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Abstract 

 

The purpose of this study was to investigate what level of number sense was possessed by 

preservice elementary school teachers. The sample was composed of students in six intact 

entry-level mathematics sections of a course populated by preservice elementary school teachers. 

One hundred fifty-five participants from these six classes completed data collection tasks during 

the Spring 2002 semester for the study. These courses are all problem-solving-based. A problem-

solving-based mathematics course was designed to utilize manipulatives, problem solving 

approaches, and the cooperative learning environment. Students actively participate in problem-

solving mathematical exploration. Research designs using a control group could not be used for 

this study, as the problem-solving-based classroom is the required method by the institution to 

teaching this mathematics class. The six combined classes form “one-group” with pretest/posttest 

corresponding to the pre-post-surveys. T-tests were used to compare the paired changes in 

number sense across time.The participating elementary school preservice teachers’ number sense 

changed between the beginning and the completion of the undergraduate mathematics content 

course. This change was significant at  = 0.01 for issues.  

 

 

1.  Introduction 

 

he development of number sense is important in mathematics education. The National Council of 

Teachers of Mathematics, in their Principles and Standards for School Mathematics, note that number 

sense is one of the foundational ideas in mathematics in that students (1) Understand number, ways of 

representing numbers, relationships among numbers, and number system; (2) Understand meanings of operations and 

how they related to one another; (3) Compute fluently and make reasonable estimates. (NCTM, 2000, p32). 

 

Considerable research has dealt with the mathematical performance of elementary school students, but far 

less research has dealt with what their teachers understand. The few studies that have investigated the mathematical 

understanding of elementary teachers and preservice elementary teachers indicate that many exhibit weakness in 

mathematics, may misapply mathematical rules, do not understand true meanings of mathematical concepts, and that 

they are, generally, not prepared to teach the mathematical subject matter entrusted to them (Cuff, 1993; Hungerford, 

1994). In that elementary teachers provide the first formal mathematical training children receive, it is reasonable 

that the educators responsible for preparing them to teach should know what skills they possess and what skills they 

lack in order to design their curriculum. It is also reasonable to assume that, if the perceptions and misconceptions 

teachers possess are addressed during preservice training, or even during inservice training, their teaching 

performance will be strong.  

 

A mathematics course designed for preservice elementary teachers may be the best setting for the study of 

their understanding of number sense. This study will focus on the preservice teacher in a problem-solving-based 

mathematics course that includes the study of number sense. Of particular interest is the preservice teachers' entry-

level understanding of number sense and their proficiency with it at the end of the course. 
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In many cases, however, much of the attention to developing number sense is a reaction to an over 

emphasis on computational procedures that are often algorithmic and devoid of number sense. For instance, the 

reaction of a student when asked if a calculation seems reasonable is often to recalculate rather than to reflect on the 

result in the light of context and numbers involved (Wyatt,1986). Mclnotosh et al. (1992) claimed that high skill in 

written computation is not necessarily accompanied by number sense. This finding confirms that the content 

emphasized in mathematics is what is learned and is consistent with the statements ( Sowder,1988, p.  227) that 

“correct answers are not a safe indicator of good thinking" and "teachers must examine more than answers and must 

demand from students more than answers.”  Johnson (1998) found that preservice elementary teachers have a gap in 

their rational number understanding and that they rely on the use of algorithms when approaching non-standard 

problems. The misconceptions they exhibit tend to be similar across different representations of rational numbers. 

The findings of  Rasch (1992) and Hungerford (1994) suggest that preservice elementary school teachers exhibit 

difficulties with rational numbers that may be indicative of a lack of intuitive conceptual understanding of the 

meaning and properties of the number system. Thus, the scope of number sense was restricted to the understandings 

that could be derived mentally, without resorting to computation, rules, or algorithms.  

 

Although considerable attention to number sense is occurring in the United States, the term “number sense” 

is rarely heard in preservice teacher research.  Believing that understanding the level of number sense should play an 

important role in preservice teaching programs, the motive for conducting this study rises from a deep concern for 

the development of number sense for preservice teachers. 

 

2.  The Purpose Of The Study  

 

The purpose of this study was to investigate what level of number sense was possessed by preservice 

elementary school teachers.  The institution used in this study has recently implemented an undergraduate program 

that requires all prospective elementary school teachers to take a three-semester sequence of mathematics courses. 

These courses are all problem-solving-based.  A problem-solving-based mathematics course was designed to utilize 

manipulatives, problem solving approaches, and cooperative learning environment. Students actively participate in 

problem-solving mathematical exploration.  The focus of the teaching was student thinking and mathematical 

activity.  The students (mostly preservice elementary school teachers) take part in hands on activities utilizing 

manipulatives and technology (McNernery, 1994 ), learning mathematical ideas in much the same way elementary 

school students learn mathematics under a standard-based curriculum.   

 

The first course addresses number sense in many content areas. This introductory course provides the 

opportunity for investigating the number sense of preservice elementary school teachers, as well as the opportunity 

to look at the effects the course has on the number sense of its students.  Artzt (1999) notes that with cooperative 

learning, such as that in a problem-solving-based classroom, students have the opportunity to discuss mathematical 

problems with group members because their attitudes make them feel more comfortable and reassured.  Furthermore 

Quinn (1998) found that preservice teachers learn mathematical content through the use of manipulatives in math-

ematics methods courses. This study intends to look at the change in the number sense of preservice elementary 

school teachers during the semester they are enrolled in the first undergraduate mathematics course of the sequence. 

 

3.  Research Questions And Hypotheses 

 

What are the effects of a problem-solving-based mathematics course on the number sense of preservice 

elementary school teachers?  A quantitative approach will be used to address the question, with the following null 

hypotheses:  

 

Ho1: There is no significant difference in the measures of preservice elementary school teachers number sense 

collected at the beginning and end of the problem-solving-based mathematics course, at the = 0.01 level. 
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4.  Review of Literature 

 

The literature reviewed for this study will begin with the foundation of number sense and then define 

number sense. The second section focuses on discussing number sense related to preservice teachers. The Final 

section includes, a discussion of instruction related to improvement of number sense from the constructivism 

perspective.  

 

5.  Foundation Of Number Sense 

 

In the 1930's, William Brownell considered learning had taken place only when an individual was able to 

grasp number relationship and deal with arithmetical situations with comprehension (Reys, 1994). The Commission 

on Standards for School Mathematics of NCTM, in 1987, described children with number sense as those children 

who understand number meaning, develop multiple relationships among numbers, know relative sizes of numbers, 

and comprehend how arithmetic operations affect results (Howden, 1989). The development of number sense is 

guided by a child's informal knowledge of numbers and quantity. Children need to be provided with problem solving 

opportunities that build on their own knowledge. Researchers have shown that the concept of number and number 

operation develops over time (Resnick, 1983; Hiebert, Carpenter & Moser;  1982; Reys, Reys, Nohda & Emori , 

1995; Reys & Yang, 1998, McIntosh,  B. Reys, & R.Reys, 1992; Sowder &McIntosh , 1994). Marshall (1989) 

defined number sense as "the richness of conceitedness of mathematical knowledge."  

 

By referring to how number sense was exhibited, Greeno (1991) characterized number sense in terms of 

flexible mental computation, numerical estimations and qualitative judgments. His perspective on number sense 

encompassed recognition of the role of equivalence in the decomposition/recomposition of numbers, the use of 

approximate numeric values in computational contexts and the making of inferences and judgments about quantities 

with numerical values.  Greeno (1989) characterized those with good number sense as being able to navigate in a 

number environment as one who is familiar with their surroundings.  

 

Kaminski (1997) found that the use of number sense can assist individuals in their understanding of, and 

calculation in, mathematics. He reported on these aspects of number sense by studying six primary preservice 

teacher education students. Kaminski chose those who experienced difficulties with whole and rational number 

numeration and computation in addition to those who exhibited a desire to understand more about students' use of 

number sense.  The researcher found the preservice teacher students in this study displayed underdeveloped sense of 

number, exhibited a preference for using exact written calculations and seldom utilized approaches involving 

estimation, and desired to follow a set line of reasoning without reviewing the appropriateness of the strategies 

employed or reasonableness of results obtained. One description which provides a useful perspective on number 

sense is that offered by Howden (1989) : Number sense can be described as a good intuition about number and their 

relationships. It develops gradually as a result of exploring numbers, visualizing them in a variety of contexts, and 

relating them in ways that are not limited by traditional algorithms (p. 11).  

 

It seems intuitive that students who have more opportunities to learn and explore mathematics would 

develop greater number sense. The NCTM Curriculum and Evaluation Standards (1989) define that Children with 

good number sense (1) have well-understood number meaning, (2) have developed multiple relationships among 

numbers, (3) recognize the relative magnitude of numbers, (4) know the relative effect of operating on number, and 

(5) develop a referent for measures of common objects and situations in their environment (p. 38).  

 

Three of these components-developing number meaning, understanding relative size of numbers, and 

developing familiar referents-may be considered understanding that is related to number sense. Exploring number 

relationships with manipulatives is a teaching method used to promote the student's development of number sense 

and other ideas. The last component, developing referents for measures of common objects and situations, utilize 

operation sense, as well as number sense.  More broadly stated by Sowder (1994), number sense refers to: A well 

organized conceptual network that enables a person to relate number properties with operation properties. It can be 

recognized by the ability to compose and decompose numbers and move flexibly among different representations, to 

compare and order numbers, to use benchmarks to deal with absolute magnitude of numbers, to link numeration 
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operations and relation symbols in a meaningful way, to mentally calculate and estimate using invented strategies, to 

understand the effects of operations on numbers, and to be disposed to make sense of number (p. 145). 

 

McIntosh et al.(1992) developed a number sense framework based on research and reflection on the 

literature related to the topic.  Components of number sense hypothesized by several researchers (Sowder & 

Schapplle, 1989) were reviewed and analyzed, within the framework. Three broad categories emerged:  

 

1. knowledge of and facility with numbers,  

2. knowledge of and facility with operations, and   

3. ability to apply knowledge of and facility with numbers and operations to computational sittings.  

 

From the framework, six major components of number sense were identified (McIntosh et al. ,1999, p.62 ). 

See Table 1. 

 

 
Table 1. 

Six Components Of Number Sense 

 

Number Sense Component Example 

Understanding of the meaning and size of number How does 2/5 compare in size to ½?   

How do you know? 

Understanding and use of equivalent representations of 

numbers 

Show different ways that 2/5 can be represented. 

Understanding the meaning and effect of operations Is 750 0.98 more or less than 750?  

How do you know? 

   Understanding and use of equivalent expressions Are 700 0.5 and 700.5 equivalent?  

How do you know? 

Flexible computing and counting strategies for mental 

computation, written computation, and calculators. 
Can you multiply 698 mentally by using your understanding 

of numbers and operations? 

Measurement benchmarks Can you estimate the height of a large object? 

Can you use a benchmark and operation? 

 

 

Sowder (1994) wrote that number sense helped students to deal with problems “ holistically ” (p. 144), to 

have a feeling about how to solve problem without using a particular procedure, and to monitor and control their 

solution activity. Carroll (1996) asserted that good mental computation and estimation ability is evidence of number 

sense and also enhances the development of number sense in addition to improving metacognitive skills. If mental 

and estimation computation are taught using a problem-solving approach rather than as a sequence of strategies or 

skills, students tend to invent their own strategies and then mental and estimation computation will involve higher-

order thinking.  

 
6.  Number Sense Related To Preservice Teachers 

 

Research suggests that elementary teachers effect both the achievement and the attitude of students in 

mathematics. In fact, elementary teachers play an important role in the early mathematical environment for students. 

Results of Leinhardt and Smith's (1985) study of expert teachers indicate considerable variability in teachers' 

knowledge of fundamental rational number concepts. Gliner's (1991) study of estimation performance of prospective 

elementary teachers indicated lower performance than should be reasonably expected of a mathematically literate 

eighth grader. The results show that school learned algorithms could block the student's ability to perform tasks 

presented symbolically, even when subjects were able to successfully complete the same task perceived to be from 

real life. An analysis of the prospective teachers' explanations of their solution efforts indicates that the difficulties 

lie not in the ability to estimate, but instead a lack of general number sense (Gliner,1991). Furthermore, the research 

data implies emphasis on rule -bound mathematics restricts growth of a number of computational skills and keeps 

understanding of rational numbers isolated from realistic applications and models. Mental referents do not appear to 
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be handy to most students. Markovits (1989) addressed that students are not expected to make any decisions or 

judgment in school mathematics, so they do not exercise their number sense or their common sense. 

 

Post, Harel, Behr and Lesh(1991) studied the way in which intermediate teachers understand rational 

number concepts. They asked teachers not only to solve problems, but also to determine the conceptual and 

pedagogical adequacy of their explanations. The results indicate that many levels of problems exist, including: Many 

teachers do not know enough substantive mathematics; and only a minority of teachers able to solve problems are 

also able to provide coherent and pedagogical explanations. These findings suggest that it is necessary to rethink the 

entire elementary education process to provide time for the students to develop understanding over a long period of 

time. Peck and Connell (1991) concluded that when dealing with situations involving the part-whole interpretation 

of rational numbers, both practicing and prospective elementary teachers are unable to recognize and utilize 

important links between concepts, and are unable to effectively aide students' construction of mathematical 

concepts. Joyner(1994) analyzed elementary teachers' knowledge of rational number concepts through an instrument 

that was designed to glean information about these computational processes and reasoning. Elementary teachers 

were asked to perform computations and to provide symbolic, pictorial, or word models for real life and symbolic 

problems. Models of typical student misconceptions were presented and the teachers were asked to judge them for 

their reasonableness. Practicing teachers showed no better number sense than prospective teachers in other studies. 

Joyner (1994) concluded that the teachers confused place value concepts with whole number addition and fraction 

addition, that they had a poorly developed referent system for rational numbers, and that they lacked number sense 

with fractions.  

 

In a the study of preservice teachers' understanding of the operation of division, Ball (1990) found that their 

understanding relied on rules and was unrelated to other mathematical operations. Five of nineteen participants 

generated inappropriate representations for division by fractions, while only five were able to provide appropriate 

representations. Eight participants were unable to construct any representation at all. They either recognized the 

conceptual problem or recognized that their initial response represented division by 3 rather than by 1/3. The data 

reveals that preservice teachers apply well-ingrained whole number rules, instead of weakly understood fraction and 

decimal concepts, to draw false conclusion about rational number representations, such as 0.45 is greater than 0.5 

because 45 is greater than 5 (Ball, 1990).     

 

Johnson (1998) conducted a study yielding more evidence that prospective teachers' general number sense 

and rationale number concept knowledge are inadequately developed. These students, resist looking at mathematics 

in creative, non-algorithmic ways. The instrument was administered to prospective elementary teachers who have 

completed their formal mathematics training and were enrolled in the methods of teaching elementary mathematics. 

The participants were asked to generate solutions using mental arithmetic and then explain why their answers were 

correct without resorting to algorithmic procedures. Further analysis of responses identified common 

misconceptions held by prospective elementary majors which included: 

 

 The belief that the fraction having the larger denominator is always large; 

 The belief that two fractions that are almost equal are equivalent; 

 The confusion about decimal place value; 

 The use of flawed algorithms, such as multiplying fractions by using a common denominator and 

multiplying numerators; and 

 The belief that area models must be rectangular or regular in order to find a fractional portion. 

 

In contrast, the findings of Troutman's (1994) study suggests that prospective elementary teachers were 

able to manipulate symbols algorithmically and find mathematical products, but were not able to create intuitive 

algorithms, arguments, or models that rely on number sense and mathematical reasoning. 

 

5.  Constructivist Perspective  
 

The constuctivism perspective views learning as a product of organization. Piaget stated "intelligence 

organizes the world by organizing itself " (Von Glasersfeld, 1989,p. 136). The Piagetian, psychological proponents 
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of constructivism, see the meaning-making process as individualistic with the purpose of constructive teaching being 

to lead toward higher levels of understanding and analytic capabilities. For example, Schifter and Simon (1992) 

describe the goals of constructivist mathematics instruction as teaching the " …nature of mathematics inquiry the 

modes of generating knowledge that are characteristic of discipline" (p. 187). In order to reach these higher levels, 

student must be actively engaged in reconstructing their existing understandings by restructing their cognitive map. 

The teacher encourages this in two ways: facilitating an environment in which students undergo a certain amount of 

cognitive dissonance, and devising tasks that hopefully lead to a reorganization of existing cognitive maps 

(Richardson, 1997). 

 

This has been translated into instructional practices such as hands-on activities ( for example, the use of 

manipultives). The engagement of students in tasks that are meant to challenge their concepts and thinking processes 

are included. Clements and Battista (1990) define constructivism as an epistemology which follows basic tenets: 

 

 Knowledge is actively created by the student. 

 New mathematical knowledge is created by reflection on physical and mental actions. 

 There is no one true reality-each person has their own reality based upon their interpretation. 

 Learning is a social process; meaning is negotiated.  

 Students learn when allowed to explore. They tend to memorize when knowledge is "dished out" to them. 

 

Vygotsky (1986) noted that individual development cannot be understood without reference to the 

interpersonal and institutional surrounding in which the child is situated. According to Vygotsky(1978), the 

transformation of intermental plane to intramental plane occurs within the Zone of Proximal (or potential) 

Development. This is the distance between the lower level, where the student or child works independently, and the 

upper level, where the child completes the task with assistance from an adult or more experienced peer. Studies 

addressing the Zone of Proximal Development are based on social interaction in a dyad, where the role of the adult, 

teacher or more experienced peer is to guide or provide scaffolding for the child, student, or less experienced peer. 

Vygotsky (1986) describes children as active in their own development and as creating knowledge of the world 

through activity. The active role of the child allows for the transformation of knowledge. Therefore, knowledge is 

dynamic and is created, examined, and transformed rather than merely transmitted, whole, from the adult to the 

child. 

 

The essence of constructivism is the learner's knowledge-building process ( Fosont,1996).  Understanding 

knowledge acquisition therefore seems to be a central task in attempting to define the role of constructivism in  

teacher education. Contructivist teaching typically involves more student-centered, active learning experiences, 

more student-student and student-teacher interaction, and more work utilizing concrete materials and solving 

realistic problems (Shuell,1996). Research into the conceptions and understandings that students hold following 

instruction (White,1988) has generated a demand for teaching that is informed by a constructivist perspective on 

learning.  

 

Many preservice education programs that have been described include such a perspective (Wideen, Mayer-

Simith and Moon,1994). But adopting such an approach involves considerable conceptual change for most 

preservice teachers, and achieving this is not necessarily easy (Kagan,1992; Northfield, Gunstone and 

Erickson,1996).  Research studies indicate mixed results in promoting change in preservice teachers' beliefs and 

practices. Hollingsworth (1989) found that preservice teachers enrolled in a constructivist teacher education program 

did undergo conceptual change and acquire new beliefs, but that entering beliefs were influential in mediating this 

process. However, McDiarmid (1990) reported that when elementary preservice teachers were confronted with 

mathematics instruction that challenged their assumptions about teaching, some reflected on and re-evaluated their 

beliefs, while other resisted and retained their conceptions.  

 

6.  Constructivist-Based Instruction  

 

As one's number sense knowledge is developing through intuitive or informal methods in an individual's 

everyday life, one is also learning formal mathematics in school. These experiences may result in the growth of 
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number sense. It is also clear that many children tend to use memorized rules and computational methods involving 

written symbolism when they are in school or solving school-assigned problems (e.g., NAEP, 1983; Silver, 1994; 

Sowder & Kelin, 1993; and Van de Walle & Watkins, 1993). This traditional emphasis on computational skill 

mastery has a tendency to narrow and compartmentalize children's numerical thinking rather than to integrate it and 

make it flexible (Case, 1989). 

 

Cobb and Merkel (1989) believe that "thinking-strategy instruction" (p.80) is an essential component in 

formal mathematics. Through formal instruction, teachers encourage children to invent thinking strategies when 

answering mathematical problems. This promotes the conceptual understanding of mathematics. Cobb and Merkel 

(1989) state that "when thinking strategies are viewed as thought processes, children's improved learning of the 

basic facts can be seen as the result of a more profound development-the construction and organization of 

relationships among numbers" (p. 71). In fact, the teaching of thinking strategies is highly related to the 

development of mental computation and computational estimation strategies. 

 

Yackel, Cobb, Wood, Wheatly, and Merkel (1990) addressed that "social interaction in the classroom plays 

a crucial role as children team mathematics" (p. 20). They found that when children cooperative learning 

mathematics in the classroom and children are given opportunities to explain their thinking strategies, they can 

construct their own mathematics. Kamii (1990) emphasizes the importance of  "constructivism" for teaching 

arithmetic and argues the danger of teaching standard arithmetic algorithms to children. She states that "we must 

focus our goals and objectives on children's thinking rather than on their writing correct answers" and "we must 

encourage children to agree or disagree among themselves rather than reinforce right answers and correct wrong 

ones" (pp. 26-27). Kamii and Lewis (1991) reported results that the achievement test scores for the traditional group 

and the constructivist group were almost identical. However, children in the constructivist group were significantly 

better in explaining their thinking strategies, solving nontraditional number problems, and applying mental strategies 

than the traditional group of students. For example, forty-eight percent and sixty percent of the constructivist group 

of students could correctly utilize the mental strategies to answer 98 + 43 and 3  31, whereas only seventeen 

percent of traditional group students mentally calculate both of the problems (Kamii and Lewis ,1991). Researchers 

suggest that when problem-centered instructional approach mathematics and children are given opportunities to 

explain their thinking strategies, they can construct their own mathematics. For instance, when children were asked 

to solve 49 + 53, they can develop a variety of solution methods such as (Kamii and Lewis ,1991; Yackel et. al., 

1990) : 

 

 40 plus 50 -- 90, then 9 plus 1 more would be 100, plus 2 more would be 102. 

 You have 53, 10 more is 63, plus 10 more-73, plus 10 more 83, plus 10 more, plus 9 . . . 102. 

 See, 49 and 50 more is 99, then add 3 makes 102. 

 40 plus 50 is 90 and 9 plus 3 is 12. Put all those together and I came up with 102 (Yackel, et. al., p. 14). 

 

In an assessment of a problem-centered mathematics project, Cobb, Wood, Yackel, Nicholls, Wheatly, 

Trigatti, & Perlwitz (1991) found that the computational performance was comparable for project and nonproject 

second grade students. However, "there were qualitative differences in arithmetical algorithms used by students in 

the two groups. Project students had higher levels of conceptual understanding in mathematics; held stronger beliefs 

about the importance of understanding and collaborating; and attributed less importance to conforming to the 

solution methods of others" (p. 3). They suggest that the problem-centered instructional approach can encourage the 

discussion of teacher and students and make sense of mathematics learning. These findings were from recent 

research of over forty primary-grade teachers who were involved in a project that also focuses on a problem-

centered approach to mathematics. 

 

Oliver, Murray, and Human (1990), found that "many children are highly creative in inventing their own 

powerful nonstandard algorithms based on sound level 3 understanding of number and numeration" (p. 298). In this 

instructional experiment, curriculum was used to encourage children to develop their own thinking strategies. The 

research results of Olivier et al.(1990) show that children in the experimental group more frequently utilized their 

own thinking strategies to solve problems than the control group of students. 
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7.  Problem-Solving-Based Classrooms 

 

Recommendations for the Preparation of Teachers of Mathematics  (Committee of the Mathematical 

Education of Teachers and the Mathematical Association of America, 1991) document describes collegiate 

mathematical content and experiences for prospective and practicing teachers of the 1990's. It recommends that 

preservice elementary school teachers should be presented with opportunities in their collegiate courses to do 

mathematics: explore, analyze, construct models, collect and represent arguments, and solve problems. The 

document further recommends preservice elementary school teachers discuss concepts, reflect on their thinking, 

pose questions, answer questions, present logical arguments, and critique the work of other students to help them 

develop pedagogical content skills necessary for teaching mathematics. 

 

The math course used in this research is taught in a constructivist manner. The focus of the teaching is 

student thinking and mathematical activity. The students, mostly preservice elementary school teachers, take part in 

hands-on activities utilizing manipulatives and technology (McNernery, 1994 ) and learning mathematical ideas in 

much the same way their future students may learn mathematics. This type of instruction meets many of the goals of 

the NCTM Professional Standards. As the preservice teachers experience mathematics with a focus on student 

thinking and mathematical activity, they are able to construct meaning on their own, leading to a better 

understanding of mathematics (NCTM,1989, b). 

 

Initial studies regarding the effects of teaching problem solving strategies focused on the end-product of 

problem solving.  Lucas (1974) studied the effect of teaching heuristic instruction on college calculus students. The 

instruction was based on Polya's four-step model.  “ Looking back “ is one of the major steps in problem solving 

process (Polya, 1945). In estimating, this can be compared to judging the reasonableness of a given answer. Many 

researchers (Carpenter et al., 1980; Schoen and Oehmke,1980; Smith,1989)  found this to be one of the key steps 

that students omit. The reviews of NAEP (Carpenter et al., 1980) found that students at ages 9 and 13 did not check 

the reasonableness of their results. This concurs with Schoen and Oehmke's (1980) finding that students in grades 

five through eight, observed in the process of problem solving, rarely looked back to see if their solution made 

sense. Smith (1989) conducted a study using 225 eighth grade students on the efficiency of heuristic training course 

on problem solving. Results indicate that the problem training group showed a significant improvement in 

mathematical problem-solving performance over the non-training group. 

 

Schoenfeld (1992) notes the results of studies by Silver in 1979 and Heller and Hungate in 1985. Their 

research pointed out that students can be taught to focus specific strategies which related to various problem-solving 

exercises. They recommend that (a) tacit processes should be made explicit to the students, (b) students should be 

involved in talking about processes, (c) students should be provided with guided practice, (d) students should learn 

the components of Polya's strategies, and (e) teachers should emphasize both the qualitative understanding and 

specific procedures involved in the problem solving process. However, research has not always provided evidence 

that teaching heuristics has a significant positive impact on the students' problem-solving skills. Lester (1994) 

claimed there is little supportive research to claim that teaching students about problem-solving strategies and 

heuristics and phases of problem solving improves students' ability to solve mathematics problems in general. 

 

8.  Methodology 

 

The purpose of this study was to investigate the effect of an undergraduate problem-solving-based 

mathematics course on the number sense of preservice elementary school teachers. 

 

9.  Population And Sample 

 

The population of this study consists of preservice elementary school teachers at a mid-sized, four-year, 

state university in a mid-sized town in the Rocky Mountain region. The sample was composed of students in six 

intact entry-level mathematics sections of a course populated by preservice elementary school teachers. 155 

participants from these six classes completed data collection tasks during the Spring 2002 semester for the study. 
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10.  Research Design 

 

Research designs using a control group could not be used for this study, as the problem-solving-based 

classroom is the required method by the institution to teaching this mathematics class. Thus, students were not asked 

to volunteer to be in any classroom which does not use the problem-solving-based approach. The research design 

can be classified as a modified “ One-group Pretest-Posttest Design” ( Campbell & Stanley,1963). The six combined 

classes form “one-group” with present/posttest corresponding to the pre-post-survey. Although the six classes were 

taught at different times during the day there are no significant demographic differences between classes. Therefore, 

the six classes will be treated as one group. This quasi-experimental design is identified as O X O. Here, the “ O ” 

signifies the collection of data through surveys. The “X ” indicates the actual course instruction. While there were a 

continuous treatment (the problem-solving-based classroom), in a sense, there was a point in the course where 

number sense was the formal topic. For the purposes of this design, the treatment (X) was considered to be the 

instruction and classwork on the number system. Since there were no requirements of this study as to instructional 

teaching style, there may be a teacher effect threat to internal validity. Therefore, the researcher reported group 

means of performance and group means was compared on the Number Sense Test. Also the researcher has met with 

the instructors before the semester began to outline the proposed study, solicit suggestions, and answer questions. 

T-tests were used to compare the paired changes (pretest to posttest) in number sense domain across time. 

 

11.  Instrument 

 

The Number Sense Test (NST) was developed by Yang (1997) for grade 6 and 8 students in Taiwan. The 

25 item NST includes whole number, fraction, and decimal items as well as the four basic operations. According to 

Yang, the split-half reliability of the NST is over 0.80 for both 6
th

 and 8
th

 grade of students. Figure 4 provides the 

framework of NST items by number domain and four basic operations.  Table 2. shows three items.  

 

 
Table 2. 

Sample Of Number Sense Test Items 

 

1. Without calculating an exact answer,  

circle the best estimate for: 

 

 
21

36


7

16
 

 

A. More than 
64

21
 

B. Less than 
64

21
 

C. Equal to 
64

21
 

D. Impossible to tell without working it out 

2. Without calculating an exact  

answer, circle the best estimate for: 

 6 
16

15

5

2
  

 

A. More than 6 
5

2
 

B. Less than 6 
5

2
 

C. Equal to 6 
5

2
 

D. Impossible to tell without working it out 

3. Without calculating an exact answer,  

circle the best estimate for: 

 
8

7

13

12
  

A. 1 

B. 2 

C. 19 

D. 21 

E. I don’t know 
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Yang (1997) reported NST items 19, 22 and 24 were selected from the Number Sense Group test items 

constructed by Mcintosh, Reys, & Reys (1997). Item 4 was selected from the Second National Assessment of 

Educational Progress instrument ( Carpenter, Corbitt, Kepner, Lindquist, & Reys,1980).  Item 13 was selected from 

the study of Markovits and Sowder (1994). The remaining NST items were created by Yang (1997). Several items 

are similar to those from the above sources with variation in numbers and operations. Table 3 presents the items 

contained in the NST. 

 

 
Table 3. 

The Framework Of Number Domain And Four Basic Operations On The NST 

 

 Addition Subtraction Multiplication Division 

Whole Numbers 9, 12 21 11, 23, 25 14 

Decimals 18 19 1, 7, 8 5, 15, 17 

Fractions 4, 6 10, 13, 22 2, 21, 24 3, 20 

 

 

12.  Reliability Of Instrument 

 

This researcher utilized the Statistical Package for Social Science (SPSS) to calculate the Cronbach's alpha 

coefficient in order to examine the reliability of the Number Sense Test (NST), which was used in this study. The 

Cronbach’s alpha coefficient reliability for the Number Sense Test (NST) is 0.77. The  Cronbach’s alpha coefficient 

reliability of  instrument has demonstrated consistent reliability for measures of internal reliability.  

 

13.  Data Collection Procedures 

 

In the beginning of the semester, instruments used to collect data was, the Number Sense Test (NST). 

Calculator use was allowed. At the beginning of the semester, the Number Sense Test was given to all classes. At 

the end of the semester (14 week later) the Number Sense Test was re-administered to the six classes by the 

researcher or instructors.  

 

14.  Number- Sense Test 

 

During the first week, a 25-item Number Sense Test was given to the students. Students were given a copy 

of the NST and instructed not to begin work until told to do so by the researcher. The researcher and instructors 

were provided with general instructions and answer questions from students. Students were asked to obey the rules 

of this test: timing per item is about 45 seconds and students were told not to spend too much time on any one 

question.  

 

15.Data Analysis Procedures 

 

15.1.  Scoring Data  

 

Yang (1997) supported reliability of NST in that the instrument was administered multiple times and the 

data analyzed. Each item of the NST is assigned a maximum of 2 points. On items where the subject gave the 

correct answer, the item will be awarded 2 points. If there is no response or if the response is incorrect, this item will 

be assigned 0 points. However, items 11, 13, 18, 21 and 25 have a possible point range of 0 to 2 points. For 

example, items 11and 13 require the subject to give correct answers and correct explanations. These items are 

assigned 2 points. If the answer is correct, but the explanation is unclear or if there is no explanation, this item will 

be assigned 1 point. If both the answer and reasons are incorrect, this item is assigned 0 points. Similarly, if the 

answer is correct, but the reasons are incorrect, the item also will be assigned 0 points (Yang, 1997). The total 

possible score of the NST is 50 points.  
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15.2.  Analyzing Data 

 

15.2.1.  Beginning of the Semester 

 

Students' responses were judged to decide whether the characteristics of “number sense” are correctly used 

by preservice teachers.  One example from the pilot study was coded as follows: 

 

 
Table 4. 

One Example From The Pilot Study Was Coded 

 

Questions Responses Coded Category 

How many decimals are there 

between 1.42 and 1.43? 

There are infinite decimals between 1.42 and 

1.43.  1.421, 1.422, 1.423, . . . 1.429 are 

between 1.42 and 1.43. 

This was judged as correct use of 

the number magnitude 

 

 

15.2.2.  End Of The Semester 

 

At the end of the semester, data from students who did not provide data for all measures were not used. 

All four measures were scored and descriptive statistics provided for each student. The paired NST changes scores 

were calculated and t-tests were performed at the end of the semester to determine if there are any significant 

changes in the NST scores between any of the observations. 

 

16.  Results 

 

This section contains the analysis of the quantitative data collected from all six sections of the course. The 

total participants in this study were one hundred fifty-five college students, who enrolled in an undergraduate problem-

solving-based mathematics course during Spring Semester 2002. 

 

16.1.  Number Domain Related Results On NST Items 

 

The NST included items representing three number dimensions: Whole Numbers, Decimals, and Fraction 

numbers. Table 5 displays the percents of correct responses and standard deviations on the NST by number domains for 

the one hundred fifty-five participants. The pretest data show that the number domain of Fraction percent of the 

Number Sense Test was relatively low when compared with Whole Number (42.5%) and Decimal  (43.81%).  

 

 
Table 5. 

Mean And Percent Of Correct Responses Of Pretest On Number Domain Items For NST. 

 

Number Domain Number of Items Possible Scores Mean Standard Deviations Percent 

NST Whole 6 12 5.10 2.67 42.50 

NST Decimal 8 16 7.01 3.59 43.81 

NST Fraction 11 22 8.04 4.15 36.50 

 

 

Table 6 displays the mean, percent of correct responses and standard deviation on the NST by number 

domains for the posttest. The posttest data show the number domain of Fractions as 56.72. The percent of correct 

responses on the Number Sense Test was relatively low as compared with the Whole Number (58.00) and Decimal 

(59.06) the percent of correct responses. 
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Table 6. 

Mean And Percent Of Correct Responses Of Posttest On Number Domain Items For NST 

 

Number Domain Number of Items Possible Scores Mean Standard Deviations Percent 

NST Whole 6 12 6.96 2.27 58.00 

NST Decimal 8 16 9.45 3.25 59.06 

NST Fraction 11 22 12.48 4.86 56.72 

 

 

16.2.  The Statistical Analyses For Research Questions 

 

What are the effects of a problem-solving-based mathematics course on the number sense of preservice 

elementary school teachers?  According to this research question, null hypotheses were stated:  H01 stated that there is 

no significant difference in the measure of preservice elementary school teacher number sense collected at the 

beginning and end of the problem-solving-based mathematics course, at the  = 0.01 level.  In order to answer this 

question, a t-test was used to compare the NST performance of pretest and posttest. Table 7 summarizes the t-test 

results between the mean scores on the NST Number Domain Items in the pretest and posttest. The resulting change in 

means are displayed in Table 8.  

 

 
Table 7. 

The T-Test Results On The NST Number Domain Item 

 

 Mean Std Error t Value 

NST 8.805 0.586 15.023* 

NST Whole 1.503 0.2516 5.975* 

NST Decimal 2.445 0.2952 8.283* 

NST Fraction 4.858 0.352 13.803* 

*p<0.01 

 

 
Table 8. 

Pre/Post Means For The NST Number Domain Item 

 

 Possible scores Pretest Mean Posttest Mean 

NST 50 20.08 28.89 

NST Whole 6 5.10 6.96 

NST Decimal 8 7.01 9.45 

NST Fraction 11 8.04 12.48 

 

 

The t-test results indicated that there was a statistically significant difference between the NST mean score of 

the pretest and posttest (p =0.0001 ), at the 0.01 significance level. Using  = 0.01 as the pre-study determined level of 

testing, there was sufficient evidence to reject the null hypothesis regarding differences in the measure of preservice 

elementary school teacher number sense collected at the beginning and end of the problem-solving-based mathematics 

course. 

 

Furthermore, the t-test results indicated that there was a statistically significant difference between the 

Number Domain Item mean score of the pretest and posttest (p =0.0001), at the 0.01 significance level. Using  = 0.01 

as the pre-study determined level of testing, students demonstrated significant change in Number Domain Items. 

 

As a student’s mathematical experiences and knowledge increased, it is reasonable to conclude that the 

student’s number sense capabilities also mature and develop. The increased mathematics knowledge of students led to 
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an increase in number sense performance. This might be due to students learning concepts in a problem-solving-based 

mathematics course during this semester.  

 

17.  Discussion, Implications, And Recommendations 

 

As reported in result section, statistically significant changes from pretest to posttest were found in the 

Number Sense Test, and change was significant at the =0.01 level. Students definitely improved in their mental 

computational skills and number sense. It appears that being in a problem-solving-based mathematics course did 

result in additional necessary practice which helped them to improve their number sense  This study supports the 

findings confirms that the problem-centered instructional approach can encourage the discussion of students and 

make sense of mathematical learning (Cobb, Wood, Yackel, Nicholls, Wheatly, Trigatti & Perlwitz ,1991). This 

results indicate the focus of teaching is student thinking and mathematical activity, taking part in hands-on activities, 

utilizing manipulatives, and learning mathematical ideas so that preservice elementary teachers may learn 

mathematics. The process of working with hands-on activities help students develop backup strategies that can be 

used when they become confused with the mechanisms of newly learned strategies or when they want to be certain 

that computations are indeed correct. As the preservice elementary teachers experience mathematics with a focus on 

student thinking and mathematical activities, they were able to construct meaning on their own, leading to a better 

understanding of mathematics (NCTM, 1989 a).  

 

We should encourage preservice elementary school teachers to use multiple solution strategies. We should 

develop computational algorithms logically so students see that the algorithms are simply shortcuts for time-

consuming procedure (such as multiplication for repeated addition and division for repeated subtraction) or 

alternatives for other representations (as decimal for fractions). Preservice elementary school teachers appear to 

benefit more from opportunities to explore different number patterns and creating different strategies, instead of 

being encouraged to rely only on exact answers. They should not only learn how to calculate an exact answer, but 

also to develop a better understanding of number meanings and comprehending relationships between numbers and 

operations. This is desirable in addition to learning how to calculate an exact answer. 

 

As we move to implement the NCTM’s Principles and Standards for School Mathematics (2000), we must, 

first and foremost, realize that the teaching of mathematics must strive to reach all students. This may not occur until 

all our teachers realize that teaching mathematics is much, much more than teaching paper-and-pencil algorithms. 

This study found that many preservice elementary teacher subject of research are not ready to be immersed into a 

curriculum that reflects the vision of less emphasis on paper-and-pencil computation and more emphasis on number 

sense and mental arithmetic stated in the NCTM Standards. Therefore, specific steps need to be taken in order to 

assure that future teachers have a proper conceptual understanding of new definitions of computation and number 

sense as recommended by the NCTM (2000) and have the skills to implement it. 

 

Based on the findings of this study and the review of the literature, the following Elementary Education 

Teacher program recommendations are made: 

 

Teacher preparation courses should provide preservice teachers with a strong foundation in historical and 

current thinking on mathematics education and prepare them to implement the recommended curricular changes. 

The NCTM Standards (2000) encourages colleges and Universities to reconsider their teacher-preparation programs 

in light of the NCTM curricular recommendations. We need to equip the teachers of the future with the needed 

knowledge, skills and attitudes that will enable them to aid in the development and subsequent teaching of the 

mathematics curriculum recommended by the many panels and commissions of the 21th century (NCTM, 2000). 

 

When preservice elementary teachers become aware of the importance of using mental arithmetic and 

number sense, they may then develop the needed strategies necessary to become competent with this idea. This 

information concerning the background for the changing perspective of computation will also have important 

consequences for the way preservice teachers teach and also for those occasions when they have to inform and 

convince peers, administrators, and parents about the reasons underlying the increasing emphasis on number sense 

and mental arithmetic. 
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Number sense is a major theme of the NCTM Principles and Standards for School Mathematics (2000). 

Colleges and universities must help students develop number sense ideas. In particular, the ability to recognize the 

relative magnitude of numbers, ability to deal with the absolute magnitude of numbers, ability to link numeration, 

operation and, relation symbols in meaningful ways, ability to understand the effect of operations, ability to perform 

mental computation through “ invented ” strategies that take advantage of numerical and operational properties, 

ability to use numbers flexibly to estimate numerical answers to computations and to recognize when estimate is 

appropriate, and a disposition towards making sense of numbers. If preservice teachers have a good number sense, 

they may be likely to select appropriate computational methods and they may be more confident about how they 

work with numbers. With this confidence, they may be better teachers because they can potentially help their 

students become confident with numbers. 

 

18.  Recommendations For Future Studies 

 

The university of this study requires three courses in the mathematics sequence for all preservice 

elementary school teachers. Charting the progress of, and looking for changes in number sense skills of students 

would be a good follow-up longitudinal study. Another related research is to replicate this study with a different 

demographic sub-population of preservice elementary school teachers to see if the results remain consistent. If many 

preservice elementary school teachers lack number sense, then the results from such studies could support a new 

component of instruction across many teacher preparation institutions nationally and internationally. 

 

The present study could be repeated using preservice secondary science teachers and in-service elementary 

teachers as participants to see if the results are similar across groups. Further, it might be interesting to see if in-

service teachers who teach elementary mathematics have more “ number sense” than preservice teachers. 

 

Teachers of the first mathematics methods course of the three course sequence should be aware that their 

students are sometimes deficient in unexpected areas. The poor performance on the questions involving fractions is 

an example. One possible reason for poor results in this area is that many preservice elementary school teachers’ 

knowledge of fractions is rule-based, whereas the research mathematics instrument meaning in mathematical 

content. Fractions are a topic that has often caused difficulty for many students. More time spent on developing 

conceptual knowledge of this topic in the required coursework of preservice elementary teachers should be 

beneficial to them. 

 

In the present study, I have provided evidence that an elementary mathematics methods course can improve 

number sense of preservicve elementary school teachers. Overall, these results provide hope and encouragement for 

instructors for elementary school teacher courses as they face the challenge of preparing preservice teachers to 

reform mathematics education in the next millennium. Hopefully, this study will inspire other mathematics 

education researchers to continue to learn more about this topic and will help preservice elementary school teachers 

develop better number senses not only for their own benefit, but for their students.   
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