average volatility of commercial bank stock returns and 

characterize its relation to industry level risk and individual bank-level risk.  This measure is easy to implement and 

makes it attractive to regulators seeking to detect abnormality in systemic risk in a timely manner. 

 

Systemic risk refers to the risk that the financial system taken as a whole will suffer losses thereby 

imposing losses on investors that would not otherwise occur if the financial system continued to operate normally. It 

involves the correlation among several parts of the financial system so that losses in one element imply losses in 

other elements [Kaufmann and Scott (2003); Bartholomew and Whalen (1995)]. In banking, systemic risk is 

manifested by high correlation and clustering of bank distress or bank failures in a single country, or internationally. 

Systemic risk can arise when a bank or other financial institution fails, which then has knock on effects on other 

banks. These knock on effects can be propagated either through direct exposure of a number of banks to the failed 

bank or fear that the other banks hold similar or identical portfolios to the failed institution. The latter sort of 

situation can lead to liquidity crisis as investors seek to withdraw from the affected institutions.
1
 Schwarcz (2008) 

synthesizes these ideas in the following definition “[S]ystemic risk is the risk that an economic shock such as market 

or institutional failure triggers (through panic or otherwise) either the failure of a chain of markets and institutions or 

a chain of significant losses to financial institutions, resulting in increases in the cost of capital or decreases in 

availability, often evidenced by substantial financial-market price volatility”.  

 

                                                 
1 See Kaufman and Scott (2003) for a discussion of various definitions of systemic risk. 
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The above definitions suggest that any measure of systemic risk must reflect the risk of an individual bank, 

and the influence that single bank‟s performance has on other institutions. In a recent paper, Acharya et al (2010) 

model systemic risk based on individual bank risk and its contribution to the systemic risk. In the presence of limited 

liability, each bank stands to lose their net worth in case of a default. This loss is called default expected shortfall at 

the individual bank level. They define systemic risk event as one where the aggregate value of net worth drops 

below a target level (a fraction of assets). In this context, the expected shortfall that represents the amount by which 

a bank‟s equity drops below its target level (a fraction of assets) is considered the marginal contribution of that bank 

to the systemic risk. Acharya et al suggest that systemic risk conditional on macro-economic events can be measured 

by the long-run volatility models. Brownlees and Engle (2010) apply Acharya et al (2010) model to data from the 

current crisis and report weekly systemic risk analysis.
2
 These authors compute annualized volatility series averages 

by industry group and find that volatility gradually surges as the financial crisis begins in 2008.   

 

We take a different approach by estimating conditional volatilities using a GARCH.  We make several 

important contributions to the literature. First, from cross-sectional regressions we find that the individual bank‟s 

probability of default is not influenced by its conditional volatility of stock returns when the average conditional 

volatility of the industry is low. Our results indicate that the bank-level conditional volatility of stock returns 

significantly affects the individual bank‟s probability of default when the industry level risk is high.  This finding is 

important because it highlights the important link between risk at the bank level and at the industry level. We also 

find that, regardless of the industry level risk, the bank‟s probability of default decreases as the proportion of equity 

in the bank capital increases.  Second, in order to verify whether conditional volatility reflects the influence of the 

failure of a single bank or institution has on other institutions, we calculated the time-series of average conditional 

volatility for large, medium and small sized banks and conducted a Granger causality test. We found that causality 

flows from banks with a high market value of equity to medium and small sized bank. 
3
 

 

The paper is laid out in the following manner. Section 2 contains the motivation and describes the 

estimation of average conditional volatility.  This section also describes the time-series of average conditional 

volatility during 2007 and 2008.  Section 3 contains results from regression analysis that shows how industry level 

risk impacts the relation between the individual bank‟s probability of default, bank-level conditional volatility and 

capital adequacy.  Section 4 presents the time-series of average conditional volatility for large and small sized banks 

and results from the Granger causality test.  Our concluding remarks are in Section 5.  

 

2. MOTIVATION AND ESTIMATION OF SYSTEMIC RISK 

 

We examine aggregate bank return volatility to analyze the types of information (and risk) it captures. 

Consider the following GARCH (p, q) return generating process
4
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where rit denotes the return, µi denotes the mean return, eit denotes the unexpected innovation in the return, and 
2

it

denotes the conditional volatility. The subscript t denotes time and the subscript i denotes bank. The conditional 

volatility in equation (1) depends on the lag structure for innovations in returns. Volatility clustering is modeled by 

the third term on the right, where periods of higher volatility in the past propagates a higher volatility in the current 

period. Thus, the conditional volatility contains information about the bank‟s current and past unexpected 

performance and the combined risk as measured by volatility associated with of such innovations.  

                                                 
2 See the risk section of the Vlab (http://www.systemicriskranking.stern.nyu.edu/). 
3
 Our research is related to previous work that seeks to model individual bank risk [Merton (1977), Markus and Shaked (1984), 

Gennotte and Pyle (1991) Moody‟s (2003); Bharath and Shumway (2008), and Chan-Lau and Amadou (2006)] and research that 

is aimed at measuring risk to captures the interrelatedness between banks [Lehar (2005), Gray, Merton and Bodie (2008) and 

Gray and Jobst (2009)].  
4 See Engle (1982); Bollerslev(1986); Bollerslev, Chou and Kroner (1992). 
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We can use the risk faced by an individual bank to construct a measure of systemic risk. To see this, 

consider a banking industry consisting of two banks with daily returns characterized by a GARCH (1, 1) process. 

The conditional volatility for Banks 1 and 2 are given by 
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The cross-sectional average conditional volatility is computed as 
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Suppose now that specific information about Bank 1 arrives indicating a reduced return at the end of period 

t - 1. This is quickly reflected in stock price, causing a negative value for the innovation, e1,t-1 at time t - 1. This bank 

specific event is reflected in σt
2
 through the second RHS term of equation (3). It may be also that returns of the Bank 

1 and Bank 2 are correlated. Such a correlation could arise from a number of causes: 1) a common macro-shock 

affecting both banks; 2) directly by holding of Bank 1 securities by Bank 2; and 3) indirectly via common third party 

exposure [Kaufman and Scott (2003)]. A poor performance by Bank 1 not only causes e1,t-1 to be large and negative 

but also may have an impact on e2,t-1. The cross-sectional average conditional volatility reflects the correlation 

between innovations by considering its long term impact on individual bank volatility. Thus, Equation (3) gives a 

measure of both individual risk as well as systemic risk.  

 

We can generalize Equation (3) to apply to an industry with n banks as: 
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The measure in equation (4) is a systemic measure of risk as it considers the risk of an individual bank, and 

the influence the individual bank has on other institutions. This system-wide measure can be computed daily using 

market data thus affording the desirable feature of timely intervention.  

 

We draw the data for 344 banks from the Chicago Research in Security Prices (CRSP) database and from 

the Standard and Poors‟ Compustat database. For each of the 344 banks in our sample, we use 252 daily returns 

from the year 2007 to estimate the coefficients αi, βi, and γi in a GARCH (1, 1) model where the volatility for bank i 

at time t is given as 1,
2

1,
22

  tiitiiiit e  .
5
 Each innovation eit is the difference between the actual return 

on day t for bank i (denoted as rit) and the corresponding expected return μit . The expected daily return during 2008 

is calculated on the basis of a moving average method trailing 252 trading days. As everyday evolves the oldest 

return is dropped from the time series and the most recent return is added to calculate a new mean. In particular,  
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5 Our purpose here is to study the use of conditional volatility as a measure of systemic risk. We consider GARCH (1, 1) merely 

as an example and do not investigate the model of best fit. However, prior research has shown that GARCH (1, 1) fits the data 

well. Hansen and Lunde (2001) use the DM-USD exchange rate data and compare the forecasting ability of several GARCH type 

models. They find that none of the models beat GARCH (1, 1) in its forecasting ability. Duan and Wei (1999) find that GARCH 

(1, 1) fits the data on the underlying asset for currency options. 
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jtiti r , for t = 1, …, 180, for i= 1, …,344. We estimate σit
2
for the first 180 trading days 

(about nine months) in 2008.
6
  In estimating the evolution of conditional volatility, we assume that the initial 

conditional volatility for each bank (σi0
2
) is the average (daily) historical volatility for that bank computed from the 

2007 returns. Figures (1) shows a plot of the average conditional volatility across 344 banks for each of the first 180 

trading days in 2008.  
 

 

Figure (1): This figure plots the cross-sectional average conditional volatility during the first 180 trading days in 2008. The 

coefficients of a GARCH (1, 1) model are computed for each of the 344 banks using the 2007 returns data. These coefficients are 

applied to the 2008 returns data to compute the conditional volatility for each bank. The cross-sectional average for each day is 

plotted in the following figure. This period is broadly characterized by at least three volatility clusters denoted as A, B and C. 

 
 

 

The x-axis represents the calendar dates during the first 180 trading days in 2008. The y-axis represents the 

cross-sectional average conditional volatility computed as 344/
344

1


i

it .   

 

On Figure 1 are indicated three peaks in industry volatility denoted Cluster A, B and C. These clusters 

represent significant increases in systemic risk. For example, the average daily conditional volatility on the first 

trading day in 2008 is 2.18%. The corresponding annualized volatility assuming 252 trading days is 34.6% 

(2.18%x√252). The peak annualized volatility then increased to 59.75% on the 16
th

 trading day of 2008, denoted as 

                                                 
6
 The crisis started unfolding around the beginning of September 2008. Our research focuses on the ability of conditional 

volatility serving as a measure of systemic risk. For this measure to be useful, it should be able to detect symptoms of the 

systemic risk much earlier than when events are precipitated in the economy. Hence, we choose the first 180 day trading period 

during 2008 that starts on January 2, 2008 and ends on September 17, 2008. 
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Cluster A in Figure 1. Cluster B was also marked by a higher than average volatility with the peak annualized 

volatility of 57.94% on the 56
th
 trading day in 2008. By the 138

th
 trading day, the annualized volatility had reached a 

high of 91.64% in Cluster C. Based on observing the trend in the first few weeks of 2008 it is quite evident that the 

banking industry was getting riskier. Since information on each bank is incorporated every day, the average 

conditional volatility provides the stakeholders with timely information.  

 

We use the same procedure to compute the average conditional volatility for 2007. Figure (2) plots the 

volatilities for 2007 and 2008. The first 180 trading days in 2007 shows a daily volatility of less than 2% (annualized 

31.7%). The average volatility during the first 180 days in 2008 was consistently higher than the volatility for the 

same period in 2007. It is interesting to note that the average volatility increases towards the end of six months 

during both 2007 and 2008; a period just prior to the release of the accounting reports.  
 

 

Figure (2): This figure plots the cross-sectional average conditional volatility during the first 180 trading days in 2007 and 2008. 

The coefficients of a GARCH (1, 1) model are computed for each of the 344 banks using the 2006 and 2007 returns data, 

respectively. These coefficients are applied to 2007 and 2008 returns data to compute the conditional volatility for each bank. 

The cross-sectional average for each day in 2007 and 2008 are plotted in the following figure.  

 
 

 

A measure of systemic risk must reflect the risk of an individual bank as well as its‟ influence on other 

institutions. This idea is illustrated in equation (4) and depicted in Figure (3). The plots in figure (3) reflect 

cumulative risks. The lowest plot indicates the amount of the cross-sectional average of the lagged conditional 

variance. This type of risk accounts for return innovations in prior periods and is the largest component of the total 

average conditional volatility. The second plot from the bottom indicates the cumulative risk of the lagged 

conditional variance and the cross-sectional average of return innovations for the day t – 1. This second component 

reflects the impact of the most recent performance of a cross-section of banks. Finally, adding a model constant 

gives the estimate of the total volatility. Figure (3) shows that the lagged conditional variance (i.e., the systemic 

component) of the total volatility is responsible for the overall risk of the banking industry. Hence, we propose using 
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the average conditional volatility as a measure of systemic risk in the banking industry. In the following sections, we 

empirically examine how the conditional volatility relates to individual bank risk and to risk at the systemic level. 
 

 

Figure (3): This figure plots the components of the cross-sectional conditional variance during the first 180 trading days in 2008. 

The average variance on day t consists of the average lagged innovations and the average lagged variances across 344 banks. The 

figure represents the cumulative sum of component risks. The largest component is the lagged conditional variance followed by 

the lagged innovations. 

 
 

 

3.  SYSTEMIC RISK AND INDIVIDUAL BANK RISK 

 

In this section we use cross-sectional regressions to examine the relationship between individual bank risk 

(estimated by its probability of default) and variables such as the bank‟s conditional volatility and its individual risk 

characteristics. An obvious factor affecting individual bank risk is capital adequacy. The “safety net” theory posits 

that a bank‟s capital forms a kind of cushion against losses for depositors in that initial loss is absorbed by equity; 

only when equity is exhausted will depositors and other debt holders face expose. As a consequence, the risk to 

uninsured depositors, the deposit insurer, and other bank debt holders decrease with increases in capital 

requirements. Regulators have always considered capital adequacy standards as a concern and tool to mitigate risk at 

the level of the individual bank and the system as a whole. Capital adequacy also affects individual bank risk via its 

affect on the willingness of bank management to take on risk by introducing moral hazard. If banks do not have 

sufficient equity “at stake” when they make their investment decisions, they may make decisions which, though 

optimal for equity holders, are suboptimal from the point of view of society as a whole [Morrison and White 

(2002)]. For example, banks may be tempted to make excessively risky and even negative net present value 

investments, which maximize the returns to equity at the expense of debt-holders or the deposit insurance fund.  

 

The objective of capital regulation is to strengthen the soundness and stability of the banking system. 

However, some theoretical results suggest that banks may have found ways of overcoming the limitations that fixed 
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capital requirements impose on their risk taking relative to their capital, either through asset substitution [Koehn and 

Santomero (1980), Kim and Santomero (1988), Flannery (1989), Rochet (1992)], the reduction of monitoring 

incentives [Bensako and Kanatas (1993), Boot and Greenbaum (1993)] or through substantial volumes of 

securitization [Jones (2000)]. In an inter-temporal model, Blum (1999) shows that under binding capital 

requirements, bank managers have an incentive to take risk this period in order to raise the costly additional unit of 

equity in the next period. Silva (2007) extends Blum‟s model to show that the risk-taking incentives are mitigated as 

intended, as long as the capital requirement are within certain threshold values. In the context of the 2008 crisis, 

Acharya and Richardson (2009) point out that a fundamental cause of the current wave of bank failures is that banks 

have engaged in a regulatory arbitrage by placing mortgages in off-balance sheet conduits and repackaging 

mortgages into mortgage backed securities (CDOs). They argue that the banks do this to take advantage of a 

regulation that allows them to hold reduced capital against such assets. The reduced capital in turn, allows the banks 

to multiply their loans which rendered the banks insolvent. Regulatory arbitrage is another form of responding to 

capital standards that eventually resulted in excessive amounts of systemic risk in the banking system.   

 

Next, we explore the relationship between the bank‟s probability of default, the conditional volatility of 

stock returns and the asset volatility. While, the conditional volatility of stock returns is estimated using a GARCH 

process, the market value of the bank‟s assets and the associated level of volatility are not observable and hence 

cannot be computed directly.  Merton (1977) provides a model that facilitates the estimation of market value of 

assets, asset volatility and the probability of default. The basic insight underlying this approach is that holding a 

bank‟s equity is equivalent to holding a call option on the bank‟s assets with an exercise price equal to the maturity 

value of the bank‟s debt. Alternatively, holding risky debt is equivalent to holding risk-free debt and writing a put 

option on the bank‟s assets.  

 

In particular, assume that the market value of the bank‟s assets follows a continuous lognormal diffusion 

process with constant variance. If the bank‟s deposits are insured and hence pays a risk-free rate then the market 

value of equity for a bank is given as, 

 

Et = Vt N(x) – BN(x – σv√T)                               (5) 

 

where,  

 

Et  = the market value of bank equity at time t, 

Vt  = the unobserved market value of the bank‟s assets at time t, 

B  = the face value of the bank‟s debt 

T  = time until the next bank examination date, 

σv  = the unobservable instantaneous standard deviation of dV/V, and 

x  = [ln(V/B) + (σv
2
T/2)]/ σv√T 

N(.) = Cumulative Normal Distribution. 

 

From Ito‟s lemma it follows that the standard deviation of the process dE/E is given as 

 

σE = (V/E)(∂E/∂V) σv  (6) 

 

Given the above model, we can numerically solve for V and σv from equations (5) and (6). With these values we 

estimate the probability of default given as,  
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The above model has been subject to empirical scrutiny by many researchers. In the context of 14 major 

bank failures in the USA, Diba, Guo and Schwartz (1995) examine the net worth (V – B) as estimated by the model 

and the FDIC‟s estimated resolution costs. They find that the model estimates are overvalued and is possibly 

because the model fails to capture many institutional details. Giammarino, Schwartz and Zechner (1989) examine a 

sample of Canadian banks to infer the market value of the bank‟s assets from the observed market value and 

volatility of its equity. The market value of assets is significantly different from the book value and is also different 

across banks. Based on the above model, these authors also compute risk-adjusted deposit insurance premiums. 

Chan-Lau, Jobert and Kong (2004) study the distance to default indicator for a sample of 38 banks from fourteen 

different emerging market countries during the period 1997 to 2003. They find that the distance to default measure 

reached its highest level around the time of the Asian crisis. They also found that the distance to default was 

significantly different for a sample of banks with a downgrade in credit rating compared to those that did not 

experience a downgrade.  
 

The computation of the probability of default requires a measure of leverage (accounting data) as well as 

market data (market value of equity and its volatility).  Due to the data limitation, the probability of default measure 

cannot be computed on a daily basis. In our paper, we use the second quarter accounting data reported in the S&P 

Compustat and make a cross-sectional comparison between the probability of default, conditional volatilities and 

asset volatilities. The cross-sectional regressions are conducted on 5/22/2008 (low conditional volatility day) and on 

7/18/2008 (high conditional volatility day).  
 

With this in mind, we estimate the following model:  

 

iiii eAssetsLnCAVolPD  )()()( 321 
  (8)

 

 

where the independent variables in the regression are measures for Capital Adequacy (CA), conditional volatility or 

asset volatility (Vol), the natural log of total assets (ln(Assets)), and an error (e).  The summary statistics of the 

probability of default and the various independent variables are given in Table (1). The average market value of 

equity for high value banks is $9.4 billion. The medium value banks have a much lower average of $0.23 billion. 

The group of small banks has an average of $55.6 million in equity. The implied market value of assets for our full 

sample of 344 banks is $13.0 billion. This market value estimate far less compared to a book value of $86 billion. 

The estimated market values of assets of the different sized banks are correspondingly lower than their average book 

value of assets. The medium valued banks have the lowest average value of Debt/Asset Value of 47.16%, asset 

volatility of 36% and a probability of default of 7.62%. Interestingly, relative to the medium valued banks, the high 

and low valued banks exhibited a slightly higher average value of Debt/Asset Value of 53.22% and 57.02%, 

respectively. The medium valued banks correspondingly exhibit the lowest risk levels as measured by asset 

volatility, equity volatility and probability of default. If the high valued banks are too big to fail, it appears from the 

descriptive statistics that small banks are the most vulnerable among the three groups.  
 

 

Table (1):  This table presents the summary statistics for variables used  

in the cross-sectional regressions of conditional volatility and individual bank risk. 

 Variables   Full   High Value1 Mid Value Low Value 

 MVE ($m)   3173.64  9471.79  233.24  55.65 

 Mkt Value of Assets2  13896  41263  1128  409 

 BV of Assets   86070  255926  5692  3525 

Debt/Value3   0.5247  0.5322  0.4716  0.5702 

 Asset Volatility (σv)  0.37  0.39  0.36  0.37 

 Conditional volatility (σE)4  0.70  0.74  0.68  0.68 

 Probability of default  0.1273  0.1649  0.0762  0.1409 

1. The sample of 314 banks was divided into three groups of approximately the same number of banks in each group. 

High (Low) value banks are those with the highest (lowest) market value of equity.  

2. The asset value, probability of default and σv were estimated using the Merton model. 

3. The book value of debt is obtained from COMPUSTAT, data item #Q51. 

4. The value of σE is estimated using GARCH (1, 1) from the returns data during 2007. 
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OLS regressions  
 

 The results from the OLS regressions are presented in Table (2).  Model 1 uses conditional volatility as the 

measure of bank risk and Model 2 uses asset volatility.  We find that on a day when the industry average conditional 

volatility is low, the individual bank level conditional volatility does not significantly affect the individual bank‟s 

probability of default. However, individual bank level conditional volatility has a significant impact on the 

individual bank‟s probability of default when the average conditional volatility is high for the industry.  This finding 

highlights the role of conditional volatility, both as an aggregate measure for the industry and as a measure of 

individual bank risk. The overall results indicate that the probability of default increases with conditional volatility, 

asset volatility and size.  The probability of default decreases with the measure of capital adequacy.  Each of the 

slope coefficients are significant at the 1% level and are consistent on the low volatility and high volatility day.    
 

 

Table (2):  This table presents results from the cross-sectional regressions of probability of default on individual bank risk 

characteristics for two models.  These models differ only with respect to bank specific risk characteristic such as equity volatility 

and asset volatility. The cross-sectional regressions are conducted on 5/22/2008 (low conditional volatility day) and on 7/18/2008 

(high conditional volatility day).  

                                     Low Conditional Volatility day (5/22/2008) High Conditional Volatility day (7/18/2008) 

Independent   Model 1  Model 2    Model 1  Model 2 

Intercept   0.10860  0.05206    0.15158** 0.21682*  

Cond Volatility  0.04791  -    0.10289*  - 

Asset Volatility  -  0.55042*    -  0.25248*  

MVE/Value  -0.55310* -0.67758*   -0.64585* -0.81038* 

Ln(TA)   0.03704*  0.03992*    0.03704*  0.03240*  

Adj R2   0.5370  0.5707    0.6178  0.6607 

F value   122.02*  139.70*    169.63*  204.15* 

N   314  314    314  314 

 

 

 Next, we compute the change in the probability of default from the low volatility day to the high volatility 

day and examine its relationship with changes in the independent variables.
7
 The results from the OLS regressions 

are presented in Table (3).  We find that the coefficients enter the regression in a predicted manner.  A greater 

change in individual bank‟s conditional volatility (or asset volatility) results in a significantly larger change in the 

individual bank‟s probability of default. Changes in capital adequacy, however, has a significantly mitigating 

influence on the change in individual bank‟s probability of default.   
 

 

Table (3):  This table presents results from the cross-sectional regressions of probability of default on changes in individual bank 

risk characteristics for two models.  These models differ only with respect to changes in bank specific risk characteristic such as 

equity volatility and asset volatility. The cross-sectional regressions are conducted for changes from 5/22/2008 (low conditional 

volatility day) to 7/18/2008 (high conditional volatility day).  

Independent   Model 1   Model 2 

 Intercept    -0.04281   0.08389* 

 Change in Cond Volatility  0.15311*   - 

Change in Asset Volatility  -   0.17843* 

Change in MVE/Value  -0.57804*  -0.84596* 

 Ln(TA)    0.00154   0.00844* 

 Adj R2    0.4175   0.2911 

 F value    75.79*   43.84* 

 N    314   314 

 

 

 

 

                                                 
7
 The value of ln(Assets) remains the same as both these dates are in the second quarter and the information on total assets is the 

same.   
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Robustness 

 

The OLS regressions use the estimates of the probability of default, conditional volatility and asset 

volatility estimated from Merton‟s model. This could arguably yield results that may seem to be a tautology. We 

address this issue in the following steps and employ a logistic regression methodology; 

 

a) First, we create a binary dependent variable.  We compute the median value of the estimates of the 

probability of default estimated from equation (7).  We interpret banks with values of PD > median as risky 

banks and assign a value of 1 to the dependent variable.  Banks with PD < median are interpreted as safe 

banks and assigned a value 0 to the dependent variable. 

b) Using the logistic regression technique, the binary dependent variable is regressed on the independent 

variables in equation (8). 

c) The probability of firm j being classified as a risky bank is computed from the coefficient estimates from 

the logistic regression model. 

d) Finally, we compute Spearman‟s rank correlation between the values of PD from equation (7) and the 

estimated probabilities from the logistic regression.  

 

 The regression results are presented in Table (4). We estimate two versions of equation (8); one 

characterized by low bank volatility (May 5, 2008) and the other a high volatility date (July 18, 2008).  The result 

indicates that the probability of a bank being classified as a risky bank is positively related to the bank‟s conditional 

volatility and negatively related to capital adequacy (measured by the ratio of market value of equity to market value 

of the bank).  This relationship holds regardless of whether the level of average conditional volatility of the industry 

is low or high.  The results are significant at the 1% level of confidence.   

 

 The estimate of the probability that a bank is risky is given as e
x
/(1+e

x
), where x = α + β1(CV)+ β2(CA)+ 

β3(ln(TA)).  We use the estimates of α, β1 β2 and β3 from each of the regressions and compute the probability.  The 

rank correlation between the probability estimates from the regression and the probability of default from Merton‟s 

model is 0.9355 for the low volatility day and 0.9252 for the high volatility day, both significant at the 1% level.  

The results from these cross-sectional regressions confirm that the conditional volatility of a bank is an important 

determinant of individual bank risk as measured by the probability of default.   
 

 

Table (4):  This table presents results from the cross-sectional logistic regressions of probability of default on individual bank 

risk characteristics with equity volatility as the proxy for bank specific risk characteristic.  The cross-sectional regressions are 

conducted on 5/22/2008 (low conditional volatility day) and on 7/18/2008 (high conditional volatility day).  

Independent   Low Conditional Volatility Day High Conditional Volatility Day 

    (5/22/2008)   (7/18/2008) 

 Intercept    2.5702    -0.1539 

 Cond Volatility   31.5754*    9.1059* 

MVE/Value   -22.3985*   -17.2305* 

 Ln(TA)    -0.2610    0.1894 

  

 Test of global null  

hypothesis that  

coefficients =0   Chi-Square   Chi-Square 

    

 Likelihood ratio   342.19*    331.89* 

 Score    193.42*    198.96* 

 Wald    45.24*    50.00* 

N    314    314 

 

 

4.  SYSTEMIC RISK, BANK SIZE AND CAUSALITY 

 

Large financial institutions are counterparties to other banks, so that losses at any one bank may cascade 

along a chain to other banks and beyond to financial markets and the macro economy [Kaufman (1996)]. For this 
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reason, U.S. regulators have adopted a de facto “Too Big to Fail” (TBTF) policy. Ex ante, the uninsured investors in 

large financial institutions anticipate a bailout in the event of a failure. The implicit TBTF coverage for the 

uninsured creditors along with the Federal Insurance for the other depositors creates moral hazard incentive for 

managers of large banks. This means that in a systemic sense, large banks (more than smaller banks) have the 

incentive to take risks by investing in risky asset portfolios. The interconnectedness of large banks would imply that 

the greater riskiness of large bank stock returns causes an increase in the riskiness of small banks. In the context, we 

propose that the average conditional volatility of large banks tend to “cause” in the sense of Granger the conditional 

volatility of smaller banks and implement a Granger causality test.  

 

Let xLt =  T

tLt 1
  denote the time series of average daily conditional volatilities for T days for a group of 

large banks. Let xSt = T

tSt 1
 denote a similar vector for small banks. Let the information set be denoted as (xLt , xSt). 

Given this information set, xLt is „Granger causal‟ for xSt if xLt helps predict xSt. The following regression 

specification estimates the causal relationship 
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An F-test is used to examine the null hypothesis that the coefficients are equal to zero. We also test the following 

„reverse‟ model to determine the direction of causality based on the level of statistical significance. 
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We used the algorithm called „Granger Cause‟ available in the MATLAB central. This algorithm requires the 

specification of the two time-series vectors, the significance level and the maximum number of lags to be 

considered. The algorithm chooses the optimal lag length for the vectors based on the Bayesian Information 

Criterion and yields an F-statistic along with the corresponding critical value.  

 

We examine the relationship between the cross-sectional average (daily) conditional volatilities across 

high, medium and low valued banks. Consider Figure (4). 

 

The volatility clusters identified earlier in Figure (1) are contributed by each of the three different sized 

groups of banks. The average conditional volatility of the high valued banks is the highest in each of the three 

volatility clusters. During periods of relatively low volatility in 2008, the conditional volatility of high valued banks 

declined the most and was the lowest among the three groups. These observations suggest that the volatility of high 

value banks is very high and consistent with the idea that big banks have a greater propensity to take risk. 

Interestingly, the conditional volatility of low valued banks is higher than the medium valued banks during the 

period under consideration. This non-linear relation between size and volatility was reported earlier in the summary 

statistics in Table (1). Our analysis suggests that the risky high valued banks combined with the TBTF doctrine is 

likely to adversely small banks. However, this argument depends on whether the volatility of high valued banks 

causes the medium and small banks to be risky, as well.  

 

We conduct Granger causality tests for each pair of the time-series vectors of conditional volatilities among 

the three groups. The results are reported in Table (5).  
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Figure (4): This figure plots the cross-sectional average conditional volatility during the first 180 trading days in 2008 for 115 

high equity valued banks, 114 medium equity valued banks and 115 low equity valued banks. 

 
 

Table (5): This table presents the results from the Granger causality test. The sample of 344 banks is divided into three groups 

based on the market value of equity. The group with the highest values is called „High‟ and the group with the lowest values is 

called „Low‟. The rest of the banks are called „Mid‟. These tests use a lag of 5 days and a significance of 1%. We employed a 

MATLAB program called Granger_cause. The symbol „→‟ in the table indicates the direction of causality. 

 Group A → Group B  F-value  Critical value  Decision 

 High → Low   14.6634  6.7802   Reject Null 

 Low → High   4.8594  6.7802   Do not reject 

 High → Med   16.3344  6.7802   Reject Null 

 Med → High   3.3076  6.7802   Do not reject 

 Low → Med   0.6379  6.7802   Do not reject 

 Med → Low   5.6120  6.7802   Do not reject 

 

 

The results indicate that the average conditional volatility of high valued banks „Granger Causes‟ the 

average conditional volatility of small and medium banks as indicated by F-values far exceeding the critical value. 

This implies that the small and medium banks‟ risk level is influenced and can be predicted at some level based on 

the risk level of high valued banks. The results also indicate that there is no reverse causality between low and 

medium valued banks and high valued banks. In addition, there is no evidence of Granger Causality between low 

and medium valued banks. These are denoted by lower than critical values of the F-statistic. These results suggest 

that the measure of conditional volatility indicates that the systemic risk in the commercial banking sector, during 

the initial half of 2008, is mainly caused by big banks.   
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Table (6): This table presents the list of the most risky 15 banks, on the day with the highest average conditional volatility in 

clusters A, B and C during the first 180 days in 2008. 

Cluster A Cluster B Cluster C 

Bank Holdings The Capital Corp Of The West Vineyard National Bancorp 

Community West Bancshares National City Corp Huntington Bancshares Inc 

Irwin Financial Corp Irwin Financial Corp C C F Holding Company 

E Trade Financial Corp Central Valley Comm Bancorp Wachovia Corp 2nd New 

Optimumbank Holdings Inc Bank Of Virginia East West Bancorp Inc 

C C F Holding Company Severn Bancorp Inc Md Carolina Bank Holdings Inc 

Capital Bank Corp New Bank Mckenney Va Tennessee Commerce Bancorp Inc 

F P B Bancorp Inc Sierra Bancorp Provident Bankshares Corp 

Popular Inc Western Alliance Bancorporation Colonial Bancgroup Inc 

Amcore Financial Inc Doral Financial Corp Bankatlantic Bancorp Inc 

Western Alliance Bancorporation C & F Financial Corp Cape Fear Bank Corp 

Independent Bank Corp Mich United Community Banks Inc Ga South Finl Group Inc 

Central Valley Comm Bancorp I C I C I Bank Ltd E Trade Financial Corp 

Doral Financial Corp E Trade Financial Corp Amcore Financial Inc 

Citizens Republic Bancorp Inc Security Bank Corp Columbia Bancorp Ore 

 

 

5.  CONCLUSION 
 

This research proposes average conditional volatility as a measure of systemic volatility for the U.S. 

commercial banking industry.  This measure is easy to compute and requires only the daily stock returns data for 

commercial banks. The average conditional volatility is largely influenced by the cumulative performance of all 

banks through the values of lagged average conditional volatilities. A smaller fraction of the average conditional 

volatility is contributed by the most recent performance of all banks. In this sense, the average conditional volatility 

captures the systemic nature of risk.  

 

 Our research shows that the average conditional volatility in 2008 is consistently higher than the volatility 

in 2007, thus indicating a systemic increase in risk. The conditional volatility also serves as an early warning of a 

volatile system as seen from Clusters A and B in Figure (1). A closer examination indicates that the list of 15 most 

risky banks on the highest volatility day is different across the three clusters [See Table (6).] This observation is 

consistent with Bartholomew and Whalen (1995) and is a reflection of the systemic nature of increased risk being 

spread out to various banks and is not confined to a few. Another systemic relationship we observe is that high 

(equity) valued banks influence the riskiness of medium and smaller banks. Cross-sectional regressions indicate that 

individual bank‟s probability of default is unrelated to the bank‟s conditional volatility during times of low, industry 

wide risk (as measured by average conditional volatility). However, the bank‟s conditional volatility significantly 

affects its probability of default when the industry is experiencing a high level risk. Regardless of the industry level 

risk, a bank‟s probability of default has a significant negative relation with its capital adequacy (as measured by the 

proportion of equity capital). Additionally, at an aggregate level, Granger causality tests indicate that the conditional 

volatility of „big‟ banks causes the riskiness of medium and small banks to increase. 

 

 The subject of systemic risk in the banking industry has been a topic of concern, debate and study for many 

decades. The need to measure and control systemic risk is more acute now than in the past because of increased 

interdependencies imposed by structured products and risk insurances. The need for a cushion of funds and the 

resulting capital standards have been the domain of regulatory agencies in controlling the riskiness of individual 

banks and consequently the systemic risk in the banking industry. A drawback of capital regulations is that its 

enforcement depends on bank audits occur very infrequently. Measures of individual bank risk and the expected loss 

to the fund were contributions made since the advent of option pricing techniques. These techniques, however, 

required data inputs from accounting statements that are, at best, only available on a quarterly basis. Despite the 

availability of the arsenal mentioned above, most of the stakeholders had no any early warning of the 2008 crisis. 

We show that the conditional volatility measure contributed by Engle (1982) has the desired features of a systemic 

risk measure and does provide the stakeholders with an early warning of increased systemic risk.  
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