
Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 433

Generating Combinations: A Case Study In

Database Design, Recursion, VBA,

And SQL Programming
Mohammad Dadashzadeh, Oakland University, USA

Padmini Varanasi, Oakland University, USA

ABSTRACT

There are rare opportunities when solving an easily-understood problem can bring together

application of skills taught in diverse courses in a Computer Science (CS) or Management

Information Systems (MIS) program. This paper presents such an opportunity in the typical database

management systems course taught at the junior or senior level. Specifically, we describe the problem

of designing a database to keep track of university degree programs in, say, business analytics, their

required core courses and elective groups, and generating all possible curriculum paths available for

graduation. The elegant solution marries data modeling skills with programming skills in recursion,

VBA and embedded SQL programming that work remarkably well in teaching students the value of

each tool in the toolset they take away from required courses as a part of their undergraduate

education in CS or MIS.

Keywords: Generating Combinations; Microsoft Access; VBA; SQL; Recursion

STATEMENT OF PROBLEM

onsider the problem of designing a database to keep track of university degree programs in, say, business

analytics, their required core courses and elective groups, and generating all possible curriculum paths

available for graduation. To fix ideas, Oakland University offers two such programs – 1) a 1-year, cohort-

based, half on-line format consisting of 10 required courses and no electives, and 2) a self-paced version requiring four

core courses and one elective group of 10 courses to choose six from. In the former program, there is only one

curriculum path consisting of 10 courses that the students must take. In the latter, there are a combination of C(10, 6) =

10!/6! (10-6)! = 210 possible curriculum paths, each of which would consist of four required courses and six electives.

Some of these can be enumerated for clarity as follows:

 1-year, cohort-based, half on-line program – only one curriculum path

o MIS 514, MIS 515, MIS 516, MIS 650, MIS 604, MIS 606, MIS 636, MIS 546, QMM 640, MIS 680

 Self-paced program – showing five of 210 possible curriculum paths

o MIS 514, MIS 515, MIS 516, MIS 650, MIS 604, MIS 606, MIS 636, MIS 546, QMM 640, MIS 680

o MIS 514, MIS 515, MIS 516, MIS 650, MIS 546, MIS 604, MIS 606, MIS 622, MIS 624, MIS 636

o MIS 514, MIS 515, MIS 516, MIS 650, MIS 546, MIS 604, MIS 606, MIS 622, MIS 624, MIS 645

o MIS 514, MIS 515, MIS 516, MIS 650, MIS 546, MIS 604, MIS 606, MIS 622, QMM 640, QMM 652

o MIS 514, MIS 515, MIS 516, MIS 650, QMM 640, QMM 652, MIS 606, MIS 622, MIS 624, MIS 636

Developing a general solution for the problem of generating all possible curriculum paths is made more

challenging by the fact that programs can have an arbitrary number of course groups and that the total number of courses

required for graduation can also vary. A further complicating factor is that it is possible to allow students to choose

between two course groups – a situation that we will exclude from consideration in the solution presented in the

following sections.

C

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Clute Institute: Journals

https://core.ac.uk/display/268110243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

434 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

DATABASE DESIGN

Figure 1 provides the conceptual data model for the problem as an Entity-Relationship Diagram. Given input

data about programs, course groups, and courses, we need to create for each program all instances of possible curriculum

paths along with the courses each consists of.

Figure 1: Conceptual Data Model

The physical database, as implemented in Microsoft Access, is shown as a relationship screen in Figure 2. Each

entity has been modeled as a table with an auto number primary key. The 1-to-m relationships requires and

makes_possible have been collapsed and captured through ProgramID foreign key in the tables CourseGroup and

CurriculumPath. The m-to-m relationships are modeled as similarly named tables - Includes and ConsistsOf.

Figure 2: Physical Data Model as Implemented in Microsoft Access

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 435

SOLUTION ARCHITECTURE

For each program, each curriculum path can be envisioned as the juxtaposition of one permissible string of

courses from each of the program’s course groups. To fix ideas, assume that a program has three course groups

represented by the following sets:

A = { a1, a2, a3, a4 } with three to choose from

B = { b1, b2, b3 } with two to choose from

C = { c1, c2, c3, c4, c5, c6, c7, c8, c9 } with five to choose from

A possible curriculum path can then be strung together from the following strings: <a2, a3, a4>; <b1, b3>; and

<c2, c4, c6, c8, c9>. And, all possible curriculum paths can be obtained by the Cartesian Product of three sets, each set

consisting of all permissible combinations for each of the three course groups.

The overall architecture for the solution can therefore be sketched as follows:

For each Program P

 For each Course Group CGi belonging to P:

o Create the set TableNamek of all permissible course combinations in that group.

o Create ProductSet as the Cartesian Product of all TableNamek’s belonging to CGi.

 For each element in ProductSet:

o Insert a row into CurriculumPath table and as many rows as needed into ConsistsOf table.

The Appendix presents the entire solution, as implemented in Access VBA. In the following sections, each

major step is described in some detail.

Generating All Possible Curriculum Paths

The program utilizes several dynamic arrays that can best be described using examples. The arrayCourse is an

array to hold the courses (actually CourseIDs) for a course group such as {MIS 604, MIS 606, QMM 652, MIS 546}.

The Boolean arrayUsed reflects a single generated combination of r out of N items from the set {1, 2, 3, …, N} by

setting the index position of each chosen item as True. For example, arrayUsed could assume the values {True, False,

True, True} reflecting the combination <1, 3, 4> in selecting three out of four items. The CombinationsTable is a two-

dimensional table with one row for each possible combination of r out of N items from the set {1, 2, 3, …, N}. Using

our example of three out of four courses, CombinationsTable would be populated with C(4, 3) = 4 rows and 3

columns as shown below:

CombinationsTable Reflecting Courses

1 2 3

1 2 4

1 3 4

2 3 4

MIS 604, MIS 606, QMM 652

MIS 604, MIS 606, MIS 546

MIS 604, QMM 652, MIS 546

MIS 606, QMM 652, MIS 546

The algorithm used for generating r out of N combinations from the set {1, 2, …, N} is a recursive one

based on generating all such combinations including N and then all such combinations excluding N (Knuth, 2005;

Rosetta Code, 2013). The following subroutine (see Code Segment in Figure 3) implements this recursion using the

arrayUsed and CombinationsTable data structures.

Figure 3: Recursive Subroutine for Generating Combinations of r out of N Items Form the Set {1, 2, …, N}

Sub GenerateCombinations(ByVal N As Integer, ByVal r As Integer)

'

'Recursive algorithm to generate all combinations of r out of N items

'from the set {1, 2, ..., N}

'

'arrayUsed, CombinationsTable, and RowNumber are declared globally ...

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

436 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

Figure 3 cont.

Dim I As Integer

Dim ColumnNumber As Integer

If r = 0 Then

 'We have selected r out of N ...

 'Print the combination generated in debug window ...

 'Add the generated combination as a row to the CombinationsTable ...

 RowNumber = RowNumber + 1

 ColumnNumber = 0

 For I = 1 To UBound(arrayUsed)

 If arrayUsed(I) = True Then

 Debug.Print I;

 ColumnNumber = ColumnNumber + 1

 CombinationsTable(RowNumber, ColumnNumber) = I

 End If

 Next I

 Debug.Print

ElseIf (N < 1) Then

 'We have no more items to choose from ...

 Exit Sub

Else

 'Use N in the combination to be generated ...

 arrayUsed(N) = True

 'Go and generate r-1 out of the remaining N-1 ...

 Call GenerateCombinations(N - 1, r - 1)

 'Don't use N in the combination to be generated ...

 arrayUsed(N) = False

 'Go and generate r out of the remaining N-1 ...

 Call GenerateCombinations(N - 1, r)

End If

End Sub

The main subroutine (see Code Segment in Figure 4) executing the solution sketched previously utilizes

three record sets to iterate through programs, course groups in a specific program, and courses in a particular course

group. It calls upon the GenerateCombinations subroutine above, as well as subroutines, to create temporary tables

for each CombinationsTable generated and to form the Cartesian Product table that will consist of one row for each

possible curriculum path in the program.

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 437

Figure 4: The Main Subroutine Implementing the Solution Architecture

Sub GenerateAllCurriculumPaths()

'

'Generate all possible curriculum paths along with courses each consists of ...

'

Dim rs As Recordset, rs2 As Recordset, rs3 As Recordset

Dim ProgramID As Integer, CourseGroupID As Integer

Dim NCG As Integer, NCGCount As Integer, N As Integer, r As Integer

Dim I As Integer, K As Integer

Dim strSQL As String

'For each program ...

Set rs = CurrentDb.OpenRecordset("Program")

Do While Not rs.EOF

 ProgramID = rs("ProgramID")

 'Number of Course Groups for this program ...

 NCG = DCount("CourseGroupID", "CourseGroup", "ProgramID = " & ProgramID)

 strSQL = "SELECT * FROM CourseGroup "

 strSQL = strSQL & "WHERE ProgramID = " & ProgramID

 Set rs2 = CurrentDb.OpenRecordset(strSQL)

 NCGCount = 0 'Set counter of number of course groups for this program to zero ...

 'For each CourseGroup in this program ...

 Do While Not rs2.EOF

 CourseGroupID = rs2("CourseGroupID")

 r = rs2("RequiredNumberOfCourses")

 'Now get the courses in that group ...

 strSQL = "SELECT * FROM Includes "

 strSQL = strSQL & "WHERE CourseGroupID = " & CourseGroupID

 Set rs3 = CurrentDb.OpenRecordset(strSQL)

 'Re-dimension the global array to hold CourseIDs of courses in this Course Group ...

 ReDim arrayCourse(DCount("CourseID", "Includes", "CourseGroupID =" & CourseGroupID))

 K = 0

Do While Not rs3.EOF

 K = K + 1

 arrayCourse(K) = rs3("CourseID")

 rs3.MoveNext

 Loop

 'We now have our N courses to select from ...

 N = K

 'We need all possible combinations of r out of N ...

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

438 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

Figure 4 cont.

 'Re-dimension the global arrays to have room ...

 '

 ReDim arrayUsed(N)

 ReDim CombinationsTable(HowManyCombinations(r, N), r)

 RowNumber = 0

 Call GenerateCombinations(N, r)

 Debug.Print RowNumber & " combinations generated."

 'Now, create an Access table out of the CombinationsTable array ...

 'To hold all course combinations for that course group ...

 NCGCount = NCGCount + 1

 Call CreateLoadCourseGroupCombinationsTable("TableName" & NCGCount, r)

 rs2.MoveNext

 Loop

 'We have created a separate table of all course combinations for each course group ...

 'Now, we need to do Cartesian Product of all of them to make curriculum paths...

 Call CreateProductSetTable(NCGCount)

 'Now, we insert new curriculum path rows and what courses each consists of ...

 Call InsertFromProductSetTable(ProgramID)

 'We can delete the ProductSet table for next program ...

 strSQL = "DROP TABLE ProductSet"

 CurrentDb.Execute strSQL

 rs.MoveNext 'Move to the next program ...

Loop

MsgBox ("Done!")

End Sub

Creating the Table of All Permissible Course Combinations in a Course Group

For each course group with N courses and r number of required courses, the algorithm produces - in an in-

memory data structure (a two-dimensional array) named CombinationsTable - all possible combinations of r out of N

items to form the set {1, 2, …, N}. As such, the CombinationsTable has C(N, r) rows and r columns. The mapping of a

particular row, such as <1,2,3,5,6,10>, to the corresponding CourseIDs in arrayCourse (i.e., first, second, third, fifth,

sixth, and tenth CourseIDs) and storing those CourseIDs as a row in a temporary table containing all possible

combinations of r courses to choose from the N courses in that course group, is done in the following subroutine (see

Code Segment in Figure 5) which creates a table with r columns named TableName-F1, …, TableName-Fr, similar to

the partial one shown below.

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 439

TableName2

TableName2-F1 TableName2-F2 TableName2-F3 TableName2-F4 TableName2-F5 TableName2-F6

1 3 4 5 6 10

1 3 4 5 6 11

1 3 4 5 6 12

1 3 4 5 6 13

1 3 4 5 6 14

1 3 4 5 10 11

1 3 4 5 10 12

Figure 5: Creating the Table of All Permissible Course Combinations in a Course Group

Sub CreateLoadCourseGroupCombinationsTable(ByVal tn As String, ByVal N As Integer)

'

'Produces a table from the CombinationsTable array ...

'tn is TableName ...

'N is NumberOfColumns ...

'

Dim tdf As TableDef

Dim TableExists As Boolean

Dim strSQL As String

Dim I As Integer, J As Integer

'DROP TABLE if it already exists ...

For Each tdf In CurrentDb.TableDefs

 If tdf.Name = tn Then

 TableExists = True

 Exit For

 End If

Next

If TableExists Then

 strSQL = "Drop Table " & tn

 CurrentDb.Execute strSQL

End If

'Start with CREATE TABLE ...

strSQL = "CREATE TABLE " & tn & "("

For I = 1 To N

 strSQL = strSQL & tn & "_F" & I & " integer,"

Next

strSQL = Left(strSQL, Len(strSQL) - 1)

strSQL = strSQL & ")"

CurrentDb.Execute strSQL

'Now load INSERT INTO ...

For I = 1 To RowNumber

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

440 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

Figure 5 cont.

 strSQL = "INSERT INTO " & tn & " VALUES("

 For J = 1 To N

 'CombinationsTable(I, J)=1 reflects first CourseID in the arrayCourse ...

 'CombinationsTable(I, J)=5 reflects fifth CourseID ...

 'etc ...

 strSQL = strSQL & arrayCourse(CombinationsTable(I, J)) & ","

 Next

 strSQL = Left(strSQL, Len(strSQL) - 1)

 strSQL = strSQL & ")"

 CurrentDb.Execute strSQL

Next

End Sub

Creating the Cartesian Product Table ProductSet

Given TableName1, TableName2, …, TableNameK, the ProductSet table is created using the following SQL

statement: SELECT * INTO ProductSet FROM TableName1,TableName2 as part of the following subroutine (see Code

Segment in Figure 6). Each row of CourseIDs in the resulting ProductSet table represents a curriculum path.

ProductSet

TableName

1-F1

TableName

1-F2

TableName

1-F3

TableName

1-F4

TableName

2-F1

TableName

2-F2

TableName

2-F3

TableName

2-F4

TableName

2-F5

TableName

2-F6

2 7 8 9 1 3 4 5 6 10

2 7 8 9 1 3 4 5 6 11

2 7 8 9 1 3 4 5 6 12

2 7 8 9 1 3 4 5 6 13

2 7 8 9 1 3 4 5 6 14

2 7 8 9 1 3 4 5 10 11

Figure 6: Creating the Cartesian Product Table Productset

Sub CreateProductSetTable(ByVal NumberOfTables As Integer)

'

'Forms the ProductSet table by Cartesian Product of TableName1, TableName2, ...

'

Dim strSQL As String, I As Integer

strSQL = "SELECT * INTO ProductSet FROM "

For I = 1 To NumberOfTables

 strSQL = strSQL & "TableName" & I & ","

Next

strSQL = Left(strSQL, Len(strSQL) - 1)

CurrentDb.Execute strSQL

End Sub

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 441

Inserting a CurriculumPath Row and Associated ConsistsOf Rows

From each row in the ProductSet table, a CurriculumPath row for the associated program must be created.

Furthermore, for as many columns as there are in the ProductSet table, one row must be created in the ConsistOf table

for the newly inserted CurriculumPath. In the following subroutine (see Code Segment in Figure 7), the SQL INSERT

INTO CurriculumPath(ProgramID) VALUES(1) statement creates the CurriculumPath row allowing Access to supply

the auto number value for CurriculumID which is then retrieved using the DMax function and used for inserting the

needed rows into ConsistsOf table using SQL: INSERT INTO ConsistsOf(CurriculumID, CourseID) VALUES(1086,2).

Figure 7: Inserting a CurriculumPath Row and Associated ConsistsOf Rows

Sub InsertFromProductSetTable(ByVal ProgramID As Integer)

'

'Add a new curriculum path ...

'And, insert the courses it requires ...

'

Dim strSQL As String

Dim rs As Recordset

Dim I As Integer, AssignedCurriculumID As Integer, CourseID As Integer

'Loop through ProductSet table and insert a record for each CourseID into ConsistsOf ...

Set rs = CurrentDb.OpenRecordset("ProductSet")

Do While Not rs.EOF

 strSQL = "INSERT INTO CurriculumPath(ProgramID) VALUES(" & ProgramID & ")"

 CurrentDb.Execute strSQL

 'Determine the Autonumber ID value assigned ...

 AssignedCurriculumID = DMax("CurriculumID", "CurriculumPath")

 For I = 1 To rs.Fields.Count

 CourseID = rs.Fields(I - 1).Value

 strSQL = "INSERT INTO ConsistsOf(CurriculumID, CourseID) VALUES("

 strSQL = strSQL & AssignedCurriculumID & ","

 strSQL = strSQL & CourseID & ")"

 CurrentDb.Execute strSQL

 Next

 rs.MoveNext

Loop

End Sub

TEACHING EXPERIENCE

By the time students majoring in Computer Science (CS) or Management Information Systems (MIS) reach the

database course, they have been exposed to fundamental programming concepts, including recursive functions. The

limited programming emphasis in the database course, if at all, is typically reserved for event code macros supporting

prototyping of graphical user interfaces to back-end databases, for example, in creating forms in Microsoft Access or in

enforcing integrity constraints using triggers and stored procedures. That is, of course, quite appropriate since the

database course syllabus is justifiably pre-occupied with data modeling, relational database design, and SQL.

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

442 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

The case study problem presented in this article is remarkable in that it starts as an interesting conceptual

modeling problem of designing a database to keep track of all possible curriculum paths in university degree programs,

each of which offers its own multiple baskets of core/required courses and elective courses to choose from. As a database

design problem, it offers opportunities to review how to model inherently many-to-many relationships and how to

decompose those to 1-to-many relationships available in the relational data model.

With the database design discussion out of the way, the challenge of how to populate the database, by

automatically generating all possible combinations of courses that comprise a curriculum path, provides a fertile ground

for exploration of the limits of a non-procedural language, such as SQL. The recognition that generating these

combinations demands some sort of iteration with a termination condition, and that it cannot be accomplished simply

with queries, paves the way for a discussion of alternative approaches to DBMS programming. In the context of

Microsoft Access, which is the principle DBMS used in our database course, that discussion allows us to compare macro

programming versus VBA.

The greatest opportunity for teaching comes in leading students in implementing the easily-understood

algorithm. The solution architecture lends itself to intermediate implementation problems to consider and solve - how-to

produce a set of strings representing combinations of courses, how-to store each set in a temporary table in the database,

how-to handle arbitrary number of such sets for a university program, how-to combine multiple strings into a complete

curriculum path using Cartesian product of sets, and how-to accomplish this using the full power of SQL query and

update statements. The student reactions to this divide and conquer approach in completing this case study assignment in

their database course is positive and supportive of the recognition of the value of programming coverage in their MIS

training.

It has been our experience that when an opportunity presents itself to provide a case study problem to use

embedded SQL programming when non-procedural SQL alone would not be sufficient, students seem to leave the

course with better problem-solving skills (Dadashzadeh, 2007). This paper has presented an ideal opportunity to provide

an integrative case study problem that demands a solution combining data modeling skills with programming skills in

recursion, VBA and embedded SQL programming that works remarkably well in teaching students the value of each tool

in the toolset they take away from the core courses.

AUTHOR INFORMATION

Mohammad Dadashzadeh serves as Professor of MIS and Chair of Department of Decision and Information

Sciences and the coordinator of the 1-year, half on-line program leading to a Master of Science in IT Management

focusing in Business Analytics from Oakland University. He has authored 4 books and more than 50 articles on

information systems and has served as the editor-in-chief of Journal of Database Management. E-mail:

dadashza@oakland.edu (Corresponding author)

Padmini Varanasi earned her Master of Science in IT Management focusing in Business Analytics at Oakland

University in 2013. Her capstone project was on sentiment analysis of emergency room patient satisfaction surveys

using SPSS Text Analytics. E-mail: pvaranas@oakland.edu

REFERENCES

1. Dadashzadeh, M. (2007) “Recursive Joins to Query Data Hierarchies in Microsoft Access.” Journal of

Information Systems Education, Vol. 18, No. 1, pp. 5-10.

2. Knuth, D.E. (2005) The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations

and Partitions, Addison-Wesley Professional, Boston, MA.

3. Rosetta Code. (2013) “Combinations,” http://rosettacode.org/wiki/Combinations

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/
mailto:dadashza@oakland.edu
mailto:pvaranas@oakland.edu
http://rosettacode.org/wiki/Combinations

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 443

APPENDIX

This appendix presents the entire Access VBA Module code implementing the solution. A copy of the database and code

is available from the corresponding author upon request.

'Recursive program to generate all possible Curriculum Paths ...

'

Dim arrayCourse() As Integer

Dim arrayUsed() As Boolean

Dim CombinationsTable() As Integer

Dim RowNumber As Integer

Sub GenerateAllCurriculumPaths()

'

'Generate all possible curriculum paths along with courses each consists of ...

'

Dim rs As Recordset, rs2 As Recordset, rs3 As Recordset

Dim ProgramID As Integer, CourseGroupID As Integer

Dim NCG As Integer, NCGCount As Integer, N As Integer, r As Integer

Dim I As Integer, K As Integer

Dim strSQL As String

'For each program ...

Set rs = CurrentDb.OpenRecordset("Program")

Do While Not rs.EOF

 ProgramID = rs("ProgramID")

 'Number of Course Groups for this program ...

 NCG = DCount("CourseGroupID", "CourseGroup", "ProgramID = " & ProgramID)

 strSQL = "SELECT * FROM CourseGroup "

 strSQL = strSQL & "WHERE ProgramID = " & ProgramID

 Set rs2 = CurrentDb.OpenRecordset(strSQL)

 NCGCount = 0 'Set counter of number of course groups for this program to zero ...

 'For each CourseGroup in this program ...

 Do While Not rs2.EOF

 CourseGroupID = rs2("CourseGroupID")

 r = rs2("RequiredNumberOfCourses")

 'Now get the courses in that group ...

 strSQL = "SELECT * FROM Includes "

 strSQL = strSQL & "WHERE CourseGroupID = " & CourseGroupID

 Set rs3 = CurrentDb.OpenRecordset(strSQL)

 'Re-dimension the global array to hold CourseIDs of courses in this Course Group ...

 ReDim arrayCourse(DCount("CourseID", "Includes", "CourseGroupID =" & CourseGroupID))

 K = 0

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

444 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

 Do While Not rs3.EOF

 K = K + 1

 arrayCourse(K) = rs3("CourseID")

 rs3.MoveNext

 Loop

 'We now have our N courses to select from ...

 N = K

 'We need all possible combinations of r out of N ...

 'Re-dimension the global arrays to have room ...

 '

 ReDim arrayUsed(N)

 ReDim CombinationsTable(HowManyCombinations(r, N), r)

 RowNumber = 0

 Call GenerateCombinations(N, r)

 Debug.Print RowNumber & "combinations generated."

 'Now, create an Access table out of the CombinationsTable array ...

 'To hold all course combinations for that course group ...

 NCGCount = NCGCount + 1

 Call CreateLoadCourseGroupCombinationsTable("TableName" & NCGCount, r)

 rs2.MoveNext

 Loop

 'We have created a separate table of all course combinations for each course group ...

 'Now, we need to do Cartesian Product of all of them to make curriculum paths...

 Call CreateProductSetTable(NCGCount)

 'Now, we insert new curriculum path rows and what courses each consists of ...

 Call InsertFromProductSetTable(ProgramID)

 'We can delete the ProductSet table for next program ...

 strSQL = "DROP TABLE ProductSet"

 CurrentDb.Execute strSQL

 rs.MoveNext 'Move to the next program ...

Loop

MsgBox ("Done!")

End Sub

Sub CreateLoadCourseGroupCombinationsTable(ByVal tn As String, ByVal N As Integer)

'

'Produces a table from the CombinationsTable array ...

'tn is TableName ...

'N is NumberOfColumns ...

'

Dim tdf As TableDef

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 445

Dim TableExists As Boolean

Dim strSQL As String

Dim I As Integer, J As Integer

'DROP TABLE if it already exists ...

For Each tdf In CurrentDb.TableDefs

 If tdf.Name = tn Then

 TableExists = True

 Exit For

 End If

Next

If TableExists Then

 strSQL = "Drop Table " & tn

 CurrentDb.Execute strSQL

End If

'Start with CREATE TABLE ...

strSQL = "CREATE TABLE " & tn & "("

For I = 1 To N

 strSQL = strSQL & tn & "_F" & I & " integer,"

Next

strSQL = Left(strSQL, Len(strSQL) - 1)

strSQL = strSQL & ")"

CurrentDb.Execute strSQL

'Now load INSERT INTO ...

For I = 1 To RowNumber

 strSQL = "INSERT INTO " & tn & " VALUES("

 For J = 1 To N

 'CombinationsTable(I, J)=1 reflects first CourseID in the arrayCourse ...

 'CombinationsTable(I, J)=5 reflects fifth CourseID ...

 'etc ...

 strSQL = strSQL & arrayCourse(CombinationsTable(I, J)) & ","

 Next

 strSQL = Left(strSQL, Len(strSQL) - 1)

 strSQL = strSQL & ")"

 CurrentDb.Execute strSQL

Next

End Sub

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

446 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

Sub CreateProductSetTable(ByVal NumberOfTables As Integer)

'

'Forms the ProductSet table by Cartesian Product of TableName1, TableName2, ...

'

Dim strSQL As String, I As Integer

strSQL = "SELECT * INTO ProductSet FROM "

For I = 1 To NumberOfTables

 strSQL = strSQL & "TableName" & I & ","

Next

strSQL = Left(strSQL, Len(strSQL) - 1)

CurrentDb.Execute strSQL

End Sub

Sub InsertFromProductSetTable(ByVal ProgramID As Integer)

'

'Add a new curriculum path ...

'And, insert the courses it requires ...

'

Dim strSQL As String

Dim rs As Recordset

Dim I As Integer, AssignedCurriculumID As Integer, CourseID As Integer

'Loop through ProductSet table and insert a record for each CourseID into ConsistsOf ...

Set rs = CurrentDb.OpenRecordset("ProductSet")

Do While Not rs.EOF

 strSQL = "INSERT INTO CurriculumPath(ProgramID) VALUES(" & ProgramID & ")"

 CurrentDb.Execute strSQL

 'Determine the Autonumber ID value assigned ...

 AssignedCurriculumID = DMax("CurriculumID", "CurriculumPath")

 For I = 1 To rs.Fields.Count

 CourseID = rs.Fields(I - 1).Value

 strSQL = "INSERT INTO ConsistsOf(CurriculumID, CourseID) VALUES("

 strSQL = strSQL & AssignedCurriculumID & ","

 strSQL = strSQL & CourseID & ")"

 CurrentDb.Execute strSQL

 Next

 rs.MoveNext

Loop

End Sub

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 447

Sub GenerateCombinations(ByVal N As Integer, ByVal r As Integer)

'

'Recursive algorithm to generate all combinations of r out of N items

'from the set {1, 2, ..., N}

'

'arrayUsed, CombinationsTable, and RowNumber are declared globally ...

Dim I As Integer

Dim ColumnNumber As Integer

If r = 0 Then

 'We have selected r out of N ...

 'Print the combination generated in debug window ...

 'Add the generated combination as a row to the CombinationsTable ...

 RowNumber = RowNumber + 1

 ColumnNumber = 0

 For I = 1 To UBound(arrayUsed)

 If arrayUsed(I) = True Then

 Debug.Print I;

 ColumnNumber = ColumnNumber + 1

 CombinationsTable(RowNumber, ColumnNumber) = I

 End If

 Next I

 Debug.Print

ElseIf (N < 1) Then

 'We have no more items to choose from ...

 Exit Sub

Else

 'Use N in the combination to be generated ...

 arrayUsed(N) = True

 'Go and generate r-1 out of the remaining N-1 ...

 Call GenerateCombinations(N - 1, r - 1)

 'Don't use N in the combination to be generated ...

 arrayUsed(N) = False

 'Go and generate r out of the remaining N-1 ...

 Call GenerateCombinations(N - 1, r)

End If

End Sub

Function Factorial(ByVal N As Single) As Single

'

'Returns N! ...

'

If N <= 1 Then

http://www.cluteinstitute.com/
http://creativecommons.org/licenses/by/3.0/

Journal of Business Case Studies – November/December 2013 Volume 9, Number 6

448 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

 Factorial = 1

Else

 Factorial = N * Factorial(N - 1)

End If

End Function

Function HowManyCombinations(ByVal M As Integer, ByVal N As Integer) As Integer

'

'Returns number of combinations of M out of N ...

'

HowManyCombinations = Factorial(N) / (Factorial(M) * Factorial(N - M))

End Function

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

