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Abstract 
 

Using Microsoft Excel, several interactive, computerized learning modules are developed 
to demonstrate the Central Limit Theorem.  These modules are used in the classroom to 
enhance the comprehension of this theorem. The Central Limit Theorem is a very 
important theorem in statistics, and yet because it is not intuitively obvious, statistics 
students often have difficulty accepting it.  Nevertheless, understanding this theorem is 
essential because of its importance in statistical inference.   
 
 

Introduction 
 

quite a fe
g here are several statistical topics that students typically have difficulty understanding.  

Included in this list are concepts associated with measuring variation in data, sampling 
distributions, hypothesis testing, and regression analysis.  Microsoft Excel (4) includes 

w statistical analysis tools, including tools to analyze some of the topics just listed.  Also, some 
statistics textbooks have Excel add-ins that provide additional analysis capabilities.  However, since these 
tools simply present the output associated with a particular procedure, students must be able to correctly 
interpret the results.  In addition, these tools do not provide an understanding of the concepts that underlie 
a procedure.  Without this understanding, it is oftentimes much more difficult to know when the use of a 
particular technique is appropriate.   

 

 
Statistics is a very valuable tool, and with today's technological capabilities, even more can be 

done to improve students’ understanding of its importance in their future business careers.  The specific 
intent of this paper is to discuss the development of several interactive, computerized learning modules 
that illustrate the validity of using the Central Limit Theorem in a variety of statistical inference 
procedures.  Microsoft Excel is used to create these modules, since Excel is readily available and because 
many required undergraduate business statistics courses use Excel as the software package for statistical 
analysis. 

 
Methodology 

 
Many procedures in statistical inference are based on the use of the normal probability 

distribution (a symmetrical bell-shaped distribution).  The normal probability distribution is frequently 
appropriate because of the Central Limit Theorem.  This theorem states that when a random sample of n 
observations is selected from a population (any population) with a mean of μ and a standard deviation of 
σ, then when n is large, the sampling distribution of the mean is approximately a normal distribution with 
a mean of μ and a standard deviation of σ/√n (standard error of the mean) (3, p. 332).  This theorem can 
also be rewritten to apply to the sum of sample measurements.  Thus, the Central Limit Theorem states 
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that under rather general conditions, sums and means of random measurements drawn from any 
population tend to possess, approximately, a bell-shaped distribution in repeated sampling.  

 
Since many of the estimators that are used to make inferences about the characteristics of a 

population are sums or means of sample measurements, we can expect the estimator to be approximately 
normally distributed in repeated sampling, when n is sufficiently large.  This is not an intuitive result, and 
despite textbook illustrations and in-class discussion, the rationale for using the normal probability 
distribution often remains unclear.  And, of course, there is always the question, "What do you mean by n 
being sufficiently large?"   

 
Consider the sampling distribution of the mean.  In the following discussion, several interactive 

Microsoft Excel modules are created that illustrate the Central Limit Theorem.  Sampling is done from 
three different populations, using different sample sizes, and the results also include calculations for the 
mean and standard deviation of the estimated sampling distribution.  Specifically, Excel simulations are 
created using three different population distribution families: uniform, exponential and V-shaped.  In each 
case, the parameters associated with a population distribution can be modified to allow for the simulation 
of a wide variety of populations within each family. 
 
Uniform Probability Distribution Results 

 
Consider the continuous uniform probability distribution with parameters a and b, where a< b.  

The probability density function for a random variable x is given by  
 

elsewhere
bxaforabxf

0
),/(1)(

=
≤≤−=

, where E(x) = μ = (a + b)/2 and Var(x) = σ2 = (b – a)2/12.    (1, p. 225) 

 
       f(x) 
  
  
    
 
     
    a    b 

1/(b-a) 

x 

 
The Excel module created with the use of this population distribution allows the user to select 

values for parameters a and b.  For illustration purposes, consider a continuous uniform probability 
distribution with parameters a = 20 and b = 100.  Then, E(x) = μ = (20 + 100)/2 = 60 and Var(x) = σ2 = 
(100 – 20)2/12 = 533.33.  It follows that the standard deviation σ = √Var(x) = 23.094. 

 
Microsoft Excel includes the RAND() function (2, p. 248) that returns a uniformly distributed 

random number greater than or equal to 0 and less than 1.  Thus, a uniformly distributed random number 
in the interval [a, b) can be generated in Excel using the formula a + (b-a)*RAND().  It should be noted 
that Microsoft Excel does have a random number generation feature that can be accessed by selecting 
‘Tools’, ‘Data Analysis’ and ‘Random Number Generation’, and the ability to generate uniformly 
distributed random numbers in the interval [a,b) is an available option.  However, this approach does not 
provide the dynamic simulation capability that is described below when using the RAND() function.   
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Two scenarios were developed for this first situation, and in each case, the selection of 500 
random samples was simulated.  In the first instance, 500 random samples each of size n = 5 were 
selected.  Once these 500 random samples had been generated, the simulated sampling distribution was 
created by computing the sample mean for each sample and then grouping these means to form a 
frequency distribution and histogram.  Each time function key F9 (Calculate) is depressed, 500 new 
samples are simulated, the sample means are recalculated, and the accompanying frequency distribution, 
histogram, and descriptive statistics are recomputed.  Figure 1 provides the Excel spreadsheet labeling 
and cell formulas used to create the first scenario, while Figure 2 displays the results from an example of 
one simulation. 

 
The dynamic frequency distribution and histogram capability is accomplished through the use of 

the FREQUENCY function in Excel.  The general format for this function is FREQUENCY(data_array, 
bins_array).  The data range whose frequencies are to be counted is defined in the data_array field, while 
the bins_array is the array containing the upper class limits for the distribution.  Using the same example 
to illustrate this process, it is observed in Figure 1 that the 500 sample means are located in cells G7 to 
G506.  Suppose 26 upper class limits, ranging in our example from 20 up to 100, are stored in cells J6 to 
J31.  These limits are defined so that the classes are of equal width.  Next highlight the range where the 
frequencies are to be displayed, say K6 to K31.  While this range is highlighted, enter the formula 
=FREQUENCY(G7:G506,J6:J31).  Finally, while simultaneously holding down the CTRL and SHIFT 
keys, press the ENTER key.  The result is that the formula entered into cell K6 will also be copied into all 
of the cells in this range, and further, when the sample means change (every time function key F9 to 
recalculate is depressed), the frequency counts will automatically be updated, which in turn will update 
the histogram.  (The histogram can be created using the “Chart Wizard” feature in Excel.)  Figure 3 
displays the formulas used to create this frequency distribution.  Note that Excel automatically places 
braces { } around the FREQUENCY formula once it has been entered into cell K6.  (The user enters the 
formula without braces.) 

  
Figure 1 

 A B C D E F G 
1 Population  Distr:Uniform(a,b)      
2 a = 20.000 (b – a) 

= 
=B3–
B2  

   

3 b = 100.000      
4        
5 Sample  Sample Values   Sample 
6 Number 1 2 3 4 5 Mean 
7 1 =$B$2+$D$2*RAND() … … … =$B$2+$D$2*RAND() =AVERAGE(B7:F7) 
8 2 =$B$2+$D$2*RAND() … … … =$B$2+$D$2*RAND() =AVERAGE(B8:F8) 

… … … … … … … … 
506 500 =$B$2+$D$2*RAND() … … … =$B$2+$D$2*RAND() =AVERAGE(B506:F506) 
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Figure 2 
 A B C D E F G 

1 Population  Distribution:Uniform(a,b)      
2 a = 20.000 (b – a) = 80.000     
3 b = 100.000      
4        
5 Sample  Sample Values   Sample 
6 Number 1 2 3 4 5 Mean 
7 1 39.817 20.787 86.256 96.026 51.164 58.810 
8 2 23.447 50.939 44.430 45.496 34.882 39.839 

… … … … … … … … 
506 500 87.982 83.969 39.023 60.167 32.915 60.811 

    
 

Figure 3 
 J K 

5 Bins Frequency 
6 =$B$2 {=FREQUENCY(G7:G506,J6:J31)} 
7 =J6+$D$2/25 {=FREQUENCY(G7:G506,J6:J31)} 
… … … 
31 =J30+$D$2/25 {=FREQUENCY(G7:G506,J6:J31)} 

 
   
Figure 4 provides the histogram and descriptive statistics for this simulation example.  Note that when 
sampling has been conducted from a continuous uniform probability distribution for a sample as small as 
n = 5, the simulated sampling distribution’s shape is approximately normal and the mean and standard 
deviation are close to μ and σ/√n respectively.  
 
       

 
Figure 4 
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                                      Numerical Measures   
   Population Mean = 60.0000  
   Population Std. Dev. = 23.0940  
   Population Std. Dev./SQRT(n) = 10.3280  
      
   Simulated Sampling Distribution Mean = 59.8847  
   Simulated Sampling Distribution Std. Dev. = 10.8308  

 
In the second case, 500 random samples each of size n = 30 were selected.  Except for the fact that there 
are now 30 sample values for each sample, the same procedure was used to create this scenario as was 
described in the n = 5 case.  Figure 5 provides one simulation example.  Note that when the sample size 
increases to n = 30, the simulated sampling distribution’s shape closely approximates a normal probability 
distribution, and once again, the mean and standard deviation are close to μ and σ/√n respectively.  Of 
course, a larger sample size in this second scenario means that the standard deviation of the sampling 
distribution will be smaller, since now the standard error of the mean is σ/√30 instead of σ/√5.    
       

Figure 5 
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                                     Numerical Measures   
   Population Mean = 60.0000  
   Population Std. Dev. = 23.0940  
   Population Std. Dev./SQRT(n) = 4.2164  
      
   Simulated Sampling Distribution Mean = 59.8762  
   Simulated Sampling Distribution Std. Dev. = 4.3408  

 
Exponential Probability Distribution Results 
 

The exponential probability distribution is often used to describe the time between arrivals (IAT) 
at a service facility or the service time required at a facility.   
 

Consider the continuous exponential probability distribution with parameter μ, where μ represents 
time.   The probability density function for a random variable x is given by  
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elsewhere
xforexf x

0
0,0,)(

=
>≥= − μμ μ

, where E(x) = 1/μ and Var(x) = σ2 = 1/μ2.  (5, p. 81) 

       f(x) 
  
  
    
 
     
          

μ 

 
x  

 
The Excel module created with the use of this population distribution allows the user to select values for 
the parameter μ.  For illustration purposes, consider a continuous exponential probability distribution with 
parameter μ = 0.5.  Then, E(x) = 1/μ = 2.0 and Var(x) = σ2 = 1/μ2 = 4.0.  It follows that the standard 
deviation σ = √Var(x) = 2.0. 
  

The exponential probability distribution is a special case of the gamma probability distribution, 
and Microsoft Excel includes the GAMMAINV function that returns the inverse of the gamma 
cumulative distribution.  The general format for the GAMMAINV function is GAMMAINV(probability, 
alpha, beta).  The probability associated with the gamma distribution is specified in the probability field.  
The alpha field is a parameter for the gamma distribution, and when set to the value 1, specializes to the 
exponential distribution.  When alpha = 1, beta is the mean of the exponential distribution or 1/μ.  This 
function can be used to generate values from an exponential distribution; however, it should be noted that 
the GAMMAINV function uses an iterative technique to converge to a value, so the recalculation process 
is much longer than another approach that will be described next. 
 

For an expected value of 1/μ, exponential random variates can be generated with the formula  
–1/μ*LN(RAND()) where LN is the natural logarithm. (5, p. 82). 
 

As in the case of the uniform probability distribution, two scenarios were developed for the 
exponential probability distribution.  In the first instance, 500 random samples each of size n = 5 were 
selected.  Figure 6 provides the Excel spreadsheet labeling and cell formulas used to create the first 
scenario, while Figure 7 displays the results from an example of one simulation. 
 

Figure 6 
 A B … F G 

1 Population Distribution:Exponential    
2  1/μ = 2.000    
3      
4 Sample    Sample 
5 Number 1 … 5 Mean 
6 1 =-$B$2*LN(RAND()) … =-$B$2*LN(RAND()) =AVERAGE(B6:F6) 
7 2 =-$B$2*LN(RAND()) … =-$B$2*LN(RAND()) =AVERAGE(B7:F7) 
8 3 =-$B$2*LN(RAND()) … =-$B$2*LN(RAND()) =AVERAGE(B8:F8) 

… … … … … … 
505 500 =-$B$2*LN(RAND()) … =-$B$2*LN(RAND()) =AVERAGE(B505:F505) 
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Figure 7 
 A B C D E F G 

1 Population  Distribution:Exponential (μ), where μ >0   
2  1/μ = 2.000      
3        
4 Sample  Sample Values   Sample 
5 Number 1 2 3 4 5 Mean 
6 1 0.647 2.513 5.061 0.088 2.880 2.238 
7 2 1.979 1.918 0.697 0.391 0.022 1.002 
8 3 0.977 0.438 0.644 6.650 1.304 2.003 

… … … … … … … … 
505 500 4.758 4.596 0.143 1.690 2.010 2.639 

   
Figure 8 provides the histogram and descriptive statistics for this simulation example.  Note that when 
sampling has been conducted from a continuous exponential probability distribution for a sample of n = 5, 
the simulated sampling distribution’s shape is somewhat normal and the mean and standard deviation are 
close to μ and σ/√n respectively. 
    

Figure 8 
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                                     Numerical Measures   
   Population Mean = 2.0000  
   Population Std. Dev. = 2.0000  
   Population Std. Dev./SQRT(n) = 0.8944  
      
   Simulated Sampling Distribution Mean = 2.0145  
   Simulated Sampling Distribution Std. Dev. = 0.8973  

 
In the second case, 500 random samples each of size n = 30 were selected.  Figure 9 provides one 

simulation example.  Note that when the sample size increases to n = 30, the simulated sampling 
distribution’s shape more closely approximates a normal probability distribution, and once again, the 
mean and standard deviation are close to μ and σ/√n respectively.  As with the uniform probability 
distribution, a larger sample size in this second scenario means that the standard deviation of the sampling 
distribution will be smaller, since now the standard error of the mean is σ/√30 instead of σ/√5.  This 
smaller standard deviation is clearly observed when comparing the histograms in Figures 8 and 9. 
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Figure 9 
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                                      Numerical Measures   
   Population Mean = 2.0000  
   Population Std. Dev. = 2.0000  
   Population Std. Dev./SQRT(n) = 0.3651  
      
   Simulated Sampling Distribution Mean = 1.9864  
   Simulated Sampling Distribution Std. Dev. = 0.3638  

 
V-Shaped Discrete Probability Distribution Results 
 

Consider a discrete probability distribution for a random variable x.  Then f(x) ≥ 0 and Σf(x) =1.  
The expected value for a discrete random variable is E(x) = μ = Σxf(x), while the variance for a discrete 
random variable is Var(x) = σ2 = Σ(x-μ)2f(x).  (1, p. 194)  A V-shaped discrete probability distribution 
would generally appear as observed below.  Even with this very non-normal population distribution, the 
sampling distribution of the sample mean will still be approximately normal for larger sample sizes. 
 
 
       f(x) 
  
  
     
 
     
 
 
          
For illustration purposes, consider the following V-shaped discrete probability distribution in Figure 10, 
which is generated from Table 1. 

x 
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Figure 10 
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0.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

 
 

      Table 1 
 

X F
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

10 0.01
11 0.02
12 0.05
13 0.15
14 0.25

(X)
.25
.15
.05
.02
.01
.01
.01
.01
.01

 
 

Sampling from a discrete probability distribution of this size cannot be accomplished by using 
nested IF statements in Excel, since the maximum allowable number of nested IF statements is seven. (4, 
IF function Microsoft Excel Help)  However, Microsoft Excel has another function, VLOOKUP, which 
allows any number of groupings or classes.  The VLOOKUP function has three arguments that will be 
used in this application.  The general format for this function is VLOOKUP(lookup_value, table_array, 
column_index_number).   The first argument is the number to be looked up.  The second argument is the 
location of the table of information where the data is looked up, i.e., the vertical lookup table.  The third 
argument indicates which column in the vertical lookup table contains the answer, that is, the value to be 
returned by the function.  (2, p. 193) 

 
As in the case of the previous probability distributions, two scenarios were developed for this 

discrete distribution.  In the first instance, 500 random samples each of size n = 5 were selected.  Figure 
11 provides the Excel spreadsheet labeling and cell formulas used to create the first scenario, while Figure 
12 displays the results from an example of one simulation.  Note that Figure 11 assumes that the 
cumulative probability distribution shown in Table 2 is located in cells C2 through D15.
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      Table 2 
 C D 

1 Cumulative 
Frequency 

X 

2 0.00 1 
3 0.25 2 
4 0.40 3 
5 0.45 4 
6 0.47 5 
7 0.48 6 
8 0.49 7 
9 0.50 8 

10 0.51 9 
11 0.52 10 
12 0.53 11 
13 0.55 12 
14 0.60 13 
15 0.75 14 

 
Figure 11 

 A B … F G 
19 Sample    Sample 
20 Number 1 … 5 Mean 
21 1 =VLOOKUP(RAND(),$C

$2:$D$15,2) 
… =VLOOKUP(RAND()

,$C$2:$D$15,2) 
=AVERAGE(B21:F21) 

22 2 =VLOOKUP(RAND(),$C
$2:$D$15,2) 

… =VLOOKUP(RAND()
,$C$2:$D$15,2) 

=AVERAGE(B22:F22) 

23 3 =VLOOKUP(RAND(),$C
$2:$D$15,2) 

… =VLOOKUP(RAND()
,$C$2:$D$15,2) 

=AVERAGE(B23:F23) 

… … … … … … 
520 500 =VLOOKUP(RAND(),$C

$2:$D$15,2) 
… =VLOOKUP(RAND()

,$C$2:$D$15,2) 
=AVERAGE(B520:F520) 

 
Figure 12 

 A B C D E F G 
19 Sample  Sample Values   Sample 
20 Number 1 2 3 4 5 Mean 
21 1 4 3 7 14 13 8.20 
22 2 13 14 4 1 3 7.00 
23 3 14 14 1 13 13 11.00 
… … … … … … … … 

520 500 3 1 2 2 14 4.40 
 
Figure 13 provides the histogram and descriptive statistics for this simulation example.  Note that when 
sampling has been conducted from this very non-normal discrete V-shaped probability distribution for a 
sample of n = 5, the simulated sampling distribution’s shape is still somewhat mound-shaped and the 
mean and standard deviation are close to μ and σ/√n respectively. 
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Figure 13 

Sampling Distribution of the Sample Mean
(Based on 500 random samples of size 5)
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Numerical Measures 

Population Mean = 7.500
Population Std. Dev. = 5.735

Population Std. Dev./SQRT(n) = 2.565

Simulated Sampling Distribution Mean = 7.490
Simulated Sampling Distribution Std. Dev. = 2.437  

 
In the second case, 500 random samples each of size n = 30 were selected.  Figure 14 provides 

one simulation example.  Note again that when the sample size increases to n = 30, the simulated 
sampling distribution’s shape quite closely approximates a normal probability distribution, and once 
again, the mean and standard deviation are close to μ and σ/√n respectively.  As before, a larger sample 
size in this second scenario means that the standard deviation of the sampling distribution will be smaller, 
since now the standard error of the mean is σ/√30 instead of σ/√5.   
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Figure 14 

Sampling Distribution of the Sample Mean
(Based on 500 random samples of size 30)
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  Numerical Measures   

   

Population Mean = 7.500
Population Std. Dev. = 5.735

Population Std. Dev./SQRT(n) = 1.047

Simulated Sampling Distribution Mean = 7.452
Simulated Sampling Distribution Std. Dev. = 1.067    

Conclusion 
 

The objective of this paper has been to develop a better understanding of the Central Limit 
Theorem through the use of several widely different population distributions.  Microsoft Excel provides 
the opportunity to create simulations that demonstrate this non-intuitive theorem.  As the sample size 
increases from n = 5 to n = 30, it can be clearly observed that the simulated sampling distribution of the 
sample mean more closely represents a normal probability distribution.  The simulations also illustrate 
that the mean and standard deviation for the sampling distribution are μ and σ/√n respectively.  The end 
result of demonstrating these simulations in a statistics class is that students will have a clearer 
understanding and a better appreciation of the usefulness of the Central Limit Theorem. 
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