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ABSTRACT 

 

Genetic programming is employed to develop trading rules, which are applied to test the efficient 

market hypothesis. Most previous tests of the efficient market hypothesis were limited to trading 

rules that returned simple buy-sell signals. The broader approach taken here, developed under a 

framework consistent with the standard portfolio model, allows use of trading rules that are 

defined as the proportion of an investor’s total wealth invested into the risky asset (rather than 

being a simple buy-sell signal). The methodology uses average utility of terminal wealth as the 

fitness function, as a means of adjusting returns for risk. With data on daily stock prices from 

1985 to 2005, the algorithm finds trading rules for 24 individual stocks. These rules then are 

applied to out-of-sample data to test adaptive efficiency of these markets. Applying more stringent 

thresholds to choose the trading rules to be applied out-of-sample (an extension of previous 

research) improves out-of-sample fitness; however, the rules still do not outperform the simple 

buy-and-hold strategy. These findings therefore imply that the 24 stock markets studied were 

adaptively efficient during the period under study. 
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1.  INTRODUCTION 

 

hen markets are efficient, investors cannot make profits by exploiting publicly available 

information.  Daniel and Titman (1999) introduced a weaker concept of market efficiency called 

adaptive efficiency: A market is characterized by adaptive efficiency if profit opportunities 

disappear when they become obvious.  The objective of this paper is to test adaptive efficiency of stock markets by 

conducting a broadly representative study (using data from 24 stocks across a wide spectrum of industries) of the 

efficacy of trading rules evolved using genetic programming methodology (a machine learning technique inspired 

by biological evolution). If the rules evolved by genetic programming using in-sample data have low fitness when 

applied to new (out-of-sample) data, this is interpreted as evidence of adaptive efficiency. 

 

The efficient market hypothesis (EMH) was first introduced in the mid-1960s, and debate about the 

validity of EMH continues today.  This proposition is of interest to everyone concerned with the workings of stock 

and commodities markets, from policy makers and regulators to investment professionals and small investors. 

EMH is of interest to both investment professionals and small investors because if EMH is true and the capital asset 

pricing model therefore does correctly predict returns on securities, then the only rational investment strategy is 

diversification.  In order to choose a portfolio, each investor would decide on the level of risk he or she is 

comfortable with accepting and select an efficient portfolio that maximizes return given this level of risk. 

 

A test of the validity of EMH involves more than figuring out whether financial markets can be beaten—

whether a trading strategy can consistently generate a better rate of return than that seen in the market as a whole.  

One also is testing whether the financial markets are rational and whether financial markets result in prices that are 

―correct‖ in the sense that these prices reflect all available information.  When that is the case, these prices provide 

W 
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correct signals to economic agents for resource allocation.  The more evidence that policy makers and regulators 

have regarding the validity of EMH, the easier it will be for them to determine the role that should be given to 

financial markets.  In particular, this information will help to choose the optimal level of financial regulation.  

 

EMH has been widely accepted as true by U.S. policy makers since the 1970’s, and belief in the validity 

of EMH motivated the hands-off approach to financial regulation that began in that era.  EMH made an impact on 

the prevailing doctrines and regulations.  If EMH is true, financial markets regulate global affairs and allocate an 

economy’s capital with a speed and decisiveness unmatched by individuals, firms, and governments.  The belief in 

EMH implies policy responses that largely deregulate markets, since markets already operate at optimal efficiency, 

but favor regulations that require firms to publicly report to bodies such as the Securities and Exchange 

Commission (SEC), as information is the grease that makes the market work at its best.  

 

This study extends the results of recent work that tested EMH, which focused on whether market participants 

can use historical data as input to identify trading rules that consistently produce abnormally high out-of-sample risk-

adjusted returns (indicating that the markets are not efficient).  Many of the previous studies were limited to trading 

rules that output simple buy–sell signals.  These trading rules are ―bang–bang‖ strategies, that is, strategies that 

alternate between investing all of one’s wealth in a single risky asset and investing all of it in a single riskless asset.  

Past research has revealed that bang–bang strategies are dominated by strategies that can diversify between risky and 

riskless assets at every point in time (rather than only across time), implying that studies using bang–bang strategies 

are biased toward accepting market efficiency.  This insight motivates a broader approach that allows the study of 

trading strategies developed under a framework consistent with the standard portfolio model, with a trading strategy 

defined as the proportion of an investor’s total wealth allocated to the risky asset (that is, a strategy is a proportion 

rather than a simple ―0–1‖ buy–sell signal).  

 

Most previous studies that tested the efficiency of financial markets examined the performance of technical 

trading rules and adjusted the trading rule returns for risk.  The distinctive feature of the fitness criterion used in our 

research is that it adjusts returns for risk in a manner consistent with the standard portfolio model, in that the criterion 

is based on the investor’s expected utility and incorporates risk aversion.  

 

Another contribution of this study is the use of complex thresholds to select the rules to be tested out-of-

sample.  Most commonly, previous studies used a simple procedure of applying, in the out-of-sample period, the 

rule with the highest fitness (during what is called the selection period), as long as that rule outperformed a certain 

threshold, namely, the buy-and-hold rule.  It can be argued, however, that even a moderate (and reasonable) level of 

risk aversion would lead most investors to reject a complicated trading strategy with potentially large risks that 

barely outperforms the buy-and-hold rule in-sample.  We allow for risk aversion by introducing additional money 

management criteria as thresholds for rule selection.  

 

The study is thorough, examining the performance of trading rules found by the genetic programming 

algorithm in 21 out-of-sample periods for each of 24 stocks (for a total of 504 out-of-sample periods).  The present 

findings show that using more stringent thresholds helps improve the out-of-sample fitness of the rules that are 

saved.  In general, the trading rules that the current methodology generates do not outperform the simple buy-and-

hold rule.  Thus, our comprehensive study leads to the conclusion that the 24 stock markets examined were 

adaptively efficient between 1985 and 2005. 

 

The remainder of the paper is organized as follows.  A brief review of the relevant literature is presented in 

the next section.  Section 3 describes genetic programming, the means by which trading rules are generated.  The 

methodology employed in the paper is discussed in Section 4.  The data set used in our study is presented in Section 

5.  The empirical results and their implications for market efficiency of 24 U.S. stock markets are detailed in Section 

6.  Finally, Section 7 provides some concluding remarks.  

 

2.  BACKGROUND 

 

 The most widely used theoretical framework for analyzing financial markets is based on the efficient 

market hypothesis (EMH).  Fama (1991) defined an efficient market as one in which economic agents, when placing 
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values on financial securities, take all relevant information into account.  Among the theories and models proposed 

as alternatives to EMH, it is disputable which corresponds most closely to reality.  This dispute is significant 

because, as Fama (1976) noted, all empirical tests of EMH involve a joint hypothesis of market efficiency 

(rationality) and a particular equilibrium model.  Empirical rejections of market efficiency may be due either to an 

anomaly (failure of rationality of economic agents) or to a misspecification of the equilibrium model (Fama, 1991). 

 

Technical analysis, defined as the use of past prices as inputs to trading strategies, has a long history among 

investors but only relatively recently has found support within the academic community.  Fama (1976) pointed out 

that if EMH is true, prices already reflect all public information, and one cannot expect to increase one’s utility by 

switching back and forth between risky and riskless assets.  According to EMH, technical trading rules that are 

inexpensive to implement should not yield excess profits if markets are efficient. 

 

Technical analysis nevertheless is prevalent in many financial markets.  Allen and Taylor (1990) stated that 

more than 90% of foreign exchange dealers in the London market reported using technical analysis to help them 

make forecasts.  Gehrig and Menkhoff (2006) determined that 90% of the German and Austrian foreign exchange 

dealers and international fund managers they studied assigned a relative importance of 20% or more to technical 

analysis.  Menkhoff and Schmidt (2005) conducted a survey of German equity fund managers and found that more 

than 90% of their respondents used momentum strategies to some extent, with 11% of respondents preferring these 

strategies to the buy-and-hold strategy and contrarian strategies.  Menkhoff and Schmidt interpreted their findings as 

evidence of the absence of market efficiency. 

 

Many researchers test EMH by assessing the returns that would be realized by traders who use various 

trading rules.  These studies include fundamental analysis studies that consider trading rules that make use of 

macroeconomic variables as well as industry-specific and company-specific variables (Al-Debie and Walker, 1999; 

Lev and Thiagarajan, 1993).  Other studies examined technical analysis trading strategies that make use of past 

prices (Brock et al., 1992; Gençay, 1999; Kwon and Kish, 2002; Skouras, 2001; Taylor, 2000).  Some researchers 

used nonlinear methods such as artificial neural networks, pattern recognition algorithms, and fuzzy logic to identify 

patterns in prices and develop technical trading rules that exploit these patterns (Fernández-Rodríguez et al., 2000; 

Lo et al., 2000; Zhou and Dong, 2004). For a comprehensive review, see Park and Irwin (2007).  In a survey of 

technical analysis studies, Park and Irwin stated that only 24 of those that had addressed the performance of 

technical trading rules found results consistent with EMH, compared with 58 studies that reported results that were 

inconsistent with EMH. 

 

Daniel and Titman (1999) defined a new notion of market efficiency called adaptive efficiency.  They 

argued that it takes time for rational arbitrageurs to gain knowledge of the strategies and the degree of irrationality of 

other traders.  This knowledge is required to remove price patterns that stem from trading on the part of irrational 

market participants. This implies that risk-averse arbitrageurs with limited capital find it difficult to instantaneously 

remove these price patterns, contrary to the very premise of EMH.  Adaptive efficiency is a weaker notion of market 

efficiency than EMH; it allows profit opportunities to appear in historical data but requires that they dissipate as 

soon as they become apparent.  Daniel and Titman rejected this weaker form of market efficiency in an empirical 

study of U.S. equity markets. 

 

2.1  EMH Tests and Bang–Bang Strategies 

 

 Bang–bang strategies are essentially an extreme form of market timing.  Investors practicing these 

strategies invest their entire endowment either in a risky asset or in a riskless asset.  That is, at any given time there 

is no diversification among assets; however, switching between assets means that there is diversification across time.  

As implemented, technical analysis is best suited to solving the problem of forecasting stock market returns.  One 

fundamental difference between portfolio choice modeling and technical analysis is that the 0–1 signals based on 

technical analysis usually are interpreted as a bang–bang strategy, whereas portfolio choice models output a fraction 

of wealth to be invested in each asset, most often calling for diversification at any given point in time. 

 

Samuelson (1997) proved that the expected utility of the investor who employs the constant diversification 

trading rule is necessarily higher than the expected utility of the investor who uses the bang–bang strategy.  Gollier 
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(1997) demonstrated that the bang–bang strategy consisting of investing in one asset in the first period and in 

another asset in the second period is second-order stochastically dominated by the strategy of splitting one’s wealth 

evenly between the two assets during the two periods.  These two results illustrate that strategies that are allowed to 

diversify between the risky and the riskless assets at every point in time are likely to outperform bang–bang 

strategies.  Most studies that test EMH by evaluating the performance of technical analysis trading rules nevertheless 

limit their scope to bang–bang strategies.  The implication of the research performed by Samuelson (1997) and 

Gollier (1997) is that those studies are biased toward accepting EMH.  Thus, a proper test of EMH would involve 

examining the performance of technical trading rules that are allowed to diversify between the risky and the riskless 

assets at every point in time. 

 

2.2  EMH Tests and Genetic Programming 

 

 Genetic programming (GP) is an artificial intelligence technique that mimics the processes observed in 

natural evolution (i.e., survival of the fittest) to search for candidate solutions to problems. It has been applied to a 

diverse array of problems in econometrics, economics, and finance, as well as to problems in other fields that are 

beyond the scope of this paper.  Kaboudan (1999) used GP to find the underlying data-generating process behind the 

time series data for stock prices and to measure time series’ predictability.  Álvarez-Díaz and Álvarez (2005) 

combined forecasts generated by GP and neural networks to forecast exchange rates.  Wagner and Brauer (2007) 

employed a dynamic forecasting version of GP to forecast U.S. GDP.  Jin et al. (2009) developed a constraint-

guided method with GP and applied it to problems in bargaining and financial prediction.  Lien et al. (2003) used 

GP to study lead–lag relationships of the structural changes in spot and futures markets.  Studies by Lensberg (1999) 

and Östermark (1999) explored the usefulness of GP for solving highly irregular optimization problems and for 

generating hypotheses about rational behavior in situations where explicit maximization is not well defined.  

Álvarez-Díaz and Miguez (2008) used GP to investigate the functional relation between the quality of institutions 

and a set of historical, economic, geographic, religious, and social variables.  Chen et al. (2008) proposed a dynamic 

proportion portfolio insurance strategy that introduced a risk multiplier (that is allowed to change according to 

market conditions) into the popular constant proportion portfolio insurance strategy.  Chen et al. made use of GP to 

build the equation tree for the risk multiplier in their model.  Lensberg and Schenk-Hoppé (2007) generalized an 

evolutionary finance model by using GP to maintain the diversity of investment strategies.  McKee and Lensberg 

(2002) used GP together with rough sets theory to construct an efficient and effective bankruptcy prediction model. 

 

One interesting application of GP is the automated discovery of financial asset trading strategies, with these 

strategies then used to test weak-form financial market efficiency.  Sullivan et al. (1999) argued that studies that use 

technical analysis to test EMH are subject to so-called data-snooping bias.  This bias arises because these studies use 

historical data to evaluate the performance of technical trading rules that are popular in practice.  It seems likely, 

however, that the rules became popular in the first place because of their good ex post performance.  That implies 

that these technical trading rules are expected a priori to perform well during some time periods, and therefore 

studying the performance of these rules using historical data is not an appropriate way to test EMH, since such tests 

will be biased toward rejecting EMH.  Allen and Karjalainen (1999) and Neely et al. (1997) suggested that GP is not 

subject to data-snooping bias because GP uses simple arithmetic and logical operators as building blocks to 

construct its own new trading rules with a high fitness in-sample, then evaluates the fitness of these rules using a 

different, out-of-sample set of historical data. 

 

Applications of GP in the S&P 500 market can be found in Allen and Karjalainen (1999), Fyfe et al. 

(2005), Neely (2003), Ready (2002), and Wang (2000).  Allen and Karjalainen performed one of the first studies of 

out-of-sample returns resulting from ex ante optimal trading rules evolved by GP.  They concluded that the rules 

generated in their study did not outperform the simple buy-and-hold strategy after transaction costs were figured in.  

Fyfe et al. and Neely extended the experiments presented by Allen and Karjalainen by using a fitness criterion that 

adjusts trading rule returns for risk to evolve ex ante optimal trading rules.  Both studies, as well as a further 

extension of Allen and Karjalainen’s work by Ready, found that when the out-of-sample trading rule returns are 

adjusted for risk, the rules cannot beat the buy-and-hold strategy. 

 

A number of studies have employed GP to study the properties of prices in individual stock markets.  

Kaboudan (2000) used GP to produce one-day-ahead stock price forecasts of six individual stocks, and then 
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evaluated trading strategies based on these forecasts and concluded that these strategies yield a relatively high return 

on investment.  Fyfe et al. (1999) employed GP to evolve trading rules for one UK stock and found that risk-

adjusted returns were inferior to those based on the buy-and-hold rule.  Potvin et al. (2004) applied GP to evolve 

trading strategies for 14 Canadian companies.  Although Potvin et al. found the rules they had evolved by GP to be 

valuable when the market fell or when it was stable, these rules were dominated by the buy-and-hold approach 

during times when the market was rising.  

 

Researchers have also applied GP to futures markets, with similar results.  Roberts (2005) found rules that 

can be characterized as profitable out-of-sample for only 2 of 24 futures markets studied.  Wang (2000) applied GP 

methods to examine the trading and hedging effectiveness of S&P 500 spot and futures markets, finding these 

markets to be efficient.  In the spot market, GP rules duplicated the buy-and-hold rule.  The rules constructed by GP 

did not have consistent out-of-sample performance on a risk-adjusted basis in the futures market.  Wang also 

reported that more than 40% of the trading rules generated by GP had significant market-timing ability.  

 

Another application of GP is using it to evolve trading strategies in foreign exchange markets.  Neely and 

Weller (1999) and Neely et al. (1997) found that GP evolved trading rules with significant out-of-sample excess 

returns.  Both Dempster and Jones (2001) and Neely and Weller (2003) applied GP to intra-daily data in foreign 

exchange markets.  The former study found profitable rules even when realistic transaction costs were taken into 

account; the latter, in contrast, showed results that were consistent with market efficiency when reasonable 

transaction costs and trading hours were used.  

 

Most studies that test EMH by evaluating the returns based on existing technical analysis strategies 

employed rules that output 0–1 signals and can be interpreted as bang–bang strategies.  Studies such as those by 

Dempster and Jones (2001), Fyfe et al. (2005), and Potvin et al. (2004) used GP to search within the space of trading 

rules that output 0–1 signals and can be interpreted as bang–bang strategies.  In contrast to that, some of the studies 

described in the preceding paragraphs arrived at their conclusions regarding market efficiency by studying the out-

of-sample performance of portfolios formed by using GP trading rules, in addition to studying the out-of-sample 

performance of GP rules themselves.  Allen and Karjalainen (1999), Neely et al. (1997), Neely and Weller (1999, 

2003), Neely (2003), and Roberts (2005) all took the approach of using GP to evolve and save a number of simple 

bang–bang trading rules, and then evaluating the out-of-sample returns on portfolios formed by using either the 

signals output by the saved rules or the characteristics of the in-sample returns based on the saved rules.  

 

Allen and Karjalainen (1999) evolved and saved 100 rules for the S&P 500 index, using daily data.  Neely 

and Weller (2003) evolved and saved 25 rules for foreign exchange markets, using intra-day data.  Both studies 

examined the out-of-sample returns based on the equally weighted portfolio rule that assigned equal weights in the 

portfolio to all the rules that had satisfied their selection criteria.  After using GP to generate 100 trading rules for 

the foreign exchange market, Neely et al. (1997) and Neely and Weller (1999) examined returns based on the 

equally weighted portfolio rule (which they referred to as the uniform rule) during a testing (out-of-sample) period 

and compared those returns to those obtained from the median portfolio rule.  For the median portfolio rule, a long 

position was taken if more than half of the GP trading rules output a buy signal, and a short position was entered into 

otherwise.  

 

Neely (2003) used GP to evolve, during each of 10 training (in-sample) periods, 10 trading rules for the 

S&P 500 index, then examined the returns resulting from five different portfolios in each of the testing periods: the 

equally weighted portfolio rule, the median portfolio rule, and three other portfolios.  The latter three portfolios were 

constructed using the following rules, respectively:  Arbitrarily split the portfolio equally between the buy-and-hold 

strategy and the trading rule, select the portfolio weights to maximize the in-sample Sharpe ratio (Sharpe, 1966), and 

select the portfolio weights to maximize the out-of-sample Sharpe ratio.  The last of these portfolios was used as a 

benchmark to gauge an upper bound on the fitness improvement due to using the technical rule constructed by GP.  

 

Roberts (2005) first used GP to generate trading rules that output ternary signals (i.e., long, neutral, or short 

position).  Roberts then compared the out-of-sample returns on three equity indices (as benchmarks) to the out-of-

sample returns on a futures portfolio in which 30% of the assets were devoted to initial margin (this amount being 

split equally among the 24 commodities being traded in accordance with GP’s trading rules) and the remaining 
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assets were held in U.S. T-bills.  

 

Wang’s (2000) use of GP to generate trading and hedging rules in S&P 500 spot and futures markets came 

closest to our approach of evolving the fraction of wealth to be allocated to the risky asset.  In Wang’s study, GP 

futures trading rules were limited to five trading signals—two contracts held long, one contract held long, no 

position, one contract held short, and two contracts held short.  

 

Taking an indirect approach to obtaining portfolio rules, such as using GP to evolve rules that output one of 

five trading signals (or using GP to generate and save simple bang–bang rules) and then forming a portfolio using 

the signals derived from the saved rules, may not be the most efficient way to find a portfolio strategy with high out-

of-sample fitness.  Samuelson’s (1997) results indicate that out-of-sample performance of rules could be improved 

by allowing rules that return a proportion of wealth (not restricted to 0% or 100%, as is the case in bang–bang 

strategies) to be invested into the risky asset. We employ that suggestion in our experiments.  Thus, our study 

complements the studies described above. 

 

3.  GENETIC PROGRAMMING 

 

 Genetic programming, introduced by Koza (1992) as a modification of genetic algorithms, is a nonlinear 

procedure for searching for and refining candidate solutions to problems.  This methodology is designed for 

problems in which the search space of possible solutions consists of entities—such as computer programs or 

analytical expressions—that can be expressed as decision trees.  The main features of GP are its flexible 

representation of solutions and its use of operators inspired by the theory of natural selection to generate new 

candidate solutions. GP comprises five components:  population, evaluation, selection, crossover, and mutation.  

 

Initially, a population of random candidate solutions (the first generation) is produced. The only 

requirements for solutions are that they be well defined and produce output appropriate to the problem of interest. 

Most of these random solutions will do quite poorly in meeting the criteria set in the problem, but some, purely by 

chance, will be better than the rest. The population is allowed to ―evolve‖ over a series of generations.  Each 

generation is created by ―mating‖ among the parent generation, using crossover and mutation operators, to create the 

subsequent generation of ―children.‖ Crossover mixes subtrees of the population, whereas mutation replaces 

subtrees with new, randomly generated subtrees.  GP selects the parents that will ―mate‖ through a randomization 

process with weighting by fitness; individuals with high fitness in solving the problem are more likely to be chosen 

than individuals with low fitness. GP runs until either a solution is found or a fixed number of generations 

(predetermined by the GP user) have been created. In this way, the genetic program searches promising areas of the 

solution space by evolving a population of decision trees, with the decision trees in each successive generation 

tending to become more adept at solving the problem. 

 

GP is a robust optimization technique that can find good solutions to very complex problems.  It cannot 

compete computationally with classical algorithms in the classical algorithm domain (i.e., linear programming 

problems).  GP’s advantage lies in the domain of problems that cannot be solved easily, or at all, using classical 

techniques. 

 

4.  METHODOLOGY 

 

 GP methodology is employed here to generate portfolio rules for each of 24 stocks and then study the out-

of-sample performance of these rules.  GP is used to evolve portfolio rules that determine a fraction of wealth to be 

allocated to a risky asset (i.e., one of the 24 stocks in this study), with the remaining wealth being invested into a 

riskless asset, as opposed to simple binary (0–1) bang–bang rules evolved in earlier studies (e.g., Dempster and 

Jones, 2001; Fyfe et al., 2005; Potvin et al., 2004).  Allen and Karjalainen (1999) and Neely et al. (1997) suggested, 

as a means to avoid results being subject to the data-snooping bias, testing market efficiency by assessing the 

performance of rules generated by GP.  We follow that suggestion here.  Hence, our setup allows us to test adaptive 

efficiency of a financial market while avoiding both the data-snooping bias and the bias that plagues studies that 

analyze the out-of-sample performance of simple binary (bang–bang) trading strategies. 
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4.1  Genetic Programming Setup 

 

 The building blocks used in all of the experiments in the present study consist of numerical constants, 

arithmetic and logical operators, and simple functions of past price data.  These building blocks are listed in Table 1.  

To guarantee that a trading rule is well defined, the root node of each GP decision tree (the node at the top of the 

tree, which is the location of the final output of the rule) must be constrained to be a probability function (a function 

that outputs a number in the range 0 to 1 inclusive).  To this end, all root nodes are constrained to be one of the 

functions in the set {pconstant, And, Or, Not, If-Then, If-Then-Else, AND, OR, NOT, IF-THEN, IF-THEN-ELSE, 

GT, LT, SRatio} (see Table 1).  We interpret the number output by each GP candidate solution decision tree as the 

fraction of wealth that the investor allocates to buying stock shares. 
 

 

Table 1 

Genetic Programming Building Blocks 
Building Blocks Input Data Type Input Output Data 

Type 

Output 

pconstant  No input Probability Real number between 0 and 1 

Pt  No input Variable Current value of asset price 
Rt  No input Variable Current value of riskless rate 

Wt  No input Variable Current value of investor’s wealth 

days remaining  No input Variable Number of days remaining until end of subperiod 
     

and Boolean a, b Boolean If a is true and b is true, output true;  else, output 
false 

or Boolean a, b Boolean If a is true or b is true, output true; else, output 

false 
not Boolean a Boolean If a is true, output false; else output true 

if-then  Boolean a, b Boolean If a is true, output b; else, output false 

if-then-else Boolean a, b, c Boolean If a is true, output b; else, output c 
     

And Boolean a, b Probability If a is true and b is true, output 1; else, output 0 

Or Boolean a, b Probability If a is true or b is true, output 1; else output 0 
Not Boolean a Probability If a is true, output 1; else, output 0 

If-Then Boolean (a),Probability (b) a, b Probability If a is true, output b; else, output 0 

If-Then-Else Boolean (a),Probability (b, c) a, b, c Probability If a is true, output b; else, output c 
AND Probability a, b Probability a × b 

OR Probability a, b Probability (a + b) – (a × b) 

NOT Probability a Probability 1 – a 
IF-THEN Probability a, b Probability If a = 1, output b; else, output 0 

IF-THEN-ELSE Probability a, b, c Probability If a = 1, output b; else, output c 

< Real a, b Boolean If a < b, output true; else, output false 
> Real a, b Boolean If a > b, output true; else, output false 

GT Real a, b Probability If a > b, output 1; else, output 0 

LT Real a, b Probability If a < b, output 1; else, output 0 
SRatio Real a, b Probability If b = 0, or if a and b are of opposite sign, output 

0. Otherwise, output 1 if |a|  |b|; else, output a/b 

     
+ Real a, b Real a + b 

– Real a, b Real a – b 

/ Real a, b Real If |b| > 0, output a/b; else, output 1 
* Real a, b Real a × b 

absolute value Real a Real |a| 

ln Real a Real If a > 0, output 1n(a), else output 0 
power Real a, b Real ab 

maximum Real a, b Real max(a, b) 

minimum Real a, b Real min(a, b) 
     

lag Variable (a), Integer (n) a, n Real Value of the variable a, n days ago 

moving average Variable (a), Integer (n) a, n Real Average of the last n observations of variable a 
return Variable Pt, Pt–1 Real ln(Pt/Pt - 1) 

 

 

 At the bottom of the tree are elements of the terminal set (the set of inputs to the rule).  They consist of a 

numerical constant (pconstant) and the variables that represent the stock price, the stock return, the riskless interest 
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rate, the investor’s wealth, and the number of days remaining in the investor’s trading horizon (the number of days 

until the date on which trading ends and the utility of wealth is evaluated).  The function set contains real-valued 

functions, Boolean functions, and probability functions.  Not all logical functions return a Boolean output (true or 

false).  Functions in the set {and, or, not, if–then, if–then–else} have Boolean inputs and outputs, while functions in 

the set {And, Or, Not, If–Then, If–Then–Else} convert Boolean inputs into a probability output of 1 or 0, and 

functions in the set {AND, OR, NOT, IF–THEN, IF–THEN–ELSE} take probability inputs and compute probability 

outputs.  Lastly, the functions > and < convert real numbers into Boolean values, and the functions GT and LT 

convert real numbers into probabilities.  

 

The real-valued functions in the function set include the arithmetic and mathematical operators +, –, /, *, 

absolute value, ln, and power.  Also included are the functions maximum and minimum, a lag function that returns 

the value of the variable argument as it was n days ago (n is the second, integer-valued, argument), and a function 

(―moving average‖) that returns a moving average of the variable argument in a window defined by the second, 

integer-valued, argument.  

 

The output type of every function below the top of the tree matches the input type of the function above it 

in the tree.  The function and terminal sets enable GP to search for trading strategies in the space of complex and 

nonlinear decision trees.  This setup gives GP the potential to identify factors that are important for successful 

trading strategies, as well as to combine these factors in ways that form decision rules that correspond to profitable 

trading strategies. 

 

The Neely et al. (1997) and Neely and Weller (1999, 2003) studies all had one training, one selection, and 

one testing period.  Potvin et al. (2004) evaluated performance of trading rules evolved using two sets of training 

periods—a short training period and a long training period.  The rules found using both training periods were then 

applied to the same testing period.  In the present study, we adopt an approach similar to that of Allen and 

Karjalainen (1999):  To prevent possible ―data snooping‖ in the choice of time periods, they used 10 sets of 

successive training, selection, and testing periods, whereas we used 21 such sets.  To ensure that our results are not 

the artifact of the particular choice of the in-sample and out-of-sample periods (that is, are not the results of data 

snooping), we conduct experiments for multiple stock markets and also examine multiple training, selection, and 

testing periods for each market. 

 

In our experiments, we employ a GP algorithm, with data from a given 5-year in-sample period as input, to 

evolve and select trading rules that are then applied (tested) in the following (sixth) year.  The first half of each 5-

year in-sample period is allotted to training, and the second half to selection.  Associated with each calendar year is 

a set of four subperiods that are each split evenly between an observation phase (when the GP methodology 

examines data) and a trading phase (when trades are executed in the simulations). The trading phase of one 

subperiod coincides with the observation phase of the next subperiod.  Ten subperiods are associated with every 

training or selection period (since each of those periods is comprised of 2.5 calendar years), while only four 

subperiods are associated with every testing period (since a testing period encompasses just one calendar year). 

 

We chose the length of the trading phase of each subperiod to be equal to the investor’s trading horizon.  In 

our stock experiments, we assume the investor’s trading horizon is 60 trading days (approximately 3 months).  Thus 

the total length of each subperiod is 120 trading days. On the first day of the trading phase of any (training, 

selection, or testing) subperiod, GP has access to all of the stock prices during the corresponding observation phase. 

On each remaining day of the trading phase, GP can continue to use all of that stock price information and, in 

addition, all stock price information accumulated thus far during the trading phase, up to and including the data from 

the previous day.   

 

We use a criterion of fitness that involves computing the utility of terminal wealth at the end of each 

subperiod within a given (training, selection, or testing) period and then averaging those values (see Section 4.2 for 

details).  We note that a longer trading horizon (i.e., longer subperiods) would result in fewer terms being averaged, 

and thus a less meaningful average; a shorter trading horizon seems unrealistically shortsighted, though we 

recognize that some traders (e.g., day traders) have extremely short horizons.   
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For each of the 24 stocks used in this study, the data set spans the years 1980–2005—plus the last quarter 

of 1979 (the observation phase of the first subperiod associated with 1980), which is hereinafter implicitly included 

in reference to the data for 1980.  Thus after allowing for the first 5-year time interval during which trading rules are 

evolved (1980–1984), we have 21 testing periods (namely, calendar years 1985 through 2005) and 84 testing 

subperiods (as there are 4 subperiods associated with each testing period). 

 

For example, an investor at the beginning of 1985 has access to 5 years of historical data (1980–1984).  The 

investor assigns the first half of this data set to the training period and the rest to the selection period.  Ten GP trials 

(to be discussed later) are run using the periods specified in this way, and under certain conditions (if the threshold 

criteria defined in Section 4.3 are satisfied for any of the rules generated in these 10 trials) one rule is selected to be 

applied out-of-sample.  The investor then uses this rule to trade in 1985, the testing period that corresponds to the in-

sample (training plus selection) period 1980–1984.  The time interval for the first testing subperiod associated with 

1985 is October 1984 through March 1985 (observation phase in October through December of 1984, trading phase 

in January through March of 1985), the time interval for the second testing subperiod associated with 1985 is 

January through June of 1985 (observation phase in January through March, trading phase in April through June), 

and so on. 

 

At the beginning of 1986, all periods are reassigned; in particular, the testing period is rolled forward 1 

year, and the in-sample (training plus selection) period is redefined as the years 1981–1985.  We run 10 GP trials, 

select one rule to be applied out-of-sample (again, if the threshold criteria defined in Section 4.3 are satisfied for any 

of the rules generated in these 10 trials), and trade according to this rule in the testing period, 1986.  We continue 

rolling our window forward in this manner until we use the last year in our data set, 2005, as the testing period.  

Hence, we use 5 years of data at a time to evolve trading rules to employ for the year that follows, and we do this 21 

times for every stock (once for each of the 21 testing periods).  

 

Every GP experiment conducted as part of this study involved 10 trials, and each trial consisted of 50 

generations.  In every generation, a population size of 50,000 trading rules was used.  The depth of each candidate 

solution decision tree was limited to 25 levels.       

 

The process of running the 10 GP trials and selecting at most one rule to be tested in the out-of-sample 

period consists of the following steps: 

 

1. Generate 50,000 random rules, evaluate their fitness in the training and selection periods, and identify and 

save all of the rules that satisfy the first six threshold criteria (see Section 4.3 and Table 2).  If more than 50 

rules satisfy the criteria, save only the 50 rules that have the highest fitness in the selection period. 

2. For each rule, attach a probability of being chosen to be used in creating ―offspring‖ rules in the next 

generation. The probability should correspond to each rule’s fitness during the training and selection 

periods, so that the ―more fit‖ rules will be more likely to mate.  Choose rules from the current generation 

randomly, using the attached probabilities, and apply to these rules either the crossover operator (with 

probability 95%) or the mutation operator (with probability 5%), so as to generate 50,000 rules for the next 

generation.  As above, evaluate the fitness of the rules in this population in the training and selection 

periods, then save all of the rules that satisfy the first six threshold criteria (up to a maximum of 50). 

3. If this is not Generation 50, go back to Step 2 to create the population in the next generation.  If this is 

Generation 50, begin the next trial by going back to Step 1, unless this is Trial 10.  

4. If this is Generation 50 of Trial 10, take the rules that were saved during the 10 trials and discard those that 

do not satisfy the last two threshold criteria (see Section 4.3 and Table 2).  If any rules remain, select the 

rule with the highest fitness in the selection period.  Study the performance of this rule in the testing period. 

 

Note that with a population size of 50,000 trading rules, our GP search is substantially more thorough than 

the GP searches of most earlier studies within this field, many of which have population sizes of 500 or fewer 

trading rules.
1
  For example, Wang (2000) and Dempster and Jones (2001) used population sizes of 100 trading 

rules, whereas Ready (2002) and Potvin et al. (2004) followed the lead of Neely et al. (1997) and Allen and 

Karjalainen (1999) in using a population size of 500 trading rules.  Roberts (2005) used a population size of 20,000 

trading rules.  It is well known in the GP literature (and inherently logical) that algorithm performance improves as 



Journal of Business & Economics Research – November, 2010 Volume 8, Number 11 

96 

the population size (in other words, the number of candidate solutions created at every generation) increases.  

Naturally, and unfortunately, larger population sizes correspond to increased computing times.   
 

4.2.  Criterion of Fitness 
 

 We assume that investors’ preferences are characterized by the logarithmic utility of terminal wealth (WT) 

on the day that trading ends; that is, we assume that an investor’s utility function is given by U(WT) = ln(WT).  The 

goal of our experiments is to investigate whether investors whose trading horizon is 3 months, and whose 

preferences are characterized by this utility function, can increase their expected utility by switching from trading in 

accordance with the simple buy-and-hold rule to trading in accordance with a rule evolved by GP.  (In these 

experiments, GP provides trading signals to rebalance the trading portfolio between the risky stock asset and the 

riskless 3-month T-bill asset at the end of every trading day, throughout the investment horizon.)  Consistent with 

this goal, we set the fitness measure of a given GP rule for a given subperiod to be the utility of terminal wealth that 

would be realized at the end of that subperiod if that rule were followed throughout that subperiod.  It then naturally 

follows that we evaluate a rule’s fitness for a given training (or selection or testing) period by averaging the utilities 

of terminal wealth for the subperiods that constitute that training (or selection or testing) period.  Thus the fitness 

criterion that we obtain after evaluating a given rule can be interpreted as an estimate of the expected utility of 

terminal wealth that corresponds to trading according to that rule.  This fitness criterion allows us to take the raw 

returns based on the trading rules and adjust them for risk.   
 

What follows is a sketch of how the trading process is simulated in our experiments.  This trading setup is 

used to evaluate the fitness of one candidate solution trading strategy in one subperiod, be it a training, a selection, 

or a testing subperiod.  On the first day of the trading phase, the value of the investor’s cash account is set to an 

amount W0 (we use $100,000 for W0).  We make an important assumption, common in the literature, that the 

activities of our simulated trader do not have a major impact on the stock price.  
 

We define the investor’s wealth at the end of day t, Wt, as the value of the shares of stock in the portfolio on 

day t plus the value of the cash account.  Suppose that on trading day t, the investor’s wealth is Wt and the stock’s 

price is Pt.  This implies that the investor can have at most int(Wt/Pt) shares of stock on trading day t in his or her 

portfolio.  (The ―int‖ function truncates its input, to give the largest integer that does not exceed the input.)  
 

 The portfolio trading rule generated by GP determines the fraction of wealth that the investor will allocate 

to the purchase of stocks.  The rule output for trading day t is computed using information available from the start of 

the observation phase up to trading day t – 1, inclusive of both the start and end dates.  If on day t the rule output is 

t  (with 
t  constrained such that 0 1t  ), the investor’s interpretation is that he or she should have 

int[ ( / )t t tW P ] shares of stock in his or her portfolio.  If the current number of shares of stock in the portfolio is 

different from this, the portfolio is rebalanced accordingly, at the end of (and at the closing price on) day t.  The 

remaining amount, [Wt – (Pt)(int[ ( / )t t tW P ])], is held in the cash account.  We assume that this amount earns a rate 

of return equal to the 3-month T-bill rate. 
 

 When the investor buys shares of stock, both the cost of the shares and the transaction costs are subtracted 

from the cash account.  Neely et al. (1997) have pointed out that adopting higher transaction costs in the training and 

selection periods would decrease the incidence of retaining rules that over-trade.  Rules that over-trade are more 

likely to be overfitting the data.  We follow Neely et al.’s lead and adopt unrealistically high transaction costs in 

training and selection periods, then use realistic transaction costs in the testing period.  For the testing period, we 

choose to use the transaction cost structure used by Allen and Karjalainen (1999) for simulating trading in the S&P 

500 index:  a one-way transaction cost of 0.25%.  This transaction cost structure was motivated by Sweeney (1988), 

who found that one-way transaction costs for institutional traders were in the range of 0.1–0.2%.  Allen and 

Karjalainen argued that a one-way transaction cost of 0.25% incorporates all costs at realistic levels, including the 

cost of the market impact.  Wang (2000) stated that the transaction cost structure for his S&P 500 index trading 

simulations corresponds to a one-way transaction cost of 0.12% and that this is a realistic assumption for 

institutional investors.  For training and selection periods, we use the following (deliberately unrealistically high) 

transaction cost structure: a one-way transaction cost of 0.5% of the value of the transaction plus a two-way flat rate 

of $5 per share of stock.  
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Table 2 

Initial Threshold Parameter Settings for the Stock Experimentsa 

Threshold  Threshold Value 

Minimum value of average subperiod utility of terminal wealth for training periodb 11.537618 = 

ln(102,500) 

Minimum value of average subperiod utility of terminal wealth for selection periodb  11.537618 

Minimum fraction of profitable subperiods in training periodb 90% 

Minimum fraction of profitable subperiods in selection periodb 90% 

Minimum wealth at end of every trading day in training periodb $90,000 

Minimum wealth at end of every trading day in selection periodb $90,000 

Minimum wealth at end of training periodc $125,000 

Minimum wealth at end of selection periodd $125,000 

 

 

 Thus, we assume that the following activities take place on trading day t:  First, we check whether the 

investor’s wealth is negative.  A bankruptcy constraint implies that the investor has to sell all of his or her shares of 

stock on the day the investor’s wealth becomes negative.  Second, the interest payment is added into the cash 

account.  This interest payment is a function of the balance in the cash account on day t – 1, the 3-month T-bill rate, 

and the number of calendar days between trading days t – 1 and t.  Third, the trading signal, 
t , is generated, and 

the portfolio is rebalanced at the close of day t.  Fourth, the day’s trading costs (which depend on whether day t is 

part of the in-sample period or a part of the testing period, as described above) are deducted from the cash account if 

the new position in stock is different from the old position.  Lastly, the cash account is credited (debited) 

accordingly when stock is sold (bought).  

 

On the last day of the trading phase of each subperiod, the investor sells the stock in the portfolio.  We 

compute the terminal wealth, WT, and the investor’s utility of terminal wealth, as indicated above, with the equation 

U(WT) = ln(WT).  To evaluate a rule’s fitness in the training (selection) period, we average the utilities of terminal 

wealth for the subperiods that make up the training (selection) period for the particular stock.  We use a similar 

method to evaluate the out-of-sample fitness of a specific rule evolved by GP.  
 

In studies similar to ours, which evaluate the out-of-sample performance of trading rules evolved by GP as 

a means to test EMH, various trading rule performance criteria were used.  We briefly describe several 

representative studies to give a sense of the variety of performance criteria being used.  Allen and Karjalainen 

(1999) and Potvin et al. (2004) used as a fitness criterion the excess return due to trading by the rule (the return 

earned by applying the rule, less the return earned by using the buy-and-hold strategy).  Fyfe et al. (2005) used the 

Sharpe ratio to adjust trading returns for risk; the measure employed by Dempster and Jones (2001) was a modified 

Stirling ratio, which is a function of the ratio of return to maximum drawdown.  Relevant to this discussion, Neely 

(2003) used GP to generate three sets of rules that maximize three corresponding fitness criteria that adjust for risk:  

the Sharpe ratio, the X
*
 statistic (Sweeney and Lee, 1990), and the Xeff criterion (Dacorogna et al., 2001). 

 

The risk-adjustment criterion introduced by Dacorogna et al. (2001), the Xeff criterion, is related to the 

criterion of fitness employed in our study to adjust for risk.  Their criterion originates in utility theory but branches 

away from straightforward utility by measuring the utility derived from a trading strategy by an investor (whose 

preferences are characterized by constant absolute risk aversion) over a weighted average of return horizons, where 

the weights are based on the relative importance of those return horizons.  The weighting function is chosen 

somewhat arbitrarily, may be arbitrarily changed for trading models with different trading frequencies, and does not 

originate in the standard portfolio model.  In the present study, we are not considering multiple trading horizons; 

hence, we chose to use a fitness criterion that is related to expected utility maximization in a more straightforward 

fashion.  

                                                 
a The thresholds in this table had to be satisfied in the training and selection periods, as indicated, while the following 

(deliberately unrealistically high) transaction cost structure was used:  a one-way transaction cost of 0.5% of the value of the 

transaction plus a two-way flat rate of $5 per share of stock.   
b Wealth was reset to the initial value ($100,000) at the beginning of each subperiod.  
c Wealth was not reset during the entire training period of 2.5 years (10 training subperiods).  
d Wealth was not reset during the entire selection period of 2.5 years (10 selection subperiods). 
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According to the methodology followed in these experiments, a rule’s performance in the in-sample 

subperiods determines whether the trading rule is saved in order to be applied out-of-sample.  In Section 4.3 we 

clarify the process by which a rule’s performance in-sample is used to select the rules to be applied out-of-sample in 

the testing period.  

 

4.3  Thresholds for Saving Rules 

 

 This paper reports on tests of whether GP can use past price data to evolve trading rules that work well out-

of-sample.  In accordance with Daniel and Titman’s (1999) definition of adaptive efficiency, we are testing whether 

rules that attain high fitness in-sample continue to have high fitness out-of-sample.  The studies conducted by Neely 

et al. (1997), Allen and Karjalainen (1999), and Neely and Weller (1999) adopted an approach of saving one rule 

(the one with the highest fitness in the selection period) per trial and applying it out-of-sample if it outperforms the 

buy-and-hold rule in the selection period.  These authors used a simple threshold criterion for determining which 

rule(s), if any, were selected to be tested out-of-sample.  Their threshold criterion, however, doesn’t seem to be the 

most intuitive one to follow.  Few risk-averse real-world investors would be willing to accept only marginally 

improved performance in-sample as a reason to switch from investing in accordance with the buy-and-hold rule to 

investing in accordance with a rule evolved by GP.  Consequently, in our experiments we investigate whether using 

more sophisticated threshold criteria tends to yield outcomes in which the algorithm saves rules with better out-of-

sample fitness. 

 

The idea is to find rules with the same performance (or better) in-sample as the performance the investor 

would like to see out-of-sample.  In addition to looking for the rule that produces a high (on average) utility of 

terminal wealth at the end of the trading horizon, the investor might want to search for a rule that satisfies certain 

money management criteria (e.g., the rule is profitable a certain minimum fraction of the time; when a loss occurs, it 

doesn’t exceed a certain maximum allowed amount; the rule yields a certain minimum return at longer horizons).  

The underlying goal is assumed to be to find a trading strategy that consistently produces high returns without the 

risk of extreme losses; each of the four threshold criteria above (high average utility and the three criteria related to 

money management) is a different way of specifying this goal.  

 

Table 2 formally presents the set of threshold criteria that are to be satisfied in-sample (four criteria for 

each training period and each selection period, for a total of eight criteria).  We use these criteria in each of the 504 

individual experiments, as a means of homing in on the single rule, for each experiment, that we test out-of-sample. 

The set of 504 experiments comprises 21 experiments for each of the 24 individual stocks studied, corresponding to 

the 21 in-sample periods and the out-of-sample period associated with each of them.  The procedure is as follows. 

 

For each stock, and each of the 21 testing periods, we conduct one GP ―run‖ comprising 10 trials.  Each 

trial is made up of 50 generations.  For every generation, we evaluate the fitness of each rule, and then discard the 

rules that do not satisfy the following six threshold criteria (three for the training period, and three for the selection 

period; see Table 2):  (a) The average subperiod utility attained in the training period—which is obtained by 

computing the utility of terminal wealth at the end of the 3-month trading phase of each of the subperiods associated 

with that training period and then averaging over those subperiods—must have a certainty equivalent of at least 

102.5% of the initial wealth, and likewise for the average subperiod utility attained in the selection period; (b) 90% 

of the training subperiods and 90% of the selection subperiods must be profitable; and (c) the minimum wealth 

observed at the end of every trading day in the training and selection periods must be greater than 90% of the initial 

wealth.   

 

We run the algorithm described above and at the end of the 10th trial discard all the saved rules that do not 

satisfy the following two additional threshold criteria: The terminal wealth at the end of the training and selection 

periods must be at least 125% of the initial wealth.  For purposes of these last two criteria, the wealth is not reset 

during the training period or the selection period, each of which is 2.5 years long and constitutes 10 subperiods. This 

is in stark contrast to the first six criteria, for purposes of which the wealth is reset at the beginning of every 

subperiod of the training period and every subperiod of the selection period.  From the rules that are saved and 

satisfy all eight threshold criteria given in Table 2, we then select the rule with the highest fitness for the selection 

period and use that rule for out-of-sample testing.  Thus, we are searching for a trading strategy that will maximize 
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the average utility of terminal wealth over the selection period and satisfy all eight threshold criteria given in Table 

2. 

 

In this paper, we also experiment with adopting more restrictive threshold criteria that rules must meet if 

they are to be saved (see Table 7).  Because these thresholds are more restrictive, by definition fewer rules will 

satisfy them.  We study how this change will influence the testing-period fitness of the rules that will be saved. 

 

To summarize, the specific setup of our experiments is as follows:  For the market in each individual stock, 

and each testing period, we perform 10 GP trials of 50 generations apiece.  During each trial, at every generation we 

save at most 50 candidate solution decision trees: those that satisfy the first six threshold criteria referred to above 

and (if there are more than 50 candidates in that group) are among the 50 that have the highest selection-period 

fitness (highest utility of terminal wealth averaged over all selection subperiods).  We thus save at most 25,000 rules 

during the 10 trials (i.e., at most 50 [rules per generation] × 50 [generations per trial] × 10 [trials]).  At the end of 10 

trials, we discard the rules that do not satisfy the final two thresholds (namely, the rules that do not result in terminal 

wealth of at least 125% of the initial wealth at the end of the training and selection periods).  Of all the rules that 

remain, we select the one with the highest fitness in the selection period and then evaluate it in the testing period. 

The last procedure takes place, of course, only if at least one rule is found that satisfies all of the threshold criteria in 

the particular experiment; if no such rule is found, no rule is recorded (and used out-of-sample) in the corresponding 

testing period.  

 

5.  DATA 

 

 For these experiments, we chose 24 diverse companies traded on the NYSE, all well known and operating 

in a variety of industries.  To ensure diversity among the companies studied, we picked two stocks each from the 12 

industries in Fama and French’s industry classification scheme.
2
  Specifically, two companies were selected from 

each of the following industries: Consumer Durables, Consumer Non-Durables, Manufacturing, Energy, Chemicals, 

Business Equipment, Telecommunications, Utilities, Shops, Healthcare, Finance, and Other.  Companies must have 

been active in the market for the time period that began at the start of the last quarter of 1979 and goes all the way 

through the end of 2005.  Table 3 lists the companies used in this study, along with their corresponding industries.  

These data, along with 3-month T-bill rates, were provided by Datastream.  The stock prices in these data sets are 

not adjusted for dividends.  Because the trading rules evolved by GP sometimes result in not being fully invested in 

the stock, the decision not to include the dividends in the data set has the effect of underestimating returns to a 

greater extent for the buy-and-hold trading rule than for the GP trading rules.  Bessembinder and Chan (1998) 

estimated the dividend yield to be 0.016% per day for the Dow Jones Industrial Average.  

 

6.  RESULTS 

 

 Our test of EMH involves using a GP algorithm to evolve trading rules that are increasingly fit, in-sample, 

for achieving high average utility of the investor’s terminal wealth.  For each testing period for which a trading rule 

was selected in-sample by the GP methodology (and satisfied all eight of the threshold criteria given in Table 2), 

Table 4 provides the average subperiod utility of terminal wealth (achieved by investing in accordance with that rule 

out-of-sample) for each individual stock, as a measure of how well the trading rules performed out-of-sample.  

 

Blank spaces in Table 4 indicate testing periods corresponding to in-sample periods in which GP did not 

evolve any rules satisfying all the thresholds in Table 2.  GP saved rules in 202 training periods (of the possible 504, 

corresponding to all 24 stocks and 21 training periods per stock). 

 

We would like to compare the expected utility of using the GP methodology over the entire 21 years in 

which testing was done (1985–2005) to the expected utility of using the buy-and-hold methodology during that time 

period.  For each methodology, we could compute the expected utility for each stock by applying that methodology 

to each of the 84 subperiods of the stated 21-year time period and then taking the average over the 84 subperiods. 

We could then average those expected utilities over the 24 stocks. 
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Such an approach would work well for the buy-and-hold rule, and we could interpret the final average as an 

estimate of the expected utility (for an investor whose preferences are characterized by the logarithmic utility 

function) of using the buy-and-hold rule.  According to our GP methodology, however, we apply a rule evolved by 

GP to the out-of-sample period only if the rule meets all of the threshold criteria presented in Table 2.  Thus, a 

comparison of the expected utilities for the two methodologies would be meaningful only if both methodologies 

were to produce a rule in each in-sample period for every stock.  For some stocks, there are in-sample periods for 

which no rules were found that met all of the thresholds in Table 2; thus, the GP methodology and the buy-and-hold 

methodology cannot be compared in a completely consistent manner.  To get around this problem and evaluate the 

expected utility of using GP to evolve trading rules to be used out-of-sample, we could compute the average (over 

all 21 testing periods and all 24 stocks) out-of-sample utility of terminal wealth using one of the two strategies 

described below.  

 

Strategy 1 involves using the GP rule to trade in the out-of-sample periods corresponding to the in-sample 

periods for which GP is able to find a rule that satisfies the threshold criteria in Table 2, but investing in T-bills in 

out-of-sample periods corresponding to in-sample periods for which GP does not find a satisfactory rule.  Strategy 2 

is similar, but it uses the buy-and-hold strategy (rather than investing in T-bills) in out-of-sample periods 

corresponding to in-sample periods for which GP does not find a satisfactory rule.  In order to ensure that path 

dependency is not a factor, these trading simulations assume that on the first day of the trading phase of every 

subperiod, the value of the investor’s cash account, W0, is reset to $100,000.  For each of the 24 stocks chosen for 

this study, Table 5 provides expected utilities of using Strategy 1, Strategy 2, and the buy-and-hold strategy to trade 

The results presented in Tables 5 and 6 indicate that the price series of the 24 markets in our study generally were 

characterized by adaptive efficiency between 1985 and 2005.  In other words, according to our trading simulations, 

stock investors could not benefit from identifying trading strategies that were profitable and met various criteria in-

sample, and then investing according to these strategies out-of-sample.  Though the data presented in Table 6 show 

that the expected utility of Strategy 1 (11.5252, with a certainty equivalent $101,235.02) is higher than that of 

investing all of one’s wealth in T-bills (11.5247, certainty equivalent $101,184.41), the expected utility of Strategy 1 

is nevertheless lower than that of the buy-and-hold strategy (11.5306, certainty equivalent $101,783.17).  Strategy 2 

is also dominated by the buy-and-hold strategy, despite having a higher expected utility (11.5289, certainty 

equivalent $101,610.28) than Strategy 1.  For the majority of the 24 individual stocks, moreover, Table 5 shows that 

we generally could not outperform a simple benchmark strategy by using GP to identify trading rules to be used (in 

either Strategy 1 or Strategy 2) in the out-of-sample period. 

 

Seven stocks were exceptions.  For GM (General Motors) and GT (Goodyear Tire & Rubber), employing 

Strategy 1 achieves a higher expected utility than either investing all of one’s wealth in T-bills or trading in 

accordance with the buy-and-hold rule.  For DD (DuPont), DUK (Duke Energy), S (Sprint), T (AT&T Inc.), and 

XRX (Xerox), employing Strategy 2 achieves a higher expected utility than either investing all of one’s wealth in T-

bills or trading in accordance with the buy-and-hold rule. 

 

As stated above, rules that satisfied all of the thresholds presented in Table 2 were found for 202 of the 504 

in-sample periods.  It is possible that adopting a more restrictive set of thresholds would result in fewer rules being 

saved, and that these rules would have a higher average utility out-of-sample than the rules evolved and saved using 

the criteria listed in Table 2.  To investigate this possibility, we established a more restrictive set of thresholds, 

presented in Table 7.  With those criteria in mind, we took the rules saved during our original GP experiments (using 

the thresholds from Table 2), identified the rules that satisfied all of the more restrictive thresholds presented in 

Table 7, and applied these rules to the testing periods.  
 

For each individual stock, Table 8 (the counterpart of Table 4) gives the average subperiod utility of 

terminal wealth for each testing period.  The blank spaces indicate testing periods corresponding to the in-sample 

periods for which GP evolved no rules satisfying the thresholds in Table 7.  When the thresholds presented in Table 

7 were used to determine which rules get saved, GP saved rules in only 17 (3.37% of the possible 504) training 

periods, and those 17 training periods involve only 7 of the 24 stocks.  When the thresholds presented in Table 2 

were used, rules were saved for more than 40% of all of the training periods (202/504, as stated earlier).  
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Table 3 

Individual Stocks Used for the GP Experiments 

Industry Company Ticker Symbol 

Consumer non-durables Altria Group MO 

Consumer non-durables Pepsico PEP 

Consumer durables General Motors GM 

Consumer durables Whirlpool WHR 

Manufacturing Eastman Kodak EK 

Manufacturing Goodyear Tire & Rubber GT 

Energy Exxon Mobil XOM 

Energy Halliburton HAL 

Chemicals Dow Chemical DOW 

Chemicals DuPont DD 

Business equipment IBM IBM 

Business equipment Xerox XRX 

Telecommunications AT&T Inc. T 

Telecommunications Sprint S 

Utilities American Electric AEP 

Utilities Duke Energy DUK 

Shops Target TGT 

Shops Wal-Mart Stores WMT 

Healthcare Johnson and Johnson JNJ 

Healthcare Pfizer PFE 

Finance Bank of America BAC 

Finance Merrill Lynch MER 

Other Disney DIS 

Other Hilton Hotels HLN 

 

 

We applied two additional strategies, Strategy 3 and Strategy 4, to compute the expected utilities of the 

individual stocks over the entire 21 years in which testing was done (1985–2005). Strategy 3 and Strategy 4 are 

analogous to Strategy 1 and Strategy 2, respectively, the only difference being that the new strategies are based on 

the thresholds given in Table 7 (rather than the ones from Table 2).  For each of the 24 stocks chosen for this study, 

Table 9 provides expected utilities of using Strategy 3, Strategy 4, and the buy-and-hold strategy to trade out-of-

sample.  As before, the average utility corresponding to the riskless strategy is invariant across stocks; it is reported 

in Table 9 for comparison purposes.  We also averaged (over all 24 stocks) the expected utilities corresponding to 

applying Strategy 3 to the individual stocks, and thus obtained the overall average utility of using Strategy 3 to trade 

out-of-sample.  We did the same for Strategy 4.  These results are presented in Table 6. 

 

The fitness measure corresponding to using Strategy 3 (11.5250, certainty equivalent $101,214.77) is lower 

than that for Strategy 1 (11.5252, certainty equivalent $101,235.02).  This indicates that either the rule saved using 

the more stringent thresholds is, on average, worse than the rule saved using less stringent thresholds (for the in-

sample periods in which a rule gets saved for both sets of threshold criteria) or that the rule saved using less 

stringent thresholds performs, on average, much better than the Strategy 3 default option of holding T-bills (for the 

in-sample periods in which a rule is saved using the less stringent set of threshold criteria, but a rule is not saved 

using the more stringent set of threshold criteria), or possibly both.  Similar reasoning would hold for Strategies 2 

and 4, but in that case the more stringent thresholds produce higher expected utility: The fitness corresponding to 

using Strategy 4 (11.5306, certainty equivalent $101,783.17) exceeds that of Strategy 2 (11.5289, certainty 

equivalent $101,610.28). Furthermore, the two strategies that employed buy-and-hold when a GP rule was not saved 

(Strategies 2 and 4) outperformed the corresponding T-bill strategies (1 and 3, respectively). Looking at it another 

way, because Strategy 2 outperforms Strategy 1, and Strategy 4 outperforms Strategy 3, neither Strategy 1 nor 

Strategy 3 (the strategies with a default option of holding T-bills) would be chosen by a rational investor.  Thus the 

data presented in Table 6 show that using more stringent criteria improves the out-of-sample fitness of the rules that 

get saved, because Strategy 4 outperforms Strategy 2.  The fact that Strategy 1 outperforms Strategy 3 is irrelevant 

because a rational investor would never be interested in either of these two strategies, instead preferring buy-and-

hold—rather than T-bills—as the default when a rule is not saved. 
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Table 4 

Average Subperiod Utility of Terminal Wealth
 a
 for Individual Testing Periods, Using GP Rules Subject to Threshold Criteria 

from Table 2 

Panel A:  

Year Altria Pepsico General Whirlpool Eastman Goodyear Tire 

 Group  Motors  Kodak & Rubber 

 (MO) (PEP) (GM) (WHR) (EK) (GT) 

1985     11.5294  

1986       

1987     11.4288  

1988       

1989 11.6314 11.5312   11.4711  

1990 11.5273 11.5152     

1991 11.5950 11.5260   11.5260  

1992 11.5221 11.5214    11.5805 

1993 11.3682 11.4992     

1994       

1995 11.5251      

1996  11.5821     

1997 11.5248 11.5460     

1998 11.4834 11.5275   11.5523  

1999 11.5083 11.5178   11.5479  

2000 11.5204 11.4857   11.5194  

2001 11.5768 11.5271   11.3876  

2002 11.5091 11.5373 11.4973  11.4724  

2003 11.4571 11.5233 11.5587 11.5233   

2004 11.4872 11.5229  11.5232   

2005 11.5233 11.5330     

Average
b
 11.5173 11.5259 11.5280 11.5232 11.4928 11.5805 

 

Panel B:  

Year Exxon Halliburton Dow DuPont IBM Xerox 

 Mobil  Chemical    

 (XOM) (HAL) (DOW) (DD) (IBM) (XRX) 

1985 11.5272 11.4596   11.5584  

1986  11.4690   11.5262  

1987     11.5251  

1988 11.5298 11.5620   11.5154  

1989 11.5314 11.5312     

1990    11.5303   

1991    11.5260   

1992 11.5214 11.5214 11.5214 11.5214 11.5109 11.5214 

1993       

1994       

1995  11.5251     

1996      11.5466 

1997       

1998 11.4990 11.4780   11.5524  

1999  11.5060  11.5483 11.5241 11.5230 

2000 11.5334 11.5526  11.4707 11.4486 11.4343 

2001 11.5724 11.5163  11.5069  11.5231 

2002 11.5109 11.3554  11.5234  11.5508 

2003 11.5053 11.5233  11.5215   

2004 11.5351 11.5637 11.5232 11.5232  11.5189 

2005 11.5104 11.5922 11.5232 11.5304  11.5232 

Average 11.5251 11.5111 11.5226 11.5202 11.5201 11.5176 

                                                 
a U(WT) = ln(WT), initial wealth = $100,000. 
b Average over all testing periods for which a GP rule for the corresponding in-sample period was found. 
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Table 4 (continued) 

Panel C:   

Year AT&T Sprint American Duke Target Wal-Mart 

 Inc.  Electric Energy  Stores 

 (T) (S) (AEP) (DUK) (TGT) (WMT) 

1985     11.4966 11.5688 

1986     11.5262 11.5734 

1987     11.5250 11.5406 

1988     11.5271 11.5478 

1989     11.5889 11.5791 

1990      11.6283 

1991 11.5085    11.5260 11.5513 

1992     11.5075  

1993     11.5195  

1994     11.5147  

1995       

1996       

1997       

1998     11.6253  

1999     11.6049  

2000 11.4833    11.5698  

2001 11.5360 11.4901     

2002  11.5234     

2003 11.4856      

2004 11.4895 11.5208  11.5320   

2005 11.5232 11.5232     

Average 11.5044 11.5144  11.5320 11.5443 11.5699 

 

Panel D: 

Year Johnson and Pfizer Bank of Merrill Disney Hilton 

 Johnson  America Lynch  Hotels 

 (JNJ) (PFE) (BAC) (MER) (DIS) (HLN) 

1985 11.5294   11.5294 11.5294 11.5294 

1986  11.5262  11.5262   

1987 11.5535 11.5251   11.5251  

1988 11.5091 11.5671  11.5473 11.5476  

1989 11.5312 11.5227   11.5312  

1990 11.5332    11.4660 11.4624 

1991 11.5388 11.5342   11.5623 11.5021 

1992 11.5214 11.5210  11.5191 11.5613 11.5214 

1993 11.4909 11.5116 11.5195  11.5045 11.5195 

1994 11.5383 11.5775  11.4886 11.5209  

1995 11.5199 11.5756  11.5613  11.5251 

1996 11.5800 11.6189  11.5456 11.5165 11.6062 

1997 11.5499 11.6087  11.5244 11.5780 11.5538 

1998  11.5396  11.5814 11.5245 11.4821 

1999  11.4903 11.5191  11.5142  

2000  11.5404 11.4248  11.5837  

2001   11.5251  11.5007 11.5201 

2002   11.5234  11.5165  

2003   11.5233  11.5233  

2004   11.5232  11.5232 11.5232 

2005   11.5235  11.5332 11.5232 

Average 11.5330 11.5471 11.5102 11.5359 11.5296 11.5224 

 

 

 The results presented in Tables 6 and 9 allow us to conclude that the price series of the 24 markets in the 

present study were generally characterized by adaptive efficiency between 1985 and 2005.  Specifically, our trading 

simulations reveal that stock investors would not benefit by identifying trading strategies that worked in-sample and 

then trading according to these strategies out-of-sample.  According to Table 6, the expected utility of Strategy 3 
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(11.5250, certainty equivalent $101,214.77) is higher than the expected utility of investing all of one’s wealth in T-

bills (11.5247, certainty equivalent $101,184.41) but lower than that of the buy-and-hold strategy (11.5306, certainty 

equivalent $101,783.17).  Two of the strategies (Strategy 4 and buy-and-hold) have expected utilities that are 

identical when taken to four decimal places, but we can find small differences by expanding to five decimal places, 

and those results support the conclusion above:  The expected utility of Strategy 4 (11.53061, certainty equivalent 

$101,784.18) is lower than that of the buy-and-hold strategy (11.53063, certainty equivalent $101,786.22).  

Moreover, according to Table 9, using GP to identify trading rules to be used to trade out-of-sample and then 

employing either Strategy 3 or Strategy 4 does not outperform the simple benchmark strategies for the majority of 

the 24 individual stocks.  Table 9 demonstrates that for all 24 stocks, employing Strategy 3 does not achieve a higher 

expected utility than both alternative strategies of investing all of one’s wealth in T-bills and trading in accordance 

with the buy-and-hold rule.  For the stocks with the ticker symbols MER (Merrill Lynch) and TGT (Target), 

employing Strategy 4 achieves a higher expected utility than either investing all of one’s wealth in T-bills or trading 

in accordance with the buy-and-hold rule. 

 
Table 5 

Average, over All Testing Subperiods, of Subperiod Utilities of Terminal Wealth,
a
 Using GP Rules (Subject to   

   Threshold Criteria from Table 2) and Simple Trading Strategies
b
 

Panel A: Consumer Non-Durables, Consumer Durables, and Manufacturing 

Company Buy-and-Hold Strategy
c
 Strategy 1

d
 Strategy 2

e
 

Altria Group (MO) 11.5457 11.5197 11.5307 

Pepsico (PEP) 11.5500 11.5262 11.5371 

General Motors (GM) 11.5075 11.5251 11.5156 

Whirlpool (WHR) 11.5187 11.5247 11.5209 

Eastman Kodak (EK) 11.5063 11.5107 11.5060 

Goodyear Tire & Rubber (GT) 11.5119 11.5275 11.5119 

Panel B:  Energy, Chemicals, and Business Equipment 

Company Buy-and-Hold Strategy Strategy 1 Strategy 2 

Exxon Mobil (XOM) 11.5370 11.5248 11.5356 

Halliburton (HAL) 11.5203 11.5156 11.5170 

Dow Chemical (DOW) 11.5340 11.5247 11.5313 

DuPont (DD) 11.5318 11.5229 11.5373 

IBM (IBM) 11.5188 11.5228 11.5195 

Xerox (XRX) 11.5178 11.5226 11.5348 

Panel C:  Telecommunications, Utilities, and Shops   

Company Buy-and-Hold Strategy Strategy 1 Strategy 2 

AT&T Inc. (T) 11.5288 11.5192 11.5336 

Sprint (S) 11.5274 11.5230 11.5399 

American Electric (AEP) 11.5176 11.5247 11.5176 

Duke Energy (DUK) 11.5279 11.5251 11.5283 

Target (TGT) 11.5445 11.5358 11.5426 

Wal-Mart Stores (WMT) 11.5526 11.5387 11.5473 

Panel D:  Healthcare, Finance, and Other 

Company Buy-and-Hold Strategy Strategy 1 Strategy 2 

Johnson and Johnson (JNJ) 11.5505 11.5290 11.5347 

Pfizer (PFE) 11.5416 11.5397 11.5316 

Bank of America (BAC) 11.5355 11.5199 11.5311 

Merrill Lynch (MER) 11.5407 11.5294 11.5344 

Disney (DIS) 11.5535 11.5292 11.5353 

Hilton Hotels (HLN) 11.5230 11.5234 11.5240 

 

                                                 
a
 U(WT) = ln(WT), initial wealth = $100,000. 

b
 The riskless strategy consists of always investing in T-bills. The utility from this strategy, averaged across all subperiods, is 11.5247. 

c
 Investing the entire wealth in the given stock, then holding these shares until the end of the trading horizon. 

d
 Investing the initial wealth, during each testing period, in accordance with the GP rule for the corresponding in-sample period if such a 

rule was found, and investing the initial wealth in T-bills otherwise.  When no rule is found, the value given for Strategy 1 is 11.5247, the 

utility of the strategy that allocates all wealth to T-bills. 
e
 Investing the initial wealth, during each testing period, in accordance with the GP rule for the corresponding in-sample period if such a 

rule was found, and investing the initial wealth in accordance with a simple buy-and-hold rule otherwise.  When no rule is found, the 

value given for Strategy 2 is the utility of the buy-and-hold strategy. 
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Table 6 

Average, over All Testing Subperiods and Stocks, of Subperiod Utilities of Terminal Wealth,
a
 and Associated Values of Certainty 

Equivalent Wealth and Annualized Rate of Return, Using GP Rules and Simple Trading Strategies 

Strategy Overall Average Subperiod 

Utility of Terminal Wealth 

Certainty Equivalent Wealth Annualized Rate of Return 

Riskless
b
 11.5247 $101,184.41 4.82% 

Buy-and-hold
c
 11.5306 $101,783.17 7.33% 

Strategy 1
c 

11.5252 $101,235.02 5.03% 

Strategy 2
 c 

11.5289 $101,610.28 6.60% 

Strategy 3
 c 

11.5250 $101,214.77 4.95% 

Strategy 4
 c 

11.5306
d
 $101,783.17 7.33% 

 

 

Table 7 

Additional Threshold Parameter Settings for the Stock Experiments
a
 

Threshold Threshold Value 

Minimum value of average subperiod utility of terminal wealth for training period
b 

11.573550=             

ln(106,250) 

Minimum value of average subperiod utility of terminal wealth for selection period
b
  11.573550 

Minimum fraction of profitable training subperiods in training period
b
 90% 

Minimum fraction of profitable selection subperiods in selection period
b
 90% 

Minimum wealth at end of every trading day in training period
b 

$90,000 

Minimum wealth at end of every trading day in selection period
b 

$90,000 

Minimum wealth at end of training period
c
 $150,000 

Minimum wealth at end of selection period
d
 $150,000 

 

 

Table 8 

Average Subperiod Utility of Terminal Wealth
 a
 for Individual Testing Periods, Using GP Rules Subject 

 to Threshold Criteria from Table 7 

Panel A: Consumer Non-Durables, Consumer Durables, and Manufacturing 

Year Altria Pepsico General Whirlpool Eastman Goodyear Tire 

 Group  Motors  Kodak & Rubber 

 (MO) (PEP) (GM) (WHR) (EK) (GT) 

1985       

1986       

1987       

1988       

1989       

1990       

1991       

1992       

1993       

1994       

1995       

1996       

1997       

1998       

                                                 
a U(WT) = ln(WT), initial wealth = $100,000.  
b Averaged over 21 × 4 = 84 subperiods. 
c Averaged over 84 subperiods and 24 stocks. 
d When expanded to one more decimal place, this utility value (11.53061, certainty equivalent $101,784.18) is slightly lower than the expected 

utility of the buy-and-hold strategy (11.53063, certainty equivalent $101,786.22). 
aThe thresholds in this table had to be satisfied in the training and selection periods, as indicated, while the following (deliberately unrealistically 

high) transaction cost structure was used:  a one-way transaction cost of 0.5% of the value of the transaction plus a two-way flat rate of $5 per 

share of stock.   
b Wealth was reset to the initial value ($100,000) at the beginning of each subperiod.  
c Wealth was not reset during the entire training period of 2.5 years (10 training subperiods). 
d Wealth was not reset during the entire selection period of 2.5 years (10 selection subperiods). 
a U(WT) = ln(WT), initial wealth = $100,000. 
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Table 8 (continued) 

Year Altria Pepsico General Whirlpool Eastman Goodyear Tire 

 Group  Motors  Kodak & Rubber 

 (MO) (PEP) (GM) (WHR) (EK) (GT) 

Panel A: 

1999       

2000       

2001       

2002 11.5458      

2003       

2004 11.4872      

2005 11.5232      

Average
b
 11.5187      

 

Panel B: Energy, Chemicals, and Business Equipment   

Year Exxon Halliburton Dow DuPont IBM Xerox 

 Mobil  Chemical    

 (XOM) (HAL) (DOW) (DD) (IBM) (XRX) 

1985       

1986       

1987       

1988       

1989       

1990       

1991       

1992       

1993       

1994       

1995       

1996       

1997       

1998       

1999       

2000     11.4521  

2001     11.5759  

2002       

2003       

2004       

2005        

Average     11.5140   

 

Panel C: Telecommunications, Utilities, and Shops   

Year AT&T Sprint American Duke Target Wal-Mart 

 Inc.  Electric Energy  Stores 

 (T) (S) (AEP) (DUK) (TGT) (WMT) 

1985      11.5764 

1986       

1987      11.5406 

1988      11.5102 

1989       

1990       

1991       

1992       

1993      11.4821 

1994       

1995       

1996       

                                                 
b Average over all testing periods for which a GP rule for the corresponding in-sample period was found. 
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Panel C: Telecommunications, Utilities, and Shops (continued)   

Year AT&T Sprint American Duke Target Wal-Mart 

 Inc.  Electric Energy  Stores 

 (T) (S) (AEP) (DUK) (TGT) (WMT) 

1997       

1998       

1999       

2000     11.5840  

2001     11.5855 11.4972 

2002       

2003       

2004       

2005       

Average     11.5847 11.5213 

 

Panel D: Healthcare, Finance, and Other    

Year Johnson and Pfizer Bank of Merrill Disney Hilton 

 Johnson  America Lynch  Hotels 

 (JNJ) (PFE) (BAC) (MER) (DIS) (HLN) 

1985       

1986       

1987       

1988       

1989       

1990       

1991       

1992       

1993       

1994       

1995       

1996       

1997       

1998    11.5814   

1999  11.4903     

2000  11.5332     

2001       

2002       

2003    11.5942   

2004       

2005     11.5232  

Average  11.5117  11.5878 11.5232  

 

 

7.  CONCLUSION 

 

 In the research presented here, we used GP to study whether stock markets are adaptively efficient.  

Specifically, we applied GP to the trading of 24 stocks and tested whether the algorithm could discover trading 

strategies that outperform simplistic trading rules in the out-of-sample period.  The scope of the study was broad, 

encompassing 504 in-sample periods (24 stocks × 21 in-sample periods per stock).  Our GP search was thorough, in 

that we examined the algorithm’s performance in the 504 out-of-sample periods, using a population size of 50,000 

trading rules in each generation, substantially larger than the 500 or fewer trading rules employed in most earlier 

studies.  

In our trading simulations, a trading strategy is assumed to be the fraction of wealth allocated to the risky 

asset.  As mentioned earlier, Samuelson (1997) and Gollier (1997) showed that trading strategies that diversify 

between the risky and the riskless assets at every point in time dominate ―bang–bang‖ strategies.  Our definition of a 

trading strategy allowed us to test adaptive efficiency without the testing being subject to the biases encountered by 

earlier studies (e.g., Dempster and Jones, 2001; Fyfe et al., 2005; Potvin et al., 2004), which limited GP strategies to 

simple buy–sell signals.  
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Table 9 

Average, over All Testing Subperiods, of Subperiod Utilities of Terminal Wealth,
a
 Using GP Rules  

(Subject to Threshold Criteria from Table 7) and Simple Trading Strategies
b
 

 

Panel A:  Consumer Non-Durables, Consumer Durables, and Manufacturing 

Company Buy-and-Hold Strategy
c
 Strategy 3

d
 Strategy 4

e 

Altria Group (MO) 11.5457 11.5240 11.5409 

Pepsico (PEP) 11.5500 11.5247 11.5500 

General Motors (GM) 11.5075 11.5247 11.5075 

Whirlpool (WHR) 11.5187 11.5247 11.5187 

Eastman Kodak (EK) 11.5063 11.5247 11.5063 

Goodyear Tire & Rubber (GT) 11.5119 11.5247 11.5119 

 

Panel B:  Energy, Chemicals, and Business Equipment 

Company Buy-and-Hold Strategy Strategy 3 Strategy 4 

Exxon Mobil (XOM) 11.5370 11.5247 11.5370 

Halliburton (HAL) 11.5203 11.5247 11.5203 

Dow Chemical (DOW) 11.5340 11.5247 11.5340 

DuPont (DD) 11.5318 11.5247 11.5318 

IBM (IBM) 11.5188 11.5238 11.5205 

Xerox (XRX) 11.5178 11.5247 11.5178 

 

Panel C:  Telecommunications, Utilities, and Shops 

Company Buy-and-Hold Strategy Strategy 3 Strategy 4 

AT&T Inc. (T) 11.5288 11.5247 11.5288 

Sprint (S) 11.5274 11.5247 11.5274 

American Electric (AEP) 11.5176 11.5247 11.5176 

Duke Energy (DUK) 11.5279 11.5247 11.5279 

Target (TGT) 11.5445 11.5305 11.5501 

Wal-Mart Stores (WMT) 11.5526 11.5238 11.5510 

 

Panel D:  Healthcare, Finance, and Other 

Company Buy-and-Hold Strategy Strategy 3 Strategy 4 

Johnson and Johnson (JNJ) 11.5505 11.5247 11.5505 

Pfizer (PFE) 11.5416 11.5236 11.5394 

Bank of America (BAC) 11.5355 11.5247 11.5355 

Merrill Lynch (MER) 11.5407 11.5308 11.5426 

Disney (DIS) 11.5535 11.5247 11.5444 

Hilton Hotels (HLN) 11.5230 11.5247 11.5230 

 

 

Our study complements the research done by Allen and Karjalainen (1999), Neely et al. (1997), Neely and 

Weller (1999, 2003), and Neely (2003).  Those studies saved a number of buy–sell rules, evolved using GP, and 

then considered the returns on portfolios formed by using either the signals derived from the saved rules or the in-

sample return characteristics of those saved rules. Also, similar to other studies that used GP to find trading rules, 

our study avoided the data-snooping bias that plagues studies that test market efficiency by analyzing the out-of-

sample performance of common technical trading rules.  

 

Recent studies (e.g., Fyfe et al., 2005; Neely, 2003) used GP to evolve trading rules using a number of 

fitness criteria that adjusted trading rule returns for risk.  In this study we adjusted trading rule returns for risk in a 

manner different from that used in the earlier studies in this field: We used average utility of terminal wealth as our 

                                                 
a U(WT) = ln(WT), initial wealth = $100,000. 
b The riskless strategy consists of always investing in T-bills. The utility from this strategy, averaged across all subperiods, is 11.5247. 
c Investing the entire wealth in the given stock, then holding these shares until the end of the trading horizon. 
d Investing the initial wealth, during each testing period, in accordance with the GP rule for the corresponding in-sample period if such a rule was 

found, and investing the initial wealth in T-bills otherwise.  When no rule is found, the value given for Strategy 3 is 11.5247, the utility of the 
strategy that allocates all wealth to T-bills. 
e Investing the initial wealth, during each testing period, in accordance with the GP rule for the corresponding in-sample period if such a rule was 

found, and investing the initial wealth in accordance with a simple buy-and-hold rule otherwise.  When no rule is found, the value given for 
Strategy 4 is the utility of the buy-and-hold strategy. 
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fitness criterion.  Out of all the criteria presented in the literature that we examined, our criterion is closest to, but 

distinct from, one of the risk-adjustment measures used by Neely, namely, the Xeff measure.  That measure 

(introduced by Dacorogna et al., 2001, in a study that did not employ GP methodology) is the only one in the 

literature on the use of GP methodology to generate trading rules which employed the concept of utility.  

 

Another contribution of the present paper is that, in our experiments, we extended the simple threshold 

criterion of earlier studies (e.g., save a rule only if it outperforms the buy-and-hold rule in the selection period) to  

more complex threshold criteria.  Previous research tested EMH by simply retaining rules, for future analysis, that 

outperformed the buy-and-hold rule in-sample (e.g., Allen and Karjalainen, 1999; Fyfe et al., 2005; Neely and 

Weller, 1999; Neely et al., 1997; Ready, 2002).  In contrast, we saved rules that satisfied various money 

management criteria in-sample, in addition to having the highest average utility of terminal wealth in the selection 

period.  Our findings indicate that our use of more stringent thresholds to choose which rules to retain (and then 

apply in the testing period) improved the fitness (albeit slightly) of the rules that ended up being applied in the 

testing period, while at the same time (and as fully expected) reducing the number of rules retained.  

 

Results indicate that the stock markets studied can, in general, be characterized by adaptive efficiency 

during the time period 1985–2005.  An investor who bought and held stocks usually achieved a higher expected 

utility than an investor who used a rule saved by a GP algorithm (given that the rule was used when this algorithm 

did save a rule, and a buy-and-hold strategy was used otherwise).  This result is not unexpected:  Fyfe et al. (2005) 

and Neely (2003) found that when the returns based on rules generated by GP are adjusted for risk, the results are 

consistent with market efficiency. 

 

It is important to note the possibility that the results might change if some of the study’s parameters (e.g., 

the investor’s trading horizon or the values of the threshold criteria) were changed or if some of the GP settings 

(e.g., the number of generations, the population size, or the number of ―building blocks‖ that GP is allowed to use to 

create trading rules) were altered.  Our experiments covered a wider range of stock price data than used in most 

studies, and the population size of our candidate solutions was larger than most, so we believe our results to be more 

generalizable than most that appear in the literature. 

 

One of the more interesting extensions of this research would use a variety of other relevant time series 

(such as data from the companies’ financial statements) as building blocks when applying GP to evolve trading 

strategies for individual stocks.  To reduce the possibility that our results would be artifacts of the periods chosen, 

we adopted a ―sliding window‖ approach that allowed us to run our GP experiments for many in-sample periods 

(and the corresponding out-of-sample periods) for a given data set.  In the research presented here, we used 5 years 

as the length of an in-sample (training plus selection) period, and 1 year as the length of a testing period.  We looked 

only at trading horizons of 3 months.  A natural extension of our research would involve studying how the results 

would change when the trading horizon is changed, and when lengths of the various (training, selection, and testing) 

periods are changed.  This extension would allow a study of the ―term structure‖ of adaptive efficiency:  It would be 

possible to learn how quickly information contained in past prices starts to lose its value to investors. 

 

The crash of 2008 and earlier crashes led a number of observers to conclude that markets might not be as 

rational as previously believed, and that EMH might not be true.  If a market is established to be inefficient, policy 

makers, investment professionals, and individual investors might be interested in the relative degree of the 

inefficiency.  The methodology developed in this paper provides a means to measure the relative degree of 

inefficiency, by measuring the profits of traders who are trying to exploit market inefficiencies.  It thus has potential 

value as a guide to market regulation. 
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Footnotes 

 

1. A GP study with the scope of the present one demands significant amounts of computing time when a 

population size of 50,000 solution candidates is used.  Each trial takes more than 8 CPU hours on a 3.0 

GHz Intel Pentium 4 processor.  Rough estimation suggests that the experiments performed as part of this 

study would take more than 40,000 hours to repeat using one computer [8 (hours per trial) × 10 (trials per 

subperiod) × 21 (subperiods per stock) × 24 (stocks)].   

2. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_12_ind_port.html. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/

