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ABSTRACT 

 

Seat inventory control is an important problem in revenue management which is to decide whether 

to accept or reject a booking request during the booking horizon in airlines. The problem can be 

modeled as dynamic stochastic programs, which are computationally intractable in network 

settings. Various researches have been tried to solve it effectively. Even though dynamic (and 

stochastic) programming (DP) models can be solved it optimally, they are computationally 

intractable even for small sized networks. Therefore, in practice, DP models are approximated by 

various mathematical programming models. In this paper, we propose an approximation model 

for solving airline seat inventory control problem in network environments. Using Linear 

Approximation technique, we will transform our problem into a concave piecewise LP model. 

Based on the optimal solution of ours, we suggest how to implement it for airline inventory control 

policies such as booking limits, bid-price controls and virtual nesting controls. 
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1.  INTRODUCTION 

 

evenue Management has been recognized as an important problem in airlines for the last few decades. 

With limited resources of capacity and uncertain demands, airlines have tried to maximize their 

revenue from an efficient booking control mechanism, and developed various types of mathematical 

models to determine the best booking control strategies. Traditionally, the methodology can be divided into two 

groups: leg-based and network based RMs. Leg-based model is to optimize the passenger mix on a single leg flight. 

Whereas, network based model, network RM, is to determine an overall booking strategy for the entire network to 

maximize the revenue. A major flaw of leg-based models is that they only locally optimize booking control, whereas 

an airline should strive to maximize revenue from its network as a whole. There are significant revenue benefits 

from network RM. Talluri and Ryzin(2005) mentioned that network RM can increase the revenue significantly from 

1.5% to 3% in airlines. 

 

There are three well known booking control schemes for network RM: Partitioned Booking Limit(PBL), 

Virtual Nesting(VN) and Bid-Pricing(BP) controls. PBL which is an extension of a single leg control. It allocates a 

fixed amount of seats on each flight leg for every OD(Origin-Destination) demand. The allocated seats can be used 

for corresponding OD demand exclusively, that is, no other demand can use them. The second is a Virtual Nesting 

which is also an extension of a single leg control. In booking control, it uses single leg nesting controls for each 

flight leg. Thereby, it may take place the displacement problem. To adjust the displacement, we use virtual classes 

grouping together sets of ODFs(OD Fares) that use a given flight leg. Then we consider a indexing which provides a 

table mapping every ODF to a virtual class on each flight leg. After that, we assign ODF to a virtual class through 

indexing. The last one is Bid Price control in which the bid price can be interpreted as an estimate of the marginal 

cost to the network of consuming the next incremental unit of the flight capacity. In this control, we can not sell any 

ticket for a request unless its fare exceeds its bid-price.  
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Network RM is how to manage the capacities of a set of connecting flights across a network., and has 

significant implementation and methodological challenges. On implementation, since there are lots of origin-

destination itinerary fare classes combinations, Network RM increases the complexity and volume of data that one 

must collect, store, and manage. Gathering the data for network RM is more difficult and complex than for a single 

leg RM. Network RM creates organizational challenges. Since revenue comes from an entire network, it is no longer 

easy to assign revenue responsibility for a single leg to a single user; revenue losses at one point in the network may 

be offset by gains elsewhere in the network. Creating organizational and incentive structure for supporting the 

objective of network RM is a challenging task. It is need to transit from a single leg-oriented RM organization to 

network-oriented one for improving the total revenue. 

 

Due to a number of combinations of connecting flights and ODF, the problem for network RM is far more 

complex and difficult to solve than that for a single leg RM in the view of the problem scale, the data amount and 

the complexity of algorithms. Therefore, some modification techniques of the booking control for single-leg based 

RM have been considered for solving network RM problems. 

 

Since determining an overall booking control strategy for the entire network is computationally intractable, 

researches have focused on developing efficient heuristics instead of optimal algorithms. There are many researches 

on network RM problems. Among them, Glover et al.(1982) proposed a mathematical programming model with 

deterministic demand. Curry(1990) extended Glover`s approach to a two-stage method aimed at incorporating the 

nesting of fare classes. Talluri and van Ryzin (1999) proposed a randomized linear programming (RLP) approach to 

incorporate the probabilistic nature of demand into the deterministic framework for network. More recently, 

Jiang(2006) considered Lagrangian relaxation method which provides both partitioned booking limits and 

Lagrangian multipliers for the bid-price policy.  

 

In this paper, we focus on network revenue management problems with uncertain demands. We first 

explain our problem and existing seat assignment models for network RM in Section 2. Our problem has been 

considered as a complex stochastic programming problem due to the demand uncertainty. With some assumptions 

for demand distributions, we will show our problem can be formulated as a mixed Integer Programming model by 

applying a linear approximation technique. In Section 3, some computational experiments are performed to evaluate 

our model with randomly generated data set. Conclusion including further studies is given in Section 4. 

 

2.  SEAT ASSIGNMENT MODEL FOR MULTIPLE FLIGHT-LEGS  
 

A seat allocation problem with probabilistic demand in network environment can be described as follows. 

Given conditions are the entire network having multiple flight connections and the set of origin-destination 

itineraries with multiple origin-destination fare classes. The objective is to maximize the total revenue on the overall 

network. Decision variables are the number of seats allocating on each flight leg for each ODF.  

 

 

 

Figure 1. Seat allocation problems for Network RM 
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Then, our problem can be modeled as a dynamic stochastic programming problem. However, due to the 

problem complexity, some approximations are considered to handle the problem easy such as deterministic or 

probabilistic programming models. When we consider the probabilistic demand for each ODF, the problem can be 

formulated as (PNLP) model. 

 

To formulate an optimization model for our problem, we define the following variables: 
 

jD : the demand for ODF j (random variable, the maximum demand jD ), 

jr : the revenue per seat for ODF j , 

ic : the capacity seat capacity of flight-leg i (  icC  ),  

jl , ju : min/max number of seats to be assigned for ODF j respectively, 

ija : 0, 1 index matrix which equal 1if flight leg i is used by ODF demand j and 0 if not ( ][ ijaA  ), 

jx : the number of assigned seats for ODF j. 

 

(PNLP) can be represented as follow: 
 

 

The objective is to maximize the expected revenue on overall network. The first constrain denotes the seat 

capacity on each flight leg, and the second represents the maximum limit of each ODF demand. Lots of algorithms 

have been proposed to solve (PNLP) in the view of a simplicity and a speed. Since (PNLP) is very complex to solve 

optimally, researchers have considered various types of approximation techniques based on network models and/or 

decomposition. When we replace the random demand variable jD  by its expectation ][ jDE  for all j, then 

(PNLP) can be transformed to the deterministic LP(DLP) model which is computationally very efficient to solve. 

Even though (DLP) is far from (PNLP) and has a simple LP model, it provides some useful information such as 

partitioned limits and the dual variables for bid-prices, even it However, it does not reflect the demand uncertainty. 

 

In this paper, we have proposed a linear approximation approach for solving the PNLP by exploiting its 

separable structure and its concavity. Applying approximation with assumptions for the random demand jD , the 

expected value in the objective function in (PNLP) can be represented by deterministic terms. Then (PNLP) can be 

transformed into a Linear Programming model. The brief processes of Linear Approximation are given in Figure 2. 

 

 
 

Figure 2. Linear Approximation Process 
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In (PNLP), given the distribution of each demand, the expected revenue can be calculated by equation (1). 

However, since the objective has a non-linear function, the problem becomes very difficult to solve. Therefore, it is 

necessary to develop an efficient method for solving [ 0P ] with ease. In this paper, we will apply a linear 

approximation techniques which was suggested by Szwarc(1964) for stochastic transportation. For linear 

approximation, we need some assumptions for the demand distributions of ODF demand: 

 

 The demand is independent with each others and its distribution has a step function with the lower and the 

upper bounds. 

 The interval between the lower( jL ) and the upper bound(
jD ) can be divided into K sub-intervals. 

 

 
Figure 3. Demand Distribution for ODF j : Step Function 
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Then once 
jx  has a value in the interval [

s
j ,

1s
i ], the expected value for the demand j can be 

represented as a linear function approximately. 
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Since, without loss of generality, we can exclude the constant term 
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jH  in the optimization model, the 

objective function can be represented as a simple linear function. Consequently, applying a linear approximation 

technique, (PNLP) can be transformed to a linear programming model (P). 
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(P) is a simple LP with the upper bound constraints. We can solve it optimally by CPLEX or other 

mathematical programming tools with ease. Since (P) is a simple LP, it can provide the information for allocating 

seat to each flight leg as well as for calculating the bid price for each itinerary. Solving (P), we can get the optimal 

solution s
jx . The number of seat allocation for ODF demand j is obtained by         . Since (P) gives a 

partitioned booking limit for each demand, it can not guarantee the revenue increase on the overall network. For the 

bid price policy, we need the information for dual values on flight legs.  

 

3.  COMPUTATIONAL EXPERIMENTS 

 

To analyze the results of seat assignment for multiple flight demands, we will simulate lots of cases by 

using our models. In this paper, we compare our result with that of (DLP) for randomly generated demands on given 

multiple flight legs. Consider an example network with 6 airport, 5 flight legs and 11 itineraries (OD) as given in 

Figure 4. Airport 4 is a hub airport. We assume flights from airport 1, 2, and 3 to the hub are short routes, while 

flights from the hub to the airport 5 and 6 are long routes. For each itinerary, we consider two types of fare classes 

and assume the demand of each fare class has the uniform distribution with lower and upper bounds. Table 1 gives 

itineraries, origins, destinations, fares and bounds for demand in our simulations. 
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Figure 4 An example network 

 

 

Table 1 Fares and demand by itinerary 

Itinerary Origin Destination Fares 
Demand 

Lower Bound Upper Bound 

0 1 4 
300 55 75 

200 75 95 

1 1 5 
500 15 35 

300 25 45 

2 1 6 
500 15 35 

300 15 35 

3 2 4 
200 55 75 

150 115 135 

4 2 5 
400 15 35 

250 15 35 

5 2 6 
400 15 35 

200 25 45 

6 3 4 
400 55 75 

300 95 115 

7 3 5 
500 15 35 

350 15 35 

8 3 6 
500 15 35 

400 25 45 

9 4 5 
800 55 75 

600 75 95 

10 4 6 
800 75 95 

650 55 75 

 

 

With input parameters and the demand distributions, we can obtain the seat assignment for each ODF by 

applying our model. Using CPLEX6.0 on personal computer (Pentium D, 2.8GHz), we obtained the results given 

in Table 2. To get the booking limit for each ODF, we should consider a nesting structure. In our simulations, we 

adopt a hybrid nesting which combines a serial nesting and a parallel nesting.   

 

 

 
a) Flight Leg 1->4  b) Flight Leg 2->4   c) Flight Leg 3->4   d) Flight Leg 4->5(6)  

 

Figure 5 Hybrid Nesting Structure - (Itinerary, Fare Class) 
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With the booking limits for ODFs in Table 2, we simulate the seat control to maximize the total revenue. 

Table 3 gives the average simulation results for 500 trials including demand requests, accepted demands and total 

revenues. As we can find, the total revenue by using [P] is greater than that of [DLP]. As expected, the decrease of 

revenue in the short haul routes makes the increase of revenue in the long haul routes. Thereby the total revenue is 

improved. Comparing the results for [DLP], our model [P] recorded less sales volume in the number of seats (i.e. 

load factor), but ours makes more revenue in 500 simulation results. These results make sense in practices our model 

can be used for seat assignment in network RM effectively to maximize the total revenue. 
 

 

Table 2 Booking Limit for each ODF 

Flight-Leg [1->4] [2->4] [3->4] [4->6] [5->6] 

Itinerary 0 1 2 3 4 5 6 7 8 9 10 

[P] Fare Class 
0 62 19 17 60 17 7 60 6 0 70 89 

1 2 0 0 60 0 0 84 0 0 88 67 

DLP Fare Class 
0 55 15 15 55 15 15 55 15 15 55 75 

1 0 15 0 55 10 0 60 0 5 75 55 

 

 

Table 3 Simulation Results 

Flight Leg 
Demand 

Request 

Sales-No. of Seats Sales-Revenue 

[DLP] [P] [DLP] [P] Difference (%)* 

[1->4] 238 90 88 27,302.6 26,471.8 -3.04 

[2->4] 275 135 134 28,931.4 27,544.6 -4.79 

[3->4] 258 135 135 50,799.4 47,228.4 -7.03 

[4->5] 284 175 162 91,598.0 94,459.6 3.12 

[4->6] 293 160 147 95,225.6 101,236.9 6.3 

Total Revenue 293,857.0 296,941.3 1.05 

* Difference(%) = (1-[P]/[DLP])x100  

Figures in each column indicate the average value of 500 trials.  

 

 

4.  CONCLUSIONS  

 

We have addressed on the seat assignment problem for network RM. With some assumptions for the 

demand distribution and applying Linear Approximation technique, we can formulate our problem as a mixed 

Integer Linear Programming model which is ease to solve by various mathematical programming tools. In a simple 

network structure including a single hub, our model provides the optimal solution by applying CPLEX or other LP 

tools. To test the validity and the practical applicability of our model, we executed simulations with some randomly 

generated data. The computational results show that our model can be applied for providing a good guideline to 

make an efficient seat control for multiple flight legs in airlines.  

 

In this paper, we focused on network RM problems in airlines, and tried to formulate the problem as MILP 

model by applying the linear approximation technique with some assumptions effectively. To enhance the 

applicability of our model in practice, it needs to develop more comprehensive models including cancellations, no-

shows and behavioral factors in air travelers.  
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