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ABSTRACT 

 

This paper examines the demand for attendance at National Football League (NFL) games using 

a rational addiction model to test the hypothesis that professional football displays the properties 

of a habit-forming good.  Rational addiction theory suggests that past and future consumption 

play a part in determining the current period’s consumption for habit-forming goods.  

Additionally, we postulate the behavioral implications of profit-maximizing ticket pricing behavior 

by NFL teams.  Previous studies have been unable to detect pricing power by NFL teams.  Our 

model of pricing power allows us to identify theoretically- anticipated pricing behavior.  A pooled 

data set is collected using statistics from each NFL team from the 1983 to the 2008 seasons.  

Current attendance is modeled as a function of team specific variables, including past and future 

attendance, ticket price, and team performance.  The model is estimated using Two-Stage Least 

Squares (2SLS).  We also treat the censored nature of ticket demand as NFL teams frequently 

experience sell-outs.  It is found that past and future attendance, winning percentage, the age of 

the stadium in which a team plays, and own-price demand elasticity influence attendance.  The 

fact that coefficients for past and future attendance are positive and significant in this analysis 

lends support to the notion that NFL fans display characteristics of rational addiction in their 

consumption behavior.  Further, we find evidence to support profit-maximizing behavior in ticket 

sales. 
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INTRODUCTION 

 

n 2002, National Football League (NFL) attendance totaled 16,931,340, with an average attendance per 

game of 66,138.  As illustrated in Figure 1, attendance figures have been on the rise since these statistics 

were first made available.  In the NFL, ticket revenues account for nearly one-third of all revenues, 

making attendance quite important to the league.
1
  Football fans spend substantial amounts of time and money when 

they attend an NFL game.  According to the Fan Cost Index calculated by Team Marketing Report, the average fan 

spends anywhere from near $200 in Atlanta to over $400 in New England when they go to a game.  Furthermore, the 

NFL boasts more fans than any other professional sport in the United States.  Over half of all Americans claim to 

follow the league.  Why is it that that the NFL is so popular and why is its popularity growing over time?  Is it 

possible that football fans exhibit characteristics of habit-formation in their behavior?  This paper will try to answer 

such questions by examining NFL attendance using a model of rational addiction. 

 

While addiction is often used to explain a physical dependency on substances, such as alcohol and 

cigarettes, rational choice theory can explain addictive behavior as it pertains to a much broader array of activities.  

People can become addicted to any number of things, from food to exercise to work.  According to Becker and 

Murphy (1988), rational addiction theory suggests that people make choices according to their consistent utility 

maximization plan.  This would mean that past consumption and estimated future consumption have an effect on 

                                                 
1Rick Horrow, “The NFL Juggernaut at Postseason, Part I,” available from http://cbs.sportsline.com/general/story/7003559, 

accessed February 1, 2004. 
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present consumption for addictive goods.  If NFL attendance is habit-forming, then it can be shown that past 

attendance and estimated future attendance are significant factors that affect present attendance at NFL football 

games.  If, on the other hand, past and estimated future attendance do not affect current attendance, then the notion 

of habit-formation will be called into question. 
 

 

 
 

Figure 1:  Average NFL Attendance (1934-2002) 

Source: NFL Record and Fact Book 

 

 

This paper will proceed as follows.  The following section will discuss the relevant literature on the topics 

of attendance at professional sporting events and the theory of rational addiction.  The next section will present the 

empirical model and methodology.  The fourth section will report the results of the regression analysis.  The final 

section will discuss conclusions, along with any caveats encountered, and outline some directions for future 

research. 

 

CURRENT RESEARCH ON ATTENDANCE AND RATIONAL ADDICTION 

 
There have been a number of studies in the economics literature on factors that influence the consumption 

of sports, which is generally represented by spectator attendance at sporting events.  Economic demand models have 

been widely used to analyze the factors that determine spectator attendance, and this method has been applied to 

various sports.  A summary of such literature follows.  Downward and Dawson (2000) contains an excellent 

overview of sports related demand analysis studies. 

 

Baseball attendance has been widely investigated.  Kahane and Schmanske (1997) test the proposition that 

roster turnover has an impact on MLB attendance.  Using data from the 1990 through 1992 MLB seasons and an 

ordinary least squares estimator, they find that turnover does indeed have a significant and negative impact on 

attendance in MLB.  In another study on Major League Baseball attendance, McDonald and Rascher (2000) explore 

the effects that special promotions have on game day attendance.  Using ordinary least squares regression, they find 

that promotions increase game-day attendance by about 14%.  Other studies on demand for baseball attendance 

include Boyd (2003), which also examines the impact of promotions, Rivers and DeSchriver (2002), which 

examines the impact of star players, Schmidt and Berri (2002), which examines the impact of strikes, and Schmidt 

and Berri (2001), which examines how competitive balance influences attendance. 
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There have also been some studies on attendance at basketball games.  Burdekin and Idson (1991) examine 

the effect that customer discrimination has on attendance for the National Basketball Association (NBA).  They find 

that attendance is significantly affected by the racial composition of the team relative to the racial composition of the 

market area. Zhang, Pease, Hui, and Michaud (1995) explore the variables that determine whether or not spectators 

will attend NBA games by developing the Spectator Decision Making Inventory.  Using a survey of a random 

sample of 861 NBA spectators, that they find that game promotion, home team, opposing team, and schedule 

convenience are significantly related to game attendance.  Berri, Schmidt, and Brook (2004) examine the impact of 

star players on NBA attendance, finding that the functional form of the regression equation affects whether or not 

star players have a significant impact on the demand for attendance.   

 

Soccer is another sport that has been relatively well studied.  Peel and Thomas (1988) investigate the 

determinants of attendance for professional soccer in England, hypothesizing that games that are not predicable 

attract bigger crowds.  Using data from the 1981-82 season of the English Football League, they find that economic, 

geographic, and demographic variables play a part in determining attendance at soccer matches.  Baimbridge (1997) 

examines soccer match attendance at the European Championship that was held in England in 1996.  He uses 

ordinary least squares regression and finds that the distance between the team‟s home city and the tournament site 

and the quality of the teams are the most important factors that affect tournament attendance.  Recent studies on 

attendance at soccer matches include Hall (2004), which examines the role that television plays in determining 

attendance, and Szymanski (2001), which examines the relationship between financial parity, competitive balance, 

and attendance at English soccer matches.     

 

As for football, there have been studies done in recent years on the demand for attendance at collegiate as 

well as professional football games.  In their study of NCAA Division II football, DeSchriver and Jensen (2002) 

examine the relationship between attendance at college football games and various economic and game variables. 

Results of the analysis suggest that both the past season and current season winning percentages have an affect on 

attendance, with the past season‟s performance becoming relatively less important than the current season‟s 

performance as the season progresses.  Promotional activities, size of the college, and competition within the market 

were also found to be significant factors in determining attendance at college football games.  A similar study on 

Division I college football was conducted by Price and Sen (2003).  Welki and Zlatoper (1994) examine NFL 

attendance and the factors that affect it. The regression analysis indicates that the home team‟s winning percentage is 

an important factor in determining attendance.  They also suggest that higher ticket prices depress attendance and 

that the demand for professional football appears to be inelastic.   

 

These studies provide a solid foundation for research on NFL attendance, but none of the studies attempt to 

account for habit-formation in their models.  Economic theory regarding the role that habits play in the demand for 

goods is a relatively new subject.  Alfred Marshall initially mentioned the idea in his 1920 textbook.  Marshall notes: 

 

…whether a commodity conforms to the law of diminishing or increasing return, the increase in consumption 

resulting from a fall in price is gradual; and, further, habits which have once grown up around the use of a 

commodity while its price is low are not quickly abandoned when its price rises again. 

 

Recently, attempts have been made to integrate habit-formation with economic theory.  For a 

comprehensive review of addiction literature see Fenn (1998)
 
 and Chaloupka (1988).  This study will focus on 

rational addiction theory as it applies to a demand model for the NFL.  It will rely on the work of Fenn (1998), 

which follows seminal theoretical work by Becker and Murphy (1988) and empirical work by Becker, Grossman, 

and Murphy (1994).   

 

Rational addiction, according to Becker and Murphy (1988), implies that people make choices according to 

their consistent utility maximization plan.  Their theoretical work outlines the demand model for a habit-forming 

good, which includes price, past consumption, and expected future consumption.  Future empirical work by the likes 

of Chaloupka (1991), Grossman (1993), Becker, Grossman, and Murphy (1994), and Fenn, Antonovitz, and 

Schroeter (2001) find support for the rational addiction model in the case of goods with known habit-forming 

properties such as cigarettes and alcohol. 
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As for sports attendance and habit-formation, there has been limited investigation.  Ahn and Lee (2003) 

attempt to apply elements of the rational addiction model to sports consumption in their examination of baseball 

attendance.  The results of their regression analysis indicate that baseball consumption is indeed habitual, but not 

necessarily addictive in the rational sense (i.e. past consumption influences present consumption but future 

consumption is insignificant).  Byers, Peel, and Thomas (2000) analyze the possibility of rational habit-formation 

among professional soccer fans in England.  The results indicate support for the rational habit-formation model, 

suggesting that habit may be an important factor that influences spectators at professional sporting events. 

 

Another body of literature accounts for habit-formation by including a measure of “fan loyalty” in the 

demand equation.  While these models are not models of rational addiction, they do consider habit as a factor in the 

demand for attendance.  One such example is found in Dobson and Goddard (1995), which examines attendance in 

the English Football League. They employ two-stage least squares (2SLS), where attendance and loyalty are 

endogenous variables, and find that team success, price, and loyalty are significant factors that determine attendance 

at soccer matches in England.   

 

The present study will fuse elements from the body of literature on attendance at sporting events with the 

current research on rational addiction. Following the earlier work done on attendance, this study will examine the 

traditional variables used in predicting spectatorship at sporting events to see how they impact NFL attendance.  

Estimated past and future consumption are added to the model, according to rational addiction theory.  The result 

will be a model that accounts for habit formation in the demand for attendance at NFL games.  The following section 

will outline this model and discuss the data.   

 

MODEL AND DATA 

 
The empirical model will be tested using a pooled data set that has been collected from every team in the 

National Football League for the 1983 through 2008 NFL seasons.  There are a total of 32 NFL teams that play 16 

games each regular season, which does not include pre-season or playoff games.  Due to the requirements of the 

rational addiction model that will be discussed later in this paper, each team used in the data set had to play at least 

three seasons to provide sufficient data for one observation.
2
  This result is a pooled data set comprised of annual 

statistics from thirty-one teams.  There are three expansion teams in this set that will be discussed in the following 

subsection.  The remaining 28 teams existed for all 17 seasons.  This yields a total of 764 observations.  Annual data 

was collected for each team and its respective city.   

 

 Given the pooled dataset, the trade-off we face in using the data to estimate the demand for ticket 

attendance is that we impose a similar preference structure across teams.  Ideally, we would estimate team specific 

demands allowing for divergent fan preferences in the  varying NFL markets.  This is not feasible as we lack enough 

observations to appropriately identify the market specific demand for NFL attendance.  At least, the gains by pooling 

the data allow for us to explore the implications of stadium capacity on demand estimation.  With this said, we do 

control for some individual team effects (as shift factors in the demand) in the instrumental variable regression 

presented below.   

 

 Profit maximization is modeled as follows.  Given that the stadium has fixed capacity in a particular year, 

the team has no marginal cost of a fan attending up to the capacity constraint.  Once the capacity constraint is 

reached, the marginal cost is infinite.  This implies that the team will maximize profits by maximizing ticket revenue 

in a given season (a point that is emphasized below).  Ticket revenue is maximized when the elasticity of demand is 

unit elastic.  Figure 2 indicates the optimal price for tickets given the demand curve D in a stadium with no binding 

capacity constraint.  The price p corresponds to the point on the demand curve where demand is unit elastic.       

 

 

                                                 
2The Houston Texans franchise had to be eliminated from the data set since they were a new expansion team in 2002 and only 

one season of data was available.    
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Figure 2:  Optimal Ticket Price with No Capacity Constraint 

 

 

Teams may adjust the capacity of the stadiums in which they operate between seasons.  As profit 

maximizers, the team will adjust capacity upwards to capture profits.  This suggests that capacity is endogenous 

(many teams adjust stadium capacity throughout our time series).  We can detect capacity constraining profits when 

season attendance for a particular team falls on the elastic portion of the demand curve.  Figure 3 indicates the 

optimal price for tickets given the demand curve D in a stadium with a binding capacity constraint.  Notice that the 

price that maximizes profits is the height of the demand curve where marginal revenue (MR) hits the horizontal axis.  

Yet, the stadium lacks the capacity to admit the number of fans necessary to maximize profits.  So, the team does the 

best it can in the short-run by charging the highest price the market will bear at the capacity constraint.  This is the 

price indicated by p.  In the long-run, the team will choose to add to capacity.  We expect to observe falling ticket 

prices and rising attendance as team bring the extra capacity over time-holding everything else constant.   

 

Mathematically, we are suggesting profits over a season are given by 

 

π=R0+P(att)att-C0,   (1) 

 

where π  is profits, R0 is non-attendance sources of revenue, P(att) is the team's price as a function of expected 

attendance, att is fan attendance, and C0 is total cost.  To maximize profits, the team's first-order condition is 

 
  

    
        ↔

  

    

   

 
    ↔           (2) 
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Figure 3:  Optimal Ticket Price given a Capacity Constraint 

 

 

This suggests that over time we anticipate the own-price elasticity of demand to tend to 1.  If the elasticity 

of demand is less than 1, teams will raise ticket price.  If the elasticity of demand is greater than 1, teams will add to 

capacity and/or lower ticket prices.  This is the structural implication of profit maximization.  Given capacity is 

costly to add over time, team do not desire excessive capacity.   Hence, we anticipate the team's forecast of the 

sensitivity of ticket demand to changes in the price is 

 

   
    

  
  

        

 
  (3) 

 

where Capacity is the stadium capacity for the year.  Profit maximization occurs when ticket demand is exactly at 

capacity, elasticity of demand is unitary, and the team has no costly excessive capacity.   

 

 For our observed data, 75% of our observations have excess capacity below 13.28% (the histogram of 

excess capacity is provided in Figure 4).  This suggests that the variable we have defined as c immediately above 

serves as a useful proxy for the team's forecast of the sensitivity of fans to changes in ticket price.  Furthermore, we 

use this proxy as an independent variable in explaining attendance.  This proxy will be useful in explaining 

attendance because it captures the time dynamic of how team respond optimally to attendance trends by setting 

price.  For example, if price was set too high last period (or the team is constrained by stadium capacity), the own-

price elasticity of demand last period would be larger than 1.  As we have demonstrated above, the profit 

maximizing team would decrease ticket price in the subsequent time period while simultaneously increasing stadium 

capacity.  If price was set too low last period, the own-price elasticity of demand would be smaller than 1.  The 
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profit maximizing team would increase ticket price in this setting.  The failure to account for this dynamic pricing 

interaction between fans and teams over time may be one reason past studies have found ticket prices to be 

insignificant or positively related to attendance.  

 

 
Figure 4:  Histogram of xCap  
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 As some teams play in stadiums with excess capacity, the ratio of stadium capacity to ticket price fails to 

serve a useful proxy for c, defined above.  To identify when this occurs, we define a dummy variable, TOOBIG, to 

take on the value 1 when excess capacity is over 5%.  Next, we define the lagged Elasticity of Demand as 

 

      
    

      
 . (4)   

 

We then create the interaction variable             .  So, if c is serving as a useful proxy, we use the 

own-price elasticity of demand to capture the price interaction between fans and teams.  If, on the other hand, c is 

not serving as a useful proxy, we capture the demand implications in the coefficient on the TOOBIG dummy.  We 

anticipate that the estimated coefficient on the interaction variable will be positive, reflecting the optimal 

price/capacity response of the team to last periods own-price elasticity of demand.  The basic empirical model is 

displayed in equation 5. 

 

                                                                      (5) 

 

Table 1 provides a brief description of each of the variables in the regression equation, along with the mean 

and standard deviation of each of the variables.   
 

 

Table 1:  Variable Definitions and Descriptive Statistics 

Variable Description Mean 

attt Total annual attendance for each NFL team from the NFL Record and Fact Book 489968 

Ed Own-price elasticity of Demand 1.11 

Pt Weighted average annual ticket price for each team each year 38.55 

WINPCTt Team winning percentage for each season 0.50 

TOOBIGt A dummy variable indicating if the team has more than 5% excess stadium capacity 0.41 

 

 

 

 

xCap 
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There are two key complications with estimating equation (5) using ordinary least squares.  First, the future 

value of attendance is included as a explanatory variable.  Second, as we explain below, ticket demand is actually 

right-tail censored.  This is because we only observe ticket demand when ticket demand is less than or equal to 

stadium capacity.   

 

 Given future attendance is stochastic and correlated with the current stochastic portion of attendance et, the 

exogeneity condition for ordinary least squares is violated.  To overcome this violation, we use an instrumental 

variables approach to first forecast future attendance with non-stochastic instruments.  Once this is done, we use the 

forecasted future attendance in place of future attendance in equation 5.  The instrumental variables regression for 

future attendance is: 

 

                                                                           
                                                                     
                                                                         
                                                                            
                                                                         
                                                                        
                             (6) 

 

The instrument variables, included as explanatory variables for future attendance, are defined below in the 

independent variables and dummy variables sections. 

 

 The issue of truncated ticket demand is discussed and treated in the section on Tobit estimation later on in 

the paper.  The truncation requires the adoption of a maximum likelihood estimation technique to recover the model 

parameters of interest.   

 

Relocation and Expansion Teams 

 
 Some of the teams included in the data set are expansion teams that entered the league at some point during 

the 1983 through 2008 period.  Both the Carolina Panthers and the Jacksonville Jaguars entered the NFL in 1995.  

Also, the Cleveland Browns left Cleveland to become the Baltimore Ravens in 1996.  Then, in 1999, Cleveland was 

granted an expansion team, still called the Browns, to replace the Browns that had left town three years before.  

These three teams are the only examples of expansion teams that entered the league during the time period that is 

being studied.  Since the data is broken down by team and by year, the fact that these teams did not exist for the 

entire data set was not problematic econometrically.  The expansion teams were simply included in the data set as 

any other team, except for the fact that significantly fewer observations were available for these three teams.   

 

 There were also a number of teams that relocated during the time period of interest.  The Oakland Raiders, 

who began playing in Oakland in 1970, relocated to Los Angeles in 1982.  The franchise then packed up and moved 

back to Oakland in 1995.  Also, the Titans that now play in Tennessee called Houston home from 1970 through 

1996.  The Rams have been playing in St. Louis since 1995, after they followed the Raiders lead and left the City of 

Angels.  Also, as previously discussed, the Ravens that now play in Baltimore were the Cleveland Browns until 

1996.  In calculating the demographic variables such as income and city-specific variables such as number of 

professional teams, great care had to be taken to ensure that the information was being calculated for the correct 

cities when teams relocated. 

 

Dependent Variable 

 

The dependent variable, attt from equation 5, in the empirical model will be attendance.  This is measured 

for each NFL team for each season as total paid attendance.  The data was collected from the NFL Record and Fact 

Book, published for every season from 1983 through 2008.
3
   

                                                 
3A special thank you is owed to Kenn Tomasch, Rod Fort, and Alexander Hinojos for their work to help ensure the integrity and 

accuracy of this data set. 
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Independent Variables 

 
The independent variables that will be used are mostly team-specific variables.  The first team-specific 

explanatory variable is ticket price, Pt from equations 3 and 4, which is defined as the average ticket price for each 

team for each year.  The ticket price used is a weighted average, attained by accounting for the number of seats at 

each specific ticket price in calculating the average price for each team in a given year.  This data was also collected 

from Rod Fort‟s Sports Business Data Pages and then deflated by the Consumer Price Index to generate real prices.
4
  

Ticket price, according to the law of demand, should be negatively related to the quantity demanded of NFL games. 

Depending upon the elasticity of demand for the good, demand may be more or less sensitive to changes in price, 

but price is expected to have some negative impact.  As described above, we anticipate observing the price effect in 

coefficient b3 from equation (5). 

 

The next explanatory variable is winning percentage, WINPCTt in equation 5, which is the winning 

percentage of each team for each season included in the data set.  This is calculated by dividing the total number of 

regular season wins by the total number of regular season games.  In the event of a tie, which is a possibility in the 

NFL, each team was given one-half of a win.  Winning percentage was calculated using statistics from Total football 

II: The encyclopedia of the national football league.  According to past studies, such as Welki and Zlatoper (1994), 

DeSchriver and Jensen (2002), and Price and Sen (2003), winning percentage is expected to have a positive effect on 

attendance.  It seems that winning teams tend to create greater interest and draw in bigger crowds in most cases. 

 

 The variables TOOBIGt and Ed are defined in the previous section.  TOOBIGt is a dummy variable that 

indicates when a team has more than 5% in excess stadium capacity.  We include this variable in the model as it 

indicates when the ratio of stadium capacity to ticket price serves as a useful proxy for the sensitivity of demand for 

tickets to changes in ticket price.  When TOOBIGt takes on the value of 1, the ratio of stadium capacity to ticket 

price will fail to proxy the sensitivity of demand for tickets to ticket price as detailed above.  Ed is the lagged value 

of own-price elasticity of demand.  As we suggest above, this variable will be accurately measured when excess 

capacity is small or 0 given NFL teams are profit maximizers.  Notice that equation (5) includes the interaction of 

(1-TOOBIGt) and Ed.  Thus, the coefficient b3 only measures the price effect when we anticipate Ed to be reasonably 

measured.  The coefficient b4 will capture the implications for attendance when Ed is not reasonably measured.   

 

Stadium age, stadaget in equation 1, is another variable that appears on the right-hand side of the regression 

equation.  This is the age, in years, of the facility in which each NFL team plays in any given season.  When a new 

stadium is built or an old stadium is significantly renovated, the stadium age variable will have the value of one for 

the first season during which the stadium is used.  The stadium age variable will take on a value of two in the 

following season, three in the next, and so on until the team moves to a new stadium or the old one is substantially 

renovated.  Then, the variable starts over at one.  These ages were calculated using information from the NFL 

Record and Fact Books.  The age of the facility in which the team plays is expected to impact the demand for 

attendance negatively.  Previous studies, such as Howard and Cromton (2003) and Kahane and Schmanske (1997), 

have explored the stadium novelty effect, finding that newer stadiums tend to boost attendance.  Empirical evidence 

suggests that although the novelty effect loses much of its power after the first year or two with attendances often 

falling in subsequent years, the overall impact is still seen for many years afterward since attendances rarely drop 

below the figures seen before the stadium was built.  Thus, older stadiums are expected to be associated with lower 

attendance figures.   

 

Income, displayed as incomet in equation 1, is also a variable that is used to explain attendance.  In the 

empirical model, per capita income for the Metropolitan Statistical Area is used.  These data were obtained from the 

website of the Bureau of Economic Analysis and are also adjusted for inflation by dividing the series by the 

Consumer Price Index for all urban consumers series whose base year is 1983.  As was noted in a previous sub-

section, certain NFL teams have not played in the same city each year.  Care had to be taken in matching the correct 

Metropolitan Statistical Area with the correct team for each season.  Per capita income figures were gathered for the 

city in which the team played in any given season, even when it was not the same city that hosted the team the 

                                                                                                                                                             
 
4The Consumer Price Index was taken from the U.S. Department of Labor.  All values were calculated in terms of 1983 dollars.   
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previous season.  Income is an important factor in the demand for any good, with higher income causing increased 

consumption for normal goods.  However, it is unclear whether or not professional sporting events are normal goods 

with some studies, such as Noll (1974) and Welki and Zlatoper (1994), finding the impact of increased income to be 

negative or insignificant.  Therefore, the expected sign and perhaps the significance of the income coefficient are 

uncertain.     

 

The number of professional sports teams in each city that houses an NFL team was also expected to have 

some impact on the attendance of professional football games in that city.    Therefore, the total number of 

professional football, basketball, hockey, and baseball teams that are in an NFL city is included as an explanatory 

variable.  This variable is named numprotmst in equation 1.  It was constructed using team information that is 

included on each league‟s website.  The number of other professional sports teams in the city could have a negative 

impact on attendance, since they could be seen as substitutes for NFL teams.  Noll (1974) found this to be the case 

for professional baseball.  However, the other teams could also be viewed as complementary goods and could thus 

increase the demand for NFL attendance.  The sign of this variable is ambiguous.    

 

The number of marquis players on a team is included as a variable that may have an effect on the 

attendance for that team and is shown as allstarst in equation 1.  The number of players that a team sends to the Pro 

Bowl in a given season is used as a proxy for such talent.  Pro Bowl rosters for each year were found at pro-football-

reference.com.  The number of Pro Bowl players is expected to have a positive impact on attendance, since big-

name superstars often attract crowds.  However, Rivers and DeSchriver (2002) found that star players only seemed 

to increase attendance at Major League Baseball games when their presence on the team was accompanied by an 

improvement in team performance.  It is unclear whether or not this variable will be significant.   

 

Dummy Variables 

 

 In addition to the TOOBIG dummy defined and discussed above, we allow for team specific and year 

dummy variables.  The team specific dummy variables include DAZ, DAT, DBUF, DCAR, DCHIC, DCIN, DDAL, 

DDEN, DDET, DGB, DOILTITAN, DINDY, DJACK, DLARAMS, DMIAMI, DMIN, DNE, DNO, DGNTS, 

DNYJTS, DOAK, DPHILLY, DPIT, DSD, DSF, DSEA, and DTB.  These variables correspond to Arizona, Atlanta, 

Buffalo, Carolina, Chicago, Cincinnati, Dallas, Denver, Detroit, Green Bay, Tennessee, Indianapolis, Jacksonville, 

St. Louis, Miami, Minnesota, New England, New Orleans, New York Giants, New York Jets, Oakland, 

Philadelphia, Pittsburgh, San Diego, San Francisco, Seattle, and Tampa Bay.  We also include the year specific 

dummy variables X83, X84, X85, X86, X87, X88, X89, X89, X90, X91, X92, X93, X94, X95, X96, X97, X98, 

X99, X00, X01, X02, X03, X04, X05, X06, X07 and X08.  These year dummy variables correspond to data from the 

years 1983 through 2008, respectively.   The signs of the coefficients on the dummy variables are unknown and are 

expected to vary across teams and over time. 

 

Past and Future Attendance 

 

Recall that appearing on the right-hand side of regression equation 5 are past and future attendance 

variables, attt-1and attt+1, respectively.  According to rational addiction theory, past and expected future consumption 

have an impact on present consumption for habit-forming goods.  Thus, if the NFL is indeed habit-forming, then the 

coefficients associated with past and future attendance should be positive and significant.  A complete derivation of 

the demand function for a „good‟ with habit-forming properties can be found in the Appendix, providing 

justification for the inclusion of past and future attendance in the regression model.   

 

Estimation Procedures 

 

To estimate the demand for NFL attendance, fixed-effects two-stage least squares (FE2SLS) will be 

employed.  This estimation procedure was chosen due to the fact that actual figures for past and future attendance 

attt-1and attt+1, respectively, are endogenous in the regression equation because they would each depend on present 

attendance according to the model.  The method of FE2SLS involves using instrumental variables to run a first stage 

regression with future attendance as the dependent variable.  This regression corresponds to equation (6) above.  The 

predicted values obtained from this first stage regression for future attendance is then used in the second stage as an 
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independent variable to explain the current period‟s attendance, attt in equation 5.  Using the predicted values 

instead of actual values remedies the econometric problems associated with having independent variables that are 

correlated with the error term.  The instrumental variables that were used in the first stage of regressions are 

presented in Table 2. 
 

 

Table 2:  Two-Stage Least Squares Instrumental Variables and Definitions 

Variable Name Description 

Capacity Stadium capacity for the current season. 

ALLSTARS The number of All-Stars on the team's roster for the current season. 

winpctt Team winning percentage for the current season 

NUMPROTMS The number of promotional events sponsored during home games throughout the current season. 

stadaget Age of the facility in which the team played in for the current season 

incomet Annual per capita metropolitan statistical area income for the previous year 

D Team specific dummy variables. 

X Year specific dummy variables. 

 

 

REGRESSION RESULTS 

 
Table 3 summarizes the results of the regression analyses from the instrumental variable model that was 

estimated to predict future attendance.  The coefficients and t-statistics on team specific and annual time dummies 

have not been reported in order to save space.  With the predicted future attendance variable formed, we may now 

estimate equation 6.  To do so requires a formal treatment of the censored ticket demand.  This is the goal of the next 

section. 
   

 

Table 3:  Instrument Variable Predictions of Future Attendance 

Variable Coefficient T-value 

(Intercept) 229500 4.292 

Capacity 0.5109 9.928 

STADAGE -972.6 -4.251 

Income -0.4482 -0.45 

ALLSTARS 3462 3.905 

NUMPROTMS -439.9 -0.17 

 

 

ESTIMATION OF CENSORED ATTENDANCE MODEL 
 

As detailed above, we use an instrumental variables approach to forecast the future value of attendance.  

The results of this instrumental regression are presented in Table 3.  With this forecast of future attendance, we 

model: 

 

att t = b0 + b1attt-1 + b2 fattt+1 + b3 Ed,t-1 (1-TOOBIGt)+ b4 TOOBIGt + b5 WINPCTt + et,  (7) 

 

where fatt t+1 is the forecast of attendance in period t+1 given information available at time t, and e t is a stochastic 

noise term that captures non-systematic variations in attendance.  Now, given the potential for binding capacity 

constraints, we will not always observe the quantity of tickets demanded.  That is, we actually only observe (Tobin): 

 

att
*
t = 

                  
                      

 (8) 

 

We define           
    

          
           

                     
           

         (9) 
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This allows us to state the maximum likelihood function as 

 

                                             ,   (10) 

 

where F is the cumulative density function of a standard normal and f(:) is the probability density function of a 

conditional standard normal random variable. 

 

Estimation results of the TOBIT model are presented in Table 4.  The independent variables have the 

theoretically expected sign and are statistically significant at any reasonable level of tolerance.  In particular, it 

appears that the dynamic interaction between fans and teams is being captured by the parameter on the lagged 

Elasticity of Demand.  That is, teams that do not have excess capacity tend to follow periods of constrained ticket 

demand by lowering ticket price and adding to stadium capacity.  When Elasticity of Demand is less than 1, teams 

tend not to add to stadium capacity and increase ticket prices. 
 

 

Table 4:  Tobit Estimates of Equation 7 

Variable Estimate T-statistic 

(Intercept) 0 NA 

I(100 * I_tooBig) -394.41299 -4.331 

I(100 * Ed) 283.61242 2.989 

ATT t+1 0.25791 6.864 

ATT t-1 0.79235 24.955 

WINPCT 26.02362 3.11 

Log(scale) 10.09671 213.369 
 

 

As expected, the coefficients on past ATT t-1 and future attendance ATT t+1 are positive and significant.  Past 

attendance contributes 0.79 on current attendance while expected future attendance contributes 0.26 on current 

attendance.  This is consistent with rational addiction theory, which supports the notion that NFL fans display 

characteristics of rational addiction.  This implies that as past and expected future attendance rise, attendance in the 

current season rises as well. 

 

 The coefficient for the team‟s winning percentage is also positive and significant.  This is in accordance 

other research, since nearly all studies that examine the demand for attendance at professional sporting events 

include some measure of team performance in the equation, which is usually found to positively affect attendance.  

Welki and Zlatoper (1994) find that the home team record is a significant factor in determining game day 

attendance. Berri, Schmidt, and Brook (2004) also find that team performance is an important factor in determining 

attendance with wins, playoff wins, and championships all turning out to be significant and positive in their analysis 

of attendance at NBA games.  This suggests that a team that wins more games tends to attract more fans.   

 

 Model results also suggest that teams operating with greater than 5% excessive capacity tend to experience 

a reduction in attendance of 39,441 fans per season.  This is because teams with excessive capacity beyond 5% will 

absorb the coefficient on TOOBIG.  While we anticipate that teams in this situation maximizing profits are still 

operating around unitary elasticity of demand, we cannot accurately measure this elasticity of demand by using 

stadium capacity.   

 

 Teams with excessive capacity below 5% allow us to accurately proxy the elasticity of demand and the 

teams interaction with fans through pricing.  Our model results suggest that a 1% rise in the previous year's own-

price elasticity of demand results in 283.61 more fan attendance in the current year.  Again, this is consistent with 

team profit maximizing behavior.  A large elasticity of demand in the previous year signals the team experienced a 

stadium capacity constraint or inadvertently charged too high a price to maximize profits.  Thus, we anticipate the 

team will reduce real ticket prices and/or expand stadium capacity in the current year to increase profits.  The 

corollary is that a 1% decline in the previous year's own-price elasticity of demand results in 283.61 fewer fans in 

the current year.  This is because if own-price elasticity is below 1 the previous year, the profit maximizing team will 

raise ticket prices and increase profits.  This higher price results in fewer ticket sales holding everything else 

constant. 
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 The variable log(Scale) refers to the dependent variable's estimated standard error.  We directly measure 

this parameter in the maximum likelihood setting.  This suggests a standard error in our ticket demand model of 

24,343 tickets for a season.  We anticipate that 95% of the time a team's actual season ticket demand will be within 

97,372 of our fitted model estimate. 

 

CONCLUSIONS 

 

This study has attempted to answer questions about attendance at National Football League games by 

estimating the demand for tickets to these games and examining fan behavior.  In the past, rational addiction theory, 

pioneered by Becker and Murphy (1988), has been used to explain the demand for habit-forming goods.  Rational 

addiction theory suggests that people make choices according to their consistent utility maximization plan, implying 

that past and expected future consumption of a habit-forming good would likely impact the present consumption of 

that good for addicted consumers.  The purpose of this paper was to test for characteristics of rational addiction 

among fans of the National Football League.   

 

While there have been many studies that have attempted to explain attendance at various sporting events, 

there have been relatively few attendance studies that have examined the NFL.  There have also been a number of 

studies that have tested rational addiction theory, but none of them have examined this theory in the context of 

professional football.  This paper has summarized the main findings of previous research and extended it by 

combining the theories found in the two bodies of literature. 

 

Previous work on attendance provides various models with many variables that have been hypothesized to 

have an impact on attendance at professional sporting events.  These variables include, but are not limited to, team-

specific variables, such as winning percentage and the number of marquis players on a given team‟s roster, and 

league-specific variables, such as the incidence of strikes and measures of competitive balance.  Also, key economic 

demand determinants, such as ticket price and income, are included in traditional attendance demand models.  The 

innovation of this research is the inclusion of past and future attendance in the demand equation.  This comes from 

the derivation of the demand curve for habit-forming goods that is outlined in detail in the appendix.  Testing for 

significance of these two variables in the demand function explores the possibility of habit-formation among the 

consumers who are, in this case, NFL fans. 

 

To test the rational addiction model empirically, data were collected for the 1985 through 2002 NFL 

seasons.  The data set is a pooled set comprised of statistics from each NFL team for each season that is played 

during the period included in the study.  The results are very consistent among the models, showing the same 

variables to be significant with uniformity in the signs and magnitudes of coefficients.  Past and future attendance, 

winning percentage, stadium age, and strike years were found to be significant factors in explaining attendance at 

NFL games.  These findings are consistent with the theory.  However, there are some caveats that merit discussion. 

 

First of all, NFL games sell out on a regular basis, which creates econometric difficulties when one is trying 

to estimate demand.  A simultaneous Tobit estimation might be more appropriate with the truncated dependent 

variable.  Also, to better test for habit formation, it would be beneficial to know whether or not the same people are 

attending games.  Such data are not available for attendance at NFL games due to the lack of panel data.  These 

problems motivate the suggestions for future research. 

 

FUTURE RESEARCH 

 

It would be interesting to employ the rational addiction model to test television viewership in the NFL, 

using data from Nielsen ratings to test for habit-formation among fans that watch professional football from their 

own homes.  This would remedy the problem that excess attendance demand may cause, since there is not a fixed 

stadium capacity when it comes to television broadcasts.  The excess demand, evidenced by sellouts, causes a 

truncated dependent variable.  This can cause econometric problems if the model is not estimated correctly.  The 

econometric problems that arise from improper estimation include nonsensical predicted values, biased regression 

coefficients, error terms that are not normally distributed, and heteroscedasticity.      

 



Journal of Business & Economics Research – December, 2010 Volume 8, Number 12 

34 

Another benefit of using Nielsen ratings is that viewership could be tracked to see if it is indeed the same 

households that are tuning in game after game, which would provide more compelling evidence for habit-formation.  

Furthermore, the utility function in the optimization problem is assumed to be quadratic.  This does not model 

rational addicts correctly since it implies that if there is any deviation from the steady state of consumption, the 

addict will either quit consuming altogether or increase consumption infinitely.  This is not the case according to 

rational addiction theory, which suggests that there are actually several steady states of consumption to which 

addicts can move.  Using a Cobb-Douglas function or some other functional form would provide innovation in 

rational addiction literature.  However, using these functions in the optimization problem may make it impossible to 

solve.  These are simply suggestions to keep in mind for further research that is beyond the scope of the current 

study.      

 

IMPLICATIONS 

 

This research provides some insights into the habit-formation aspects of the demand for NFL football that 

have not been included in earlier studies.  Calculating the elasticity of demand with respect to winning percentage 

provides one interesting insight.  When these elasticities are calculated, the impact of winning percentage on 

attendance is not found to be as significant as one might expect.  Using the basic linear FE2SLS regression model, 

the elasticity of demand with respect to winning percentage for the entire league was found to be 0.03.  Also, the 

sample was broken down by team for Denver, Cincinnati, Tampa Bay, and Dallas and the elasticities were calculated 

for the individual teams.  Again, the elasticity of demand with respect was found to be approximately 0.03 for each 

one of the teams for which it was calculated.  This implies that for every one percent increase in winning percentage, 

attendance increases by 0.03 percent.  For the four teams tested, a rise in attendance of that magnitude translates into 

between 12,700 and 17,500 more fans attending games in a given year.   

 

This study has some important implications, especially for those that set ticket prices for the NFL.  

Researchers in the field of sports economics have been puzzled by the fact that analyses of attendance demand at 

professional sporting events consistently find that tickets for games are priced in the elastic range of the demand 

curve.  This is contradictory to microeconomic theories that state that optimal prices, which are those that maximize 

profits, are set in the inelastic portion of the demand curve.  Estimates of price elasticity in studies by Noll (1974) 

and Fort (2003) suggest that prices are not set at this optimal point.  Allowing for habit-formation provides a 

possible explanation for this puzzling phenomenon.  Owners may be aware of the effect that habitual behavior has 

on demand and they may price tickets accordingly, hoping to increase current attendance in order to increase their 

future profits by getting more people “hooked” on the sport.  This study supports such a notion and suggests that by 

continuing to price in the elastic portion of the demand curve, the NFL can hope to increase the demand for 

attendance at their games in the long run.          

 

In conclusion, this study provides support for the rational addiction model for the consumption behavior of 

NFL fans.  The results suggest that the consumption of NFL games, at least in attendance at NFL games, is indeed 

habit forming.  This study provides a starting point for the examination of habit-formation in professional sports.   

 

AUTHOR INFORMATION 

 

Erin Hutchinson (was Spenner; now married) is a Senior Associate at Duff & Phelps and part of the Transfer 

Pricing practice.  At Duff & Phelps, Erin is involved in intangible property valuations and transfer pricing analysis 

and documentation for multinational corporations.   She is also responsible for economic and fiscal impact studies, 

and assists with transfer pricing controversy issues.  Erin graduated summa cum laude with a B.A. in Economics 

from Colorado College and will be pursuing a Ph.D. in Economics at the University of Colorado, Boulder.  

 

Aju Fenn holds the John L. Knight Chair of Free Enterprise at Colorado College.  He is also the Chair of the 

Economics and Business Department.  He teaches Mathematical Economics, Sports Economics and Econometrics. 

He conducts research in Sports Economics and in the Economics of Addiction.  He holds a Ph.D. and M.S. from 

Iowa State University in Economics.  He earned his B.A. from the College of Wooster and his B.Sc. From Calcutta 

University – St. Xavier‟s College.   

 



Journal of Business & Economics Research – December, 2010 Volume 8, Number 12 

35 

John Crooker is the Associate Dean of the Harmon College of Business Administration at Central Missouri State 

University.  He is an Associate Professor in the Department of Economics and Finance there.  He earned his Ph.D. 

from Iowa State University and his undergraduate degree from Central Missouri State University.  He conducts 

research in Resource and Environmental Economics and Sports Economics. 

 

REFERENCES 

 

1. Ahn, Seung, and Young Lee. "Life-Cycle Demand for Major League Baseball." Working Paper (2003). 

2. Baimbridge, Mark. "Match attendance at Euro 96: Was the crowd waving or drowning?" Applied 

Economics Letters 4 (1997): 555-558. 

3. Becker, Gary, Michael Grossman, and Kevin Murphy. "An Empirical Analysis of Cigarette Addiction." 

The American Economic Review 84, no. 3 (1994): 396-418. 

4. Becker, Gary S., and Kevin M. Murphy. "A Theory of Rational Addiction." Journal of Political Economy 

6, no. 4 (1988): 675-700. 

5. Berri, David, Martin Schmidt, and Stacey Brook. "Stars at the Gate: The Impact of Star Power on NBA 

Gate Revenues. " The Journal of Sports Economics 5, no. 1 (2004): 33-50. 

6. Boyd, Thomas, and Timothy Krehbiel. "Promotion Timing in Major League Baseball and the Stacking 

Effects of Factors That Increase Game Attractiveness. " Sport Marketing Quarterly 12, no.3 (2003): 173-

184 

7. Burdekin, Richard, and Todd Idson. "Customer preferences, attendance, and the racial structure of 

professional basketball teams." Applied Economics 23 (1991): 179-186. 

8. Byers, Peel, and Thomas. "Habit and Long Memory in Attendance Demand: The Case of Football Support. 

" Working Paper (2000). 

9. Carroll, Bob. Total Football II: The Encyclopedia of the National Football League. New York: Harper 

Collins Publishers, Inc., 1999. 

10. Chaloupka, Frank. "An economic analysis of addictive behavior: The case of cigarette smoking." Ph.D. 

Dissertation. City University of New York, 1988. 

11. Chaloupka, Frank. "Rational Addictive Behavior and Cigarette Smoking." Journal of Political Economy 

99, no. 4 (1991): 722-742.  

12. DeSchriver, Timothy, and Paul Jensen. "Determinants of Spectator Attendance at NCAA Division II 

Football Contests." Journal of Sport Management 16 (2002): 311-330.  

13. Dobson, and Goddard. "The demand for professional league football in England and Wales, 1925-1992." 

The Statistician 44, no. 2 (1995): 259-277.    

14. Downward, Paul and Alistair Dawson.  The Economics of Professional Team Sports. London: Routledge, 

2000.   

15. Fenn, Aju, Frances Antonovitz, and John Schroeter. "Cigarettes and addiction information: new evidence in 

support of the rational addiction model." Economics Letters (2001): 39-45. 

16. Fenn, Aju. "The impact of addiction information on cigarette consumption." Ph.D. Dissertation. Iowa State 

University, 1998. 

17. Fort, Rodney. "Sports Business Data Pages." available from 

http://users.pullman.com/rodfort/SportsBusiness/BizFrame.htm, accessed February 4, 2004.    

18. Gerdy, John R. Sports: The All-American Addiction. Jackson, Mississippi: University Press of Mississippi, 

2002. 

19. Greene, William H. Econometric Analysis. Third Edition. Upper Saddle River, New Jersey: Prentice Hall. 

1997. 

20. Grossman, Michael. "The Economic Analysis of Addictive Behavior." The Economics and Prevention of 

Alcohol Related Problems (1993). 

21. Hall, Stephen. "Satellite television and football attendance: the not so super effect. " Applied Economics 

Letters 11, no. 2 (2004): 123-126. 

22. Horrow, Rick. "The NFL Juggernaut at Postseason, Part I," available from 

http://cbs.sportsline.com/general/story/7003559, accessed February 1, 2004. 

23. The National Football League. The Official National Football League Record and Fact Book. New York: 

The National Football League, 1983-2002. 

 



Journal of Business & Economics Research – December, 2010 Volume 8, Number 12 

36 

24. Howard, Dennis, and John Crompton. "An Empirical Review of the Stadium Novelty Effect." Sport 

Marketing Quarterly 12, no. 2 (2003): 111-116. 

25. Kahane, Leo, and Stephen Schmanske. "Team roster turnover and attendance in Major League Baseball." 

Applied Economics 29 (1997): 425-431. 

26. Marshall, Alfred. Principles of Economics. Eighth Edition. London: The Macmillan Company, 1920. 

27. McDonald, Mark, and Daniel Rascher. "Does Bat Day Make Cents? The effect of promotions on the 

demand for Major League Baseball." Journal Of Sport Management 14 (2000): 8-27. 

28. Noll, Roger. "Attendance and Price Setting." In Government and the Sports Business. Washington, D.C.: 

The Brookings Institution, 1974, 115-157. 

29. Peel, and Thomas. "Outcome uncertainty and the demand for football: An analysis of match attendances in 

the English Football League." Scottish Journal of Political Economy 35, no. 3 (1988): 242-249. 

30. Price, Donald, and Kabir Sen. "The Demand for Game Day Attendance in College Football: An Analysis of 

the 1997 Division 1-A Season." Managerial and Decision Economics 24, no.1 (2003): 35-47. 

31. Quirk, James, and Rodney Fort. Pay Dirt: The Business of Professional Team Sports. Princeton, New 

Jersey: Princeton University Press, 1992. 

32. Rivers, Dominic, and Timothy DeSchriver. "Star Players, Payroll Distribution, and Major League Baseball 

Attendance." Sport Marketing Quarterly 11, no. 3 (2002): 164-173. 

33. Schmidt, Martin, and David Berri. “Competitive Balance and Attendance: The Case of Major League 

Baseball.” Journal of Sports Economics 2, no. 2 (2001):145-167. 

34. Schmidt, Martin and David Berri. "The impact of the 1981 and 1994-1995 strikes on Major League 

Baseball Attendance: a time-series analysis." Applied Economics 34, no. 4 (2002): 471-479. 

35. Szymanski, Stefan. "Income Inequality, Competitive Balance and the Attractiveness of Team Sports: Some 

Evidence and a Natural Experiment from English Soccer." Economic Journal 111, no. 469 (2001). 

36. Welki, Andrew, and Thomas Zlatoper. "US Professional Football: The Demand for Game-Day Attendance 

in 1991." Managerial and Decision Economics 15 (1994): 489-495. 

37. Zhang, Pease, Hui, and Michaud. "Variables affecting spectator decisions to attend NBA games." Sport 

Marketing Quarterly 4, no. 4 (1995): 29-39. 

 

WEB PAGE REFERENCES 

 

1. "Major League Baseball Teams." available from http://www.mlb/com/teams, accessed October 4, 2003. 

2. "NBA Teams." available from http://www.nba.com/teams, accessed October 4, 2003. 

3. "NFL Teams." available from http://www.nfl.com/teams, accessed October 4, 2003. 

4. "NHL Teams." available from http://www.nhl.com/teams, accessed October 4, 2003. 

5. "Pro Bowl Rosters." available from http://pro-football-reference.com/misc/pbindex.htm, accessed October 

4, 2003. 

6. The Bureau of Economic Analysis. "Regional Economic Accounts: Metropolitan Statistical Area Per 

Capita Personal Income." available from http://bea.gov/bea/regional/reis/, accessed October 4, 2003. 

7. Tomasch, Kenn. "NFL Attendance. " available from 

http://kenn.com/sports/football/nfl/nfl_lg_attendance.html, accessed March 9, 2004. 

8. U.S. Department of Labor, Bureau of Labor Statistics. "Consumer Price Index."  Available from 

http://www.bls.gov/cpi/, accessed February 1, 2004. 

 

  



Journal of Business & Economics Research – December, 2010 Volume 8, Number 12 

37 

APPENDIX 

 

The purpose of this Appendix is to derive the demand function for an addictive good.  This will follow the 

derivation that was already outlined but will go over the details that were not included in the text. 

 

The derivation depends on the assumed utility function for a rational agent and the equation for the 

addictive stock that a habit-forming good accumulates. 

 

Utility Function:  

 

),,,( ttttt eACYUU                                                   (a.1) 

 

Addictive Stock:  

 

11 )1()1(   ttt ACA                                               (a.2) 

 

It is assumed that the rate of decay of the addictive stock is 100%, which implies that  is equal to one in 

the coefficient of the At-1 term.  This leaves the following equation for the addictive stock constraint:  

 

1)1(  tt CA                                                             (a.3) 

 

Now, the addictive stock constraint can be substituted into the utility function, leaving a function that 

represents utility in terms of consumption of the addictive good and consumption of all other goods:  

 

),)1(,,( 1 ttttt eCCYUU                                                   (a.4) 

 

Assuming that an agent lives to time T and discounts their utility according to the market rate of interest, r, 

lifetime utility, U, can be represented as follows, where β represents the discount factor 
r1

1
: 
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The lifetime budget constraint is represented as follows, where W represents the present value of lifetime 

wealth, Yt is the numeraire good, Pt is the price of the addictive good in time t and Ct is the quantity consumed of the 

addictive good in time t and β is again the consumer‟s discount factor 
r1

1
: 
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Solving for First Order Conditions 

 

The objective is to maximize lifetime utility, U, subject to the budget constraint, W.  It is necessary to set 

up a simple Lagrangian optimization problem, as follows: 
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The first step is to take a partial derivative of equation a.7 with respect to Yt and set it equal to zero, 

yielding the following: 
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Upon simplification, the following first order condition is obtained: 

  

   ),)1(,,( 1 ttttY eCCYU
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                                          (a.9) 

 

The next step involves taking the partial derivative of equation a.7 with respect to Ct and setting it equal to 

zero.  However, the Lagrangian problem from equation a.7 must be expanded due to the fact that the variable of 

interest, Ct, is present in the summation not only at time t, but also at time t + 1.  This makes it necessary to have 

four separate terms in the Lagrangian equation for four distinct scenarios.  A term is needed for time 1 to t – 1, plus 

a term for time t, another term for time t +1, and a final term for time t + 2 to T in order to explain the four 

possibilities and isolate the scenarios at time t and time    t + 1, which will be the times that Ct remains in the 

equation.  The resulting Lagrangian is presented in equation a.10: 
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The partial derivative with respect to Ct can now be taken, producing the following equation, which has 

been set equal to zero:             
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Some simplification yields the following, which is the second of the first order conditions: 
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Deriving the Demand Function 

 

In keeping with Becker et al. (1994)
5
 and Fenn (1998),

6
 the utility function is assumed to be quadratic in 

the current period‟s consumption of the addictive good, the composite good, the addictive stock, and the other 

                                                 
5 Gary Becker, Michael Grossman, and Kevin Murphy, “An Empirical Analysis of Cigarette Addiction,” The American 

Economic Review, Volume 84, Number 3, 1994: 396-418.    

 
6 Aju Fenn, “The impact of addiction information on cigarette consumption,” Ph.D. Dissertation, Iowa State University, 1998. 
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unobservable events that impact utility.  These variables are denoted by Ct, Yt, At, and et, respectively.  Just as 

before, a substitution is made for At, according to the addictive stock constraint from equation a.3.  The result is the 

following utility function, first outlined in Becker and Murphy (1988): 
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Taking the partial derivative of the exact utility function in equation a.13 with respect to Y t and setting it 

equal to λ produces the exact form of the first order condition, given in equation a.14: 
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Now, equation a.14 can be solved for Yt: 
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Similarly, taking the partial derivative of the exact utility function with respect to Ct, and setting it equal to 

λ can obtain the exact form of the second of the first order conditions.   
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Next, equation a.15 will be used to substitute for Yt and Yt+1 in equation a.16 in order to get the marginal 

utility function for the addictive good completely in terms of Ct and exogenous variables: 
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Now, the function can be solved for Ct: 

 



Journal of Business & Economics Research – December, 2010 Volume 8, Number 12 

40 

12

121122

211221

1

12111
1121

22

22

22

2

1

11

)1(

)1()1()1(

)1()1()1(

)1(
)1(

)1(
)1(






























te

YY

tYeY

YY

tYY

YY

YY

Ytte

YY

tYeY

YY

tYY

YY

YY

YY

Y
tt

YY

tY

t

YY

tY

t

eU

U

eUU

U

CUU

U

UU

UCUUeU
U

eUU

U

CUU

U

UU

U

U
CUUP

U

CU
CU

U

CU
CU













    (a.18) 

 

 

In the left-hand side of the equation, Ct can be factored out.  Let the remaining pieces be equal to Ω 
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 (a.19) 
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  (a.20) 

 

Both sides of the equation will then be divided by Ω, leaving Ct alone on the left-hand side.  The remaining 

terms on the right-hand side can now be reduced and terms can be collected to find coefficients for the intercept, Ct-

1, Ct+1, Pt, et, and et+1: 
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The demand equation for the addictive good, Ct, can easily be seen if the terms that make up the 

coefficients are renamed as α terms: 
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Thus, the demand equation is as follows: 

 

154312110   tttttt eePCCC                        (a.28) 

 

Notice that the current period‟s price is included in the demand for the addictive good, as well as past and 

expected future consumption of the good.  This is the key to the rational addiction model. 
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NOTES 


