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ABSTRACT 
 

The Monte Carlo method and related multiple imputation methods are traditionally used in math, physics and 
science to estimate and analyze data and are now becoming standard tools in analyzing business and financial 
problems.  However, few sources explain the application of the Monte Carlo method for individuals and business 
professionals who are not immersed in the realm of mathematics or science.  This paper introduces these Monte 
Carlo methods for the non-mathematician and business student, providing examples where the Monte Carlo 
method is applied when only small samples are available.  Statistical analysis and statistically sound extrapolation 
of sample characteristics to the larger class population can be facilitated by applying Monte Carlo methods and 
the related concept of multiple imputation, which is also explained.  Appendices provide step-by-step instructions 
for using two popular spreadsheet add-ins to run Monte Carlo based analysis. 
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INTRODUCTION 
 

hen studying some classes of people or entities, it may be impossible to study the whole 
population and it might even be infeasible or impossible to obtain a large enough sample to be 
able to use traditional statistical methods.  As new data science and computational statistics 

methods become popular, they are offering alternative “computationally intensive” and “distribution free” methods 
for analysis that may permit the study of even small samples.  Foremost of these methods are the “Monte Carlo” 
family of analytics.  While well known in some areas of mathematical physics, computer science, and certain areas 
of management science, the Monte Carlo techniques have now become mainstream and are easily applied by 
business students and professionals across the business disciplines to analyze real data without invoking traditional 
normality assumptions. 
 
Designed to introduce Monte Carlo methods, this paper also presents a synopsis of multiple imputation methods for 
estimating and extrapolating characteristics of small samples to larger classes.  This paper is written for use as a 
supplement for classroom instruction, an introduction for students and faculty interested in pursuing these methods 
in their research, and as an overview for those generally interested in modern data analytics. 
 
Our paper begins with a general overview, a review of the colorful history of Monte Carlo analysis and an 
overview of key principles.  We next provide several useful business examples and show how those examples can 
be implemented by students and faculty using a popular “off the shelf” spreadsheet add-ins for performing such 
analysis.  Detailed instructions for using the spreadsheet add-ins are attached in the appendix.  
 
When you hear the words ‘Monte Carlo’ you may automatically think of the city in Monaco that sits on the 
Mediterranean Sea, the famous casino in that same city, gambling in general, or even the somewhat recent film 
released in 2011.  Whatever you thought of before, forget it, because when mathematicians, scientists, statisticians, 
or economic consultants say the words ‘Monte Carlo’, they are referring to a broad range of mathematical and 
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statistical calculations referred to as Monte Carlo methods and the related multiple-imputation techniques.  This 
paper introduces multiple-imputation and Monte Carlo methods for business students. 
  
Traditional business statistics courses focus on “asymptotic distribution analysis”, using tests based on the normal 
probability distribution and other large-sample based tests.  These methods require large sample sizes to meet basic 
assumptions underlying the statistical procedures. In real life business situations, there might not be large 
populations or large samples available for analysis.  In some cases, the entire size of a statistical population may be 
smaller than the sample size needed to be able to properly use normality-based testing for data analysis.  The 
methods discussed in this paper facilitate the effective statistical analysis of smaller samples and populations.   
  
Since the advent of modern computers, computationally intensive techniques, including Monte Carlo methods, 
have developed that permit using the results of a sample from a class in powerful new ways.  This helps alleviate 
difficulties in common data analysis, including summarizing characteristics of a class and extrapolating from a 
sample to describe characteristics of the class.  In this paper, we define a class as a group of people or any other 
similarly situated and distinctly identified individuals or items with something in common.  A class could be 
comprised of students enrolled in a professor's course, the students enrolled in all the sections offered at a college, a 
"legal class" in litigation, or an "asset class" or group of similarly situated investments.  The possibilities are nearly 
endless. 
  
Monte Carlo style techniques are growing in popularity in industries and academia and while there are increasingly 
specialized textbooks exploring these methods, there are few simple introductions for the non-statistician.  Since 
these methods are increasingly being applied, even non-statisticians need to have an understanding of the basics 
and know how to interpret results in order to be reasonable consumers of research and to create efficient solutions 
to personal or work related data issues. 
  
Historical Overview 
 
As early as the 1700s a French scientist by the name of Georges Louis LeClerc, Comte de Buffon used 
randomization in his successful efforts to simulate and mathematically estimate the numerical value of π (Stigler, 
1999, p. 141).  This Greek letter “pi” is used to indicate the ratio of the circumference to the diameter of a circle 
and is extremely important in many mathematical calculations.  Simulations were also used by mathematicians, 
astronomers and scientists including Francis Galton, George H. Darwin and Erastus L. DeForest (Stigler, 1999, p. 
151-152, 144).  Later, in 1908, William Sealy Gosset also used random sampling techniques to empirically verify 
his work when estimating the t-distribution (Gosset, 1908, p. 14).  Until the early 1930s there is no documentation 
to suggest that such random sampling techniques were used in any documented scientific or statistical analysis.  In 
the early 1930s there is some evidence that Enrico Fermi, an Italian physicist, developed and frequently utilized 
something very familiar to the Monte Carlo method that we know of today, but Fermi did not record or publish this 
process (Metropolis, 1987, p. 128).   
 
During the 1940s the ENIAC, the “first electronic computer” was created and became operable (Metropolis, 1987, 
p. 125-126).  It was during this era of increased computer-based computation that Stanislaw Ulam and John von 
Neumann developed the Monte Carlo resampling process (Metropolis, 1987, p. 126-127).  Ulam began developing 
the process in 1946 when he was contemplating ways to calculate the probability that a “Canfield solitaire” would 
be solved (Eckhardt, 1987, p. 131).  Neumann saw that statistical random sampling could also be applied to work 
regarding “neutron diffusion in fissionable material,” (Metropolis, 1987, p. 127).  The process was termed as Monte 
Carlo when Ulam’s and von Neumann’s coworker Nicholas Metropolis, a physicist, suggested the name 
(Metropolis, 1987, p. 127).  Metropolis suggested this name because Ulam’s uncle often traveled to Monte Carlo 
and gambled with money borrowed from relatives (Metropolis, 1987, p. 127). 
 
In 1947 von Neumann and R.D. Richtmyer, another physicist, wrote a report divulging the premise of the first 
application of Monte Carlo simulation which Ulam and von Neumann worked on so tirelessly (Richtmyer and von 
Neumann, 1947, p. 751).  Additionally, the report includes letters; in the first, von Neumann provided a rough yet 
thorough outline of how the, then unnamed, Monte Carlo process could be applied to neutron diffusion issues and 
the second highlights some of Richtmyer’s analysis of and suggested modifications to the process (Richtmyer and 
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von Neumann, 1947, p. 751-764).  Attached to John von Neumann’s letter was a “Tentative Computing Sheet” 
which outlines the coding that could be used to program the computer, namely ENIAC, to run such simulations 
(Richtmyer and von Neumann, 1947, p. 758-762).  The title page of this report and its attachments remained as 
classified material until the U.S. Atomic Energy Commission declassified them in 1959 (Ulam, Bednarek and 
Ulam, 1990, p. 16). 
 
Later on, this group of exceptional mathematicians and physicists applied the Monte Carlo method to multiple 
aspects of their work on the hydrogen bomb (Newman and Barkema, 1999, p. 26).  Although Metropolis and Ulam 
did publish a paper entitled “The Monte Carlo Method” in 1949, the brief paper managed to provide a loose 
description of the process while simultaneously remaining vague enough to conceal the actual mechanics and 
applications of the method (Metropolis and Ulam, 1949, p. 335-341).  Several decades later the use of the Monte 
Carlo method has finally become prevalent and has spread into applications for many other fields. 
 

BASIC FRAMEWORK AND DISCUSSION 
 
Initially, early versions of the Monte Carlo method were often applied only to specific applications, such as 
estimating the value of π or in estimating the t-distribution.  As it is now however, the Monte Carlo method can be 
applied widely and will consistently provide excellent statistical assessment of and predictions for a class, whatever 
that class may be.  Unfortunately, it is often only the mathematicians, scientists, statisticians, or economic 
consultants who understand what Monte Carlo methods are and how they work.  The intent of the rest of this paper 
is to explain Monte Carlo methods in a clear and straightforward manner.  Let us start with a basic framework. 
  
Suppose that somehow information is obtained from a subset of a class.  Perhaps several students in a finance 
course were randomly selected to complete a questionnaire regarding learning styles; or, perhaps a professor chose 
a sample of final exams to grade to provide guidelines to teaching assistants; or, perhaps a group of stocks was 
chosen from the class of "Large Capitalization Growth Stocks" and subjected to accounting analysis; or, to use a 
business law example, perhaps a group of litigants in a class action were deposed and the results of those 
depositions were used to estimate characteristics of the larger legal class. 
  
Suppose that a sample of 10 was taken from a class of 50.  Say the data collected from the sample were 
1,3,3,5,5,9,2,4,5,1.  Using basic statistics, the mean of this series is 3.8 and the sample standard error (the sample 
standard deviation divided by the square root of the sample size) is 0.757 (= 2.394/(10^0.5)).  Using the 
assumptions of normality, one might expect that the class average would be within +/- 2.262*.757 =1.712 of 3.8, 
resulting in a confidence interval of (2.088,5.512).  If instead a Monte Carlo bootstrap was set up, the results would 
still be a mean value of 3.8 but a 95% confidence interval of (3.18,4.36).  This difference is because the small 
underlying empirical distribution of the sample did not follow a normal distribution well. 
  
Monte Carlo 
 
Notice that the 95% confidence interval estimated by the bootstrap Monte Carlo is tighter than the confidence 
interval calculated when it is assumed that the sample fits a normal distribution.  Why does using a bootstrap Monte 
Carlo result in a tighter, stronger estimate? 
 
First of all, a Monte Carlo bootstrap does not assume that the sample class is normally distributed.  In other words, 
it does not assume that the sample fits into a smooth symmetric pattern where the average and mode lie practically 
in the center of the class where the median is.  Typically, a class does not perfectly fit into a normal distribution and 
instead fits into one of a multitude of distributions or does not fit any distribution at all.  Because a Monte Carlo 
bootstrap does not assume normality, it allows you to use the information that you have about the sample to 
estimate characteristics about the class regardless of the type of distribution it fits, or even if the sample does not fit 
any distribution at all.  
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Monte Carlo for Samples with no Distribution 
 
When a computer runs a Monte Carlo simulation, the program takes the original values from the sample and 
records them as the initial pool of inputs.  This is called a “bootstrap.”  In our initial example that means that the 
computer records the values 1,3,3,5,5,9,2,4,5,1 as the inputs that will be used later.  Then the program generates 
another sample of the same size, in our case a sample of size ten.  In order to generate this new sample, the program 
pulls the values for each entry in the sample from the original pool of values.  While it would be easy to believe 
that this new sample is practically identical to the original sample, that is not the case here for one important 
reason.  When conducting a Monte Carlo bootstrap, the program draws a value from the initial pool of values, then 
records that value as a data point in the new sample, and finally returns that value to the initial pool of values so 
that it may be used again.  This is repeated for every data point until the new sample is complete, and then 
continued until the program has generated as many samples as you desire.  Resampling is the term used to describe 
this entire process. 
  
Fortunately, the Monte Carlo bootstrap does not stop here, or else the result would simply be tens, or hundreds, or 
thousands of samples with no statistic that describes the characteristics of the data or the overall class.  After each 
sample is generated, the program can calculate the mean, and the upper and lower percentiles for a confidence 
interval of your choosing.  Note that these statistics are the basic statistical results from a Monte Carlo bootstrap 
and with certain programs you will have the option of obtaining additional statistical values.  With these values in 
hand you can continue to describe your sample. 
 
Monte Carlo for Samples with a Distribution 
 
Now that you can see the fundamentals underlying a basic Monte Carlo bootstrap, the next step is to consider what 
happens when your sample fits a distribution.  In that case the Monte Carlo bootstrap once again generates new 
values for subsequent samples, in other words resamples.  Instead of using the values of the original sample as the 
initial pool however, this time the program draws values from a distribution where the mean and standard deviation 
are the mean and standard deviation of the original sample.  From here on, the process is identical to the process 
described above. 
 
Multiple Imputation and Monte Carlo 
 
Surely at this point, Monte Carlo bootstrap sounds wonderful, that is until you ask the question of how you are 
supposed to use a Monte Carlo bootstrap when you only possess incomplete data.  Obtaining or possessing 
incomplete data plagues many statistical analyses on a regular basis.  Fortunately, there has been much research and 
discussion on this matter and how to solve or ameliorate the issue. 
 
The answer lies in a concept known as imputation.  Imputation is the practice and procedure by which the gaps or 
missing pieces of information in the data are filled with appropriate estimates or even removed.  Regardless of 
which type of imputation you choose to apply to your incomplete data it is always important to remember to clearly 
state what changes you have made to your data set before analyzing it.  Although the realm of imputation is quite 
vast, a discussion of the basics and some pitfalls is necessary to make you a bit more informed about the matter. 
 
Knowing why data are missing from your data set is often key in being able to distinguish and select an appropriate 
method of imputation.  As outlined by Donald B. Rubin (1976, p. 584) and more thoroughly by Stef van Buuren 
(2012, p. 6-7), there are three main types of missing data.  Missing data can be predominately classified as missing 
at random, missing completely at random or not missing at random (van Buuren, 2012, p. 7).  Data are missing at 
random when the probability that a value is missing is the same as for any other value in the same group (note that 
this does not mean that the probability that values are missing is the same across the groups) (van Buuren, 2012, p. 
7).  As for data that is missing completely at random, the chance that a value is missing is the same across the 
whole data set (van Buuren, 2012, p. 7).  The presence of data that are missing completely at random is rare and 
unlikely (van Buuren, 2012, p. 7).  When data are classified as not missing at random, the data are missing in such a 
fashion that you do not know why they are missing (van Buuren, 2012, p. 7).  Below we discuss the appropriate 
types of imputation to be used in each case. 
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Unless your data are missing completely at random there are a few types of imputation that you want to avoid.  
When you delete the observations containing missing data values, you are using listwise deletion (van Buuren, 
2012, p. 8-9).  Similarly, pairwise deletion works by taking the correlation between two variables into account and 
is also inappropriate to use unless your data are missing completely at random (van Buuren, 2012, p. 9-10).  Why?  
If you already have a smaller data set it can be very costly in terms of information loss to simply delete entire 
entries.  Also, if the data are not missing completely at random, it is quite possible that the missing data are 
inherently different than the available data.  As such, any estimated statistics based on the existing data may be 
biased and skewed (van Buuren, 2012, p. 8-10). 
 
Mean imputation, a type of single imputation, is a process by which you calculate the mean for the existing data 
and use the mean to fill in the ‘gaps.’  While this might sound like a good idea, if the data are not missing 
completely at random, then the mean will be initially biased, skewing the imputed data and throwing off all other 
statistics and calculations done on the imputed data (van Buuren, 2012, p. 10-11).  If the data are missing 
completely at random however, the mean (of the data that is present) will not be biased (van Buuren, 2012, p. 10-
11).  Regardless that the mean will not be biased, mean imputation will produce biased estimates of any statistical 
value and “underestimate the [aggregate] variance,” (van Buuren, 2012, p. 10-11).  van Buuren even recommends 
that mean imputation should only be used when the amount of missing data is minute (van Buuren, 2012, p. 10-11). 
 
While it would be advisable to avoid the types of imputation that are mentioned above, the type of imputation that 
we discuss next is a much stronger option.  Unlike single imputation methods, multiple imputation creates a pool of 
plausible values (2 or more) for each missing value (Rubin, 1988, p. 80).  It then fills in each missing entry with a 
value from each entry’s corresponding pool of replacement values (Rubin, 1988, p. 80).  Continuing until each 
value from each replacement pool has been used (Rubin, 1988, p. 80), the process generates two or more complete 
data sets across which the observed data are the same and only the imputed data values vary (van Buuren, 2012, p. 
16).  At this point, the process of imputation is complete. 
 
Calculating statistical estimates that describe each of the completed data sets is now possible.  Furthermore, it is 
possible to obtain summary statistical estimates for the class.  A unique feature of multiple imputation is that 
because it has multiple replacement values for each missing value, it allows you to calculate a confidence interval 
for each observation and for the class as a whole.  The confidence interval for the class takes into account not only 
the variation within each complete data set but also includes the variation between the completed data sets (van 
Buuren, 2012, p. 44, 49).  The reason why this is helpful is summed up by de Waal, Pannekoek, and Scholtus quite 
nicely: “multiple imputation was meant from the outset as a method to provide not only a solution to the missing 
data problem by imputation but also to reflect the uncertainty inherent in the imputation,” (de Waal, et al. 2011, p. 
266). 
 
Note that, “imputation is not prediction,” (van Buuren, 2012, p. 46) and should not be used as such.  Another 
important distinction that van Buuren makes is that, “the goal of multiple imputation is to obtain statistically valid 
inferences from incomplete data,” and it should not be used in an attempt to “re-create the lost data,” (2012, p. 45). 
 

EXAMPLES 
 

In this section, we will provide five examples of how to use imputation and Monte Carlo.  As you will see, Monte 
Carlo simulations do not just apply to math, physics and science, but have many applications to business related 
topics. 
 
The Dinner Party 
 
Suppose you are planning the food budget for a college awards dinner.  300 people were invited and have accepted, 
however, 100 of the individuals have still not returned their "vegan, gluten-free, chicken, or fish" card indicating 
what they would want to eat.  What should be ordered?  This is an example where "multiple imputation" may be 
applied with Monte Carlo.  Or, you could order proportionally.  What would the margin of error tell you? What is 
the range that you would expect?  (Suppose you prepare the upper 95% confidence interval for each option.) 
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Of your 200 responses, 7 people requested a vegan meal, 4 requested a gluten-free meal, 113 have requested 
chicken and 76 have requested fish.  Now, how do you use Monte Carlo to estimate how many vegan, gluten-free, 
chicken, or fish dinners to order? 
 
Your first step is to take all of the meal responses that you do have and enter the values into one column of an 
Excel spreadsheet (we suggest column B, you will see why in a moment).  In the column to the left of this one 
(column A if you are following our suggestion) insert a count of the responses.  Since in this example you have 200 
responses, Column A should be filled with the numbers 1 through 200 in ascending order, as if you are making a 
list and numbering the items on the list. 
 
Next, assign every meal type a different numerical value and create a key or a legend with this information in it so 
that you do not forget what each numerical value represents.  In our example we have assigned a value to each meal 
type so that vegan = 1, gluten-free = 2, chicken = 3, and fish = 4.  Now that you have your legend, appropriately fill 
in the third column (column C) with these numerical values.  Remember to label each column appropriately. 
 
In a new tab of the Excel spreadsheet, go down to the fourth row and click into a cell in the first column, you will 
want to leave some room at the top for calculations done later.  Starting with that cell, enter the numbers 1 through 
100 in ascending order.  Label that column something like 'Guest_Number.'  Now in the next few steps you will be 
implementing multiple imputation.  In the cell to the right of number 1 use a RANDBETWEEN function to 
generate a random number between one and two hundred.  Copy this cell down for 100 cells.  Label this column as 
something like 'Guest_Chosen.'  In the cell two cells to the right of number 1 create a VLOOKUP function that 
looks up the chosen guest number in the cell to the left on the previous sheet (Sheet 1) and returns the meal value 
that corresponds to that guest number.  Label this column something like, 'Dinner_Type.'  Note that in this case we 
are not having Excel randomly choose values from any distribution, rather we are pointing Excel to randomly 
choose a value from the distribution of meals actually requested by guests. 
 
Now we could simply run a Monte Carlo on this and determine the average and confidence interval for each 
individual this way.  However, in almost all instances the mean will turn out to be three (winner, winner, chicken 
dinner!) but intuitively we know that there must be some people who would prefer or even need one of the other 
meal choices, so ordering 100 chicken dinners does not make sense.  Therefore, instead of running a Monte Carlo 
at this stage we press on a little further to gain a bit more insight. 
 
Part of the problem here is that the values for each dinner (vegan=1, gluten-free=2, etc.) are arbitrary.  Thus a mean 
of 3 indicating chicken doesn't have the meaning most people expect from a mean. Someone might mistakenly 
believe that the mean of 3 means we are somehow "below" fish and "above" gluten-free but this makes no sense.  
We could have just as easily set chicken = 1 in which case the mean would be one, which would be "below" gluten-
free, chicken, and fish.   The order of the numbers are arbitrary; this can cause confusion to others who did not 
design the experiment. Below, we show how to address this issue. 
 
In the third cell to the right of number 1, create an "if" function that returns a 1 if the value in the Dinner_Type cell 
directly to its left is a 1 and a 0 otherwise.  Copy this formula down for one hundred cells and then repeat this in the 
next three columns so that there is an "if" function that returns a 1 for each of the meal types if that number turns 
up.  Finally, create sum formulas above these columns so that you know how many of each meal type have 
appeared. 
 
In the last portion write formulas that will obtain the mean and percentiles for the number of meals for each meal 
type.  There should be 4 functions for the mean, and four for each percentile since there are only 4 meal types. 
 
After running a simulation with 1,000 iterations, we had an average of 3.472 vegan meals, 1.977 gluten-free meals, 
56.547 chicken meals, and 38.014 fish meals.  Of course, you can't order partial meals, so with rounding you would 
order 3 vegan meals, 2 gluten-free meals, 57 chicken meals, and 38 fish meals for a total of 100 extra meals. 
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Quality Control  
  
Let us say that you are teaching a class in a large lecture auditorium.  After you give an exam you randomly place 
each exam into one of four batches and give the batches to your four teaching assistants for them to grade.  After 
your teaching assistants have graded the exams and entered the grades with their identifier (their initials appear in 
the cell next to each of the exams grades), you want to test whether the four batches of exams are reasonably 
similar to the grades that a fair grader would give, or if one of your teaching assistants is a bit too lenient or tough 
on grading.  This is a perfect opportunity to use Monte Carlo. 
 
Let us say that you have a list of grades that were given on this exam from this same course in a previous semester 
by a fair grader.  And since you now have grades given on this exam by four new graders, you would like to see 
whether these new exam grades fall into a reasonable range when compared to the old fair grades. How would you 
determine this? 
 
Admittedly, there are perhaps several ways that you could accomplish this.  One way would be to determine the 
distribution of the old fair grades, run a Monte Carlo simulation that randomly draws values from that distribution 
and then estimates the overall average, and confidence interval.  After accomplishing that, for each new set of 
scores, you would find the average of the scores and then determine whether that average falls within the 
confidence interval.  If it falls within the confidence interval, then you might conclude that the new grader is within 
the range of "fairness," however, if the new grader's scoring average falls below or above the range of the 
confidence interval, then you might conclude that the new grader is too lenient or too tough, respectively. 
 
While this would be a perfectly acceptable process, you may not be able to easily determine what distribution the 
old fair grades belong to.  Thankfully, you do have a list of values for the old fair grades, and with this list you can 
run a Monte Carlo bootstrap which will help you estimate the mean, standard deviation, confidence intervals and 
other statistics.  Here is how to accomplish this.  To set this up, let us momentarily assume that the fair grader 
graded 50 exams.  As such there are 50 exam scores that were graded fairly and can be used as a basis for the 
simulation. 
 
In a new Excel spreadsheet, enter an index column with the values 1 through 50, let us say that you put this in 
column A.  Enter or paste in the 50 fair exam scores in the next column, i.e. in column B.  Subsequently, create a 
formula in the cells of column C that returns a randomly chosen value between 1 and 50.  Then in the cells of 
column D write a VLOOKUP formula that will return whatever value lies in the cell directly to the right of the 
randomly chosen index number.  In other terms, =VLOOKUP(C,$A$1:$B$50,2,FALSE). 
 
Once this is complete, you can run a Monte Carlo simulation and receive estimates of the mean and standard 
deviation.  This estimate of the mean will provide you with an idea of what the average score should approximately 
be for any batch of fairly graded exams.  Granted, it will be rare that the average score for any batch of exams 
exactly matches this estimate, but this is why you also have an estimated confidence interval.  A 95% confidence 
interval tells you that you are 95% confident that the true value of the average of fairly graded exams lies 
somewhere within that range.  For future purposes then, it is highly unlikely that any batch of fairly graded exams 
should have a mean score that is below or above the range of the 95% confidence interval. 
 
Now that you have these estimates, you can compare the average score of each TA's batch of graded exams to the 
average score of the fairly graded exams and determine whether they fall inside or outside of the confidence 
interval.  Keep in mind that the results are estimates, and although Monte Carlo simulations provide highly accurate 
results, you still need to interpret the results in a logical and reasonable manner.  What we mean by this, is that just 
because the average score from one TA's exam batch lies just above the upper bound of the confidence interval 
does not mean that the TA is too lenient of a grader.  Remember that the average/mean is skewed by outliers.  Thus, 
you would need to assess the exam scores given by that TA to see whether any high outliers occurred, and then 
review that student's exam to see if it was indeed graded appropriately.  This situation is the same if the average 
score from one TA's exam batch lies just below the lower bound of the confidence interval. 
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Furthermore, this does not mean that the average score of one TA's exam batch is acceptable merely because it lies 
just below the upper bound of the confidence interval, or just above the lower bound of the confidence interval, i.e. 
barely within the bounds of the confidence interval.  If this occurs, it would be reasonable to assess the distribution 
of grades within those batches of exams. 
 
While this example may seem to only concern college professors, it can certainly apply to people in multiple fields.  
What if you are a scientist or a science student working in a lab and you are running multiple identical tests of an 
experiment?  Furthermore, what if the results are measured and calculated by several different individuals to test a 
hypothesis.  In this case, you would want to use a Monte Carlo to estimate whether the results obtained by the 
individuals are within a reasonable range of each other and the results from the original run of the experiment.  Of 
course, in such a case the first run of the experiment may have been skewed, biased, or simply an outlier and the 
results from the secondary experiments will make that clear.  In such a situation, each version of the experiment 
will be used to test all the other versions of the experiment. 
 
Additionally, you might work for a city, county, state, province, or any other jurisdiction and your department is 
soliciting bids for a project.  Whether the project is concerning repairing or building a road, park or building, Monte 
Carlo can assist you in assessing and comparing each bid to the others or to an older bid that the department 
deemed acceptable.  Or you might even work for a manufacturing company and want to test the quality of 
production from multiple factories. 
 
As you can see there are a plethora of available applications for a situation similar to our TA grading example, and 
it is highly likely that this can be applied in your field of work.  Regardless, for these types of comparison 
situations be cautious of falling into the trap of using confidence intervals as a strict law of accept or reject.  Use the 
statistical estimates from your Monte Carlo to help you dig deeper into borderline graders, experiments, bids, or 
quality production factories. 
 
Another Take on Quality Control  
 
Suppose you are performing a test of the 'class' of new computers delivered for a large campus lab (your firm's IT, 
HR, or sales department, whatever best applies to you), but you don't want to check every computer.  How many 
have the proper software already installed? 
 
Let us say that you had 200 new computers delivered and need to check whether the computers have the proper 
software, that you purchased, installed.  You do not have the time to check all 200 but have the time to sample 
thirty of the computers.  You randomly select 30 computers and have your IT crew assess whether each has the 
proper software installed.  The IT crew finds that ten of the thirty computers do not have the proper software 
already installed.  While you might desire to immediately assume that a third, or 33%, of the 200 new computers do 
not have software properly installed, it is possible that you randomly selected the only 10 computers, or randomly 
selected a majority of computers that do not have the proper software.  As such you want to statistically assess 
approximately how many of the computers need software installed.  This is a good time to use Monte Carlo, so here 
is how you would do it. 
 
In the top left-hand corner of a blank spreadsheet, create a legend that assigns two separate values to the computers 
with or without the correct software.  We have chosen to label computers that do not have the proper software 
installed with a one, and the computers with the correct software with a zero.  A few columns over, create an index 
that numbers each computer so that you have a list of 1 through 200.  To the right of the index in the first 30 slots, 
enter the appropriate 1's and 0's to represent the computers that you discovered that did or did not have software. 
 
Subsequently, for the computers that your IT crew did not personally check (the computers indexed as 31-200) 
write the formula =RANDBETWEEN(1,30) into the column to the left of the index column.  Then in the column 
with the 1's and 0's, write a VLOOKUP formula that will lookup up the value from the RANDBETWEEN function 
in the first thirty computers and return a 1 or a 0 indicating whether the computer has the software or not.  Once 
you have copied the VLOOKUP formula down, have Excel calculate the sum of the 1's.  This will give you an 
estimate of how many computers do not have the proper software installed. 



American Journal of Business Education – Second Quarter 2017 Volume 10, Number 2 

Copyright by author(s); CC-BY 89 The Clute Institute 

It is important to note that the RANDBETWEEN and VLOOKUP functions do not affect the values from the 
original 30 computers sampled.  Those values stay the same because they are what they are.  Altering these initial 
set values in any way would undermine the simulation and bias the estimated results. 
 
At this point, you may want to run a simulation or write additional formulas that will return the mean, confidence 
interval, standard deviation, etc. of the sum of computers without software from each iteration of a simulation.  If 
you chose or needed to write additional formulas, then run the simulation afterwards with the add-in or program of 
your choice. 
 
When we ran our own simulation for this example, the program estimated that on average, the number of 
computers without software out of the 200 was 66.584, or 67 computers.  This told us that on average 0.33292 or 
33.29% of the computers did not have the proper software installed.  Notice that this estimate is extremely close to 
the proportion of computers without the proper software installed in your sample.  While it was possible for you to 
make the same assessment based on your IT crew's initial search, this example shows you just how precise Monte 
Carlo simulations are.  The same preciseness generated from the Monte Carlo simulation here, is generated in all 
Monte Carlo simulations that are properly set up, regardless of the complexity or simplicity of the scenario 
involving the class. 
 
Cheating or Not Cheating?  
 
Suppose you are teaching a large section of a 100-level class and just gave the first exam with 50 multiple choice 
questions.  While grading, you find that there are two exams that have many matching incorrect answers.  You 
want to test whether these two students are copying answers on an exam.  But how do you accomplish this?  Well, 
you can use the results of the exam to calculate the probability that a particular question is answered incorrectly and 
then use Monte Carlo simulation to estimate the probability that these two students would make the same errors on 
their exams. 
 
First and foremost, you need to have some automated way to ascertain which pairs of the student's matching 
answers are incorrect answers.  One way this can be accomplished is by setting up a spreadsheet in Excel that 
successfully tells us how many pairs of matching incorrect answers exist in the two students’ exams.  First, make 
sure that the actual answers are entered into column A.  Note that regardless of whether you use letters or numbers 
to indicate the answers, this process will work.  In columns B and C enter the two student's complete set of 
answers, one student's answers in the first column and the other student's answers in the second column.  Then, in 
column D, write an IF formula that will return the answer value if the students answers match each other's and a 
zero otherwise.  This formula should look something like =IF(B2=C2,B2,0) and means that if the students 
responded with the same answer for this particular question, return the answer; if not, return a zero.  Finally, in 
column E write a similar formula that will compare the answer in column D to the actual answer listed in column 
A. If you used numerical values to represent the answers, then this formula should look like, 
=IF(D2=A2,0,IF(D2>0,1,0)). However, if you used letters, then it should look like =IF(D2=A2,0,IF(D2<>A2,1,0)).  
The formula means that if both students answered the question correctly, return a zero; if however the students 
answers did not match the correct answer, but they matched each other's answers, then return a one, otherwise zero.  
The last step would be to insert a row above all of these columns and, in one cell, write a formula that tells you 
exactly how many of the student's incorrect answers are matching. 
 
Now you might be wondering why we chose to assign a zero to the correct answers and a one to incorrect answers.  
You are attempting to answer a problem regarding the incorrect answers, not the correct answers, and by assigning 
a one to the incorrect answers it becomes possible to obtain estimates regarding the frequency and probability of 
matching incorrect answers occurring.  This would not be possible if you assigned a zero to the incorrect answers.  
Why?  Recall that in many of these problems you have obtained the mean and some other statistical estimates that 
rely on the value of the mean.  If all of the data points that you are trying to look at are zeros then the sum, average, 
and everything else will be zeros too. 
 
Alright, so you have completed setting up a series of columns and formulas that provides you with the number of 
times in which the students have matching incorrect answers.  But what comes next?  Next, you should run a Monte 
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Carlo simulation that estimates the average number of times students have matching incorrect answers.  Once you 
have done this, write a short formula that divides the average number of times students have matching incorrect 
answers on a test by the number of questions on the exam.  This is the proportion of the time that this event occurs 
for these two exams. 
 
Of course, this proportion is, by itself, inconsequential.  However, note that roughly 25% of the time two 
individuals will randomly pick the same answer regardless of whether that matching answer is incorrect or not.  
Whatever proportion you receive from you Monte Carlo simulation then should be compared this this value. 
 
Think about it for a moment, if any two students have studied then it is much more likely for them to select the 
correct answer.  And since there is only one correct answer for each problem it is highly likely that any two well 
studied students will have matching correct answers.  But let us say that there are four options for every multiple 
choice question, then three of the options are wrong.  While there is a high probability that a student will pick an 
incorrect answer, the probability that two students will pick the same incorrect answer is much lower.   
 
Keeping Track of Time  
 
Suppose that you have two factories that produce the same product with the same process, and both have several 
thousand employees.  One (Factory B) keeps perfect time records of the hours their employees work.  The other, 
your factory, Factory A, has a time clock system that stopped working properly a year ago and thus had imperfect 
records for the last year.  In order to avoid a law suit, you must estimate the hours worked by the employees in 
Factory A over the last year.  Using the good time records from Factory B as a basis you can then run Monte Carlo 
simulation to estimate the appropriate hours employees worked at Factory A. 
 
Since you do not have any accurate records from your factory (Factory A), you will have to rely on the time records 
from the other factory (Factory B).  Of course you could go through and log or record all the time logs from the 
Factory B, but that will require more time and money than you have at your disposal.  To further complicate 
matters, some employees are regular factory workers, some are inspectors, and some are managers.  At times the 
hours worked by employees from each of the three groups vary widely; furthermore, the wage rates are at different 
levels for each of the three groups.  So if you do not have the time to record all the time logs from Factory B, and 
the workers in your factory are from different groups and are paid at different rates, then how can you appropriately 
estimate the hours and pay your employees the right amount? 
 
You could take a per pay period average of the hours worked by members of each of the three groups from Factory 
B, however if you assigned these three averages to each member of each respective group, you would end up 
overpaying some workers and underpaying others.  The workers you would be overpaying probably wouldn't mind, 
but the workers you would be underpaying would not be happy and likely seek work somewhere else, maybe even 
at Factory B.  Of course, you don't want that to happen since the people who worked more than the average are 
probably your harder working employees and you do not want to lose them! 
 
Using a Monte Carlo bootstrap is an excellent alternative.  First of all, it will solve your first problem of not having 
enough time or money to enter all the hourly data provided by Factory B.  With Monte Carlo you will only need the 
hourly data from a sample of randomly chosen individuals, not from the entire class of employees.  Secondly, the 
Monte Carlo simulation will provide you with a point estimate and a range of possible hours for each individual, 
not just one estimate for the whole class.  Of course, you can still obtain aggregated estimates, but this solves your 
original concern of not being able to provide each person with an individualized value.   
 
First, you will need to collect three randomly sampled groups of employee records, one random sample for each 
type of employee, general employees, inspectors, and managers.  To make things straightforward, say you decide to 
randomly sample the hourly records of fifty employees from each of the three types of employees at Factory B.  
Next, you would create a spreadsheet that listed the hours worked per employee from Factory B per pay period.  
Create one sheet like this for each of the three employee types.  For future purposes, make sure that you index each 
employee from Factor B with a number, such as one to fifty.   
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Subsequently, on a fourth and separate sheet you would create an index in one column (like we did in the previous 
examples) so that you have one row identified for each individual from Factory A.  Unlike our previous examples 
however, perhaps you could use an employee ID number in place of a standard indexed value to index the 
employees.  When you do this, it would be a good idea to create another column that indicated which employee 
type each individual was.  For example, if the particular employee was a general employee perhaps you would key 
them in with a 1, an inspector as a 2, and a manager as a 3.  If you create this column indicating whether an 
employee belongs to the general, inspector, or manager employee type, then you can use sorting or filtering to view 
the result for just one employee type if ever the need arises. 
 
In the next (third) column, you will want to write a RANDBETWEEN function that returns a randomly chosen 
value between one and fifty (recall that you have sampled fifty Factory B employees from each employee type).  In 
the fourth column, write a formula that takes into account the type of employee each individual is and the value 
produced by the RANDBETWEEN function in the third column and then uses these two pieces of information to 
look at the appropriate sheet and return the total number of hours worked by an employee in Factory B.  Then in the 
fifth column write another formula that returns a particular wage rate value according to each individuals' employee 
type.  Lastly, in the sixth column write a simple formula that is the value in column four multiplied by the value in 
column five, i.e. the values in column six will equal the amount of money that each employee will receive for their 
work in the last year. 
 
Now that you have finished setting up the spreadsheet, it is time to run a Monte Carlo simulation.  After running a 
Monte Carlo simulation, regardless of which program you use, you should end up with at least a mean, standard 
deviation, and confidence interval for the earnings of each employee.  You can always sum these earnings to 
understand how much money Factory A will need to doll out, however the point here is that you can and should 
obtain earnings estimates for each employee. 
 
Two appendices continue the discussion of how you can use Monte Carlo simulation to estimate statistics regarding 
a class of anything.  The appendices provide detailed steps for downloading, installing, and using two different 
simulation software programs to run Monte Carlo simulations.  One of the programs we discuss, called Poptools, is 
a free add-in that is used in Excel, and the other program, called RiskAMP, is a reasonably priced commercial 
program that smoothly interfaces with Excel. 
 

CONCLUSION 
 
Since the early 1700s, Monte Carlo style techniques have been used to estimate the values of unknown parameters.  
Through the diligent efforts of Stanislaw Ulam, John von Neumann and several others, what we know of today as 
Monte Carlo was transformed from an obscure method of resampling that was limited by the constrains of time and 
human based computations, into a revolutionary technique that steam-lined and freed the method from its earlier 
constraints by recruiting the help of early programmable computers.     
 
A remarkable aspect of the current Monte Carlo is that it is “distribution free”.  This simulation process does not 
require the data from your class (group) to fit any particular type of distribution or, in fact, any distribution as all.  
The beauty of this is that you often do not know whether the data from your class fits a particular distribution, and 
even if you do, it might fit a peculiar and often unused distribution.  Some computer programs designed to run 
Monte Carlo simulations contain features to account for the presence of a distribution or to completely ignore one 
altogether.  Additionally, Monte Carlo simulation is applicable to more analysis situations by incorporating 
multiple imputation to correct for missing answers or missing values; this method is preferred to filling missing 
values with means (mean imputation) or merely deleting the records with missing fields (listwise deletion or 
pairwise deletion).  Whether you are planning an enormous dinner party, evaluating the work of your TA's or 
students, working in the IT department, or running analysis as an HR specialist, you can employ the use of Monte 
Carlo to generate statistically sound estimates even when your data are missing valuable pieces of information. 
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APPENDIX 1 
 

PopTools 
 

This appendix provides an outline of steps that describe how to download, install and use the spreadsheet add-in 
called PopTools. 
 
In order to download and install PopTools: 
 

1. Go to www.poptools.org 
2. Use the Navigation panel on the left of the site to navigate to the ‘Download’ page. 
3. Read the directions listed there and choose the appropriate link.  If you have a 64 bit computer with 32 bit 

Excel go ahead and click on the link in the second paragraph that just says ‘here’.  
4. Follow the computer prompted installation prompts and the rest of the download process should be 

straightforward. 
5. Once installed, Excel should automatically open and a file entitled, ‘Readme’ will appear.  In this Excel 

sheet, navigate over to the Add-ins tab on the Excel ribbon.  On the left side of the ribbon, you should see 
‘Poptools’ with a tiny little arrow to the right. 

 
Using PopTools: 
 

1. If you already have data that you want to run a Monte Carlo simulation on, go ahead and open that file. 
2. Go to the Add-ins tab on the Excel ribbon and click on ‘PopTools’. 
3. In the subsequent drop-down menu scroll over ‘Simulation tools’ and select the first option, ‘Monte Carlo 

analysis’. The Monte Carlo analysis option has a little symbol next to it that looks like a coffee cup with 
steam rising out of it.  A menu window should open.  Note that if you have two or more monitors, 
sometimes this menu window appears on a different monitor than the one your Excel spreadsheet is on. 

4. Click on the button to the right of the box for ‘Dependent range’. 
5. Then select the portion of the spreadsheet that has your random variables or variables randomly chosen 

from a distribution, i.e. select the portion of the spreadsheet that contains the values that you want to 
simulate. 

6. Next, click on the button to the right of the box labeled, ‘Output (choose 1 cell)’.  
7. Accordingly choose one cell that will serve as the base for the output.  Choose this cell carefully, the Monte 

Carlo simulation output uses six columns and as many rows as you have variables and will overwrite 
whatever data that may be in its way.  The cell that you choose will be the top left cell in the output. 

8. Next, in the ‘Number of replicates’ box, verify how many replicates you wish the simulation to run.  If you 
want the simulation to simulate values 1,000 times, then the ‘Number of replicates’ box should contain 
1,000. 

9. Finally set your Lower and Upper percentiles in their appropriately labeled boxes.  PopTools has these 
preset to create a 95% confidence interval which is frequently used and typically appropriate.  If you desire 
to use a 90% confidence interval instead, then simply enter 0.05 and 0.95 for the Lower and Upper 
percentiles respectively. 

10. At this point, if you wish to save the raw results from each simulation for each data point, make sure that 
you check the little box next to ‘Keep results’. The program will automatically save these results to a 
separate tab. 

11. Finally click ‘Go’ and your simulation will run.  Note that the time it takes to run a Monte Carlo will 
depend on the size and complexity of your model.  If you have any formulas in your sheet that are not 
absolutely necessary for the Monte Carlo simulation to work, it may be a good idea to save a copy of your 
file and then copy and 'paste values' for all the cells with the unnecessary formulas before running the 
Monte Carlo. 

12. The results will appear where you directed the output to go.  From here you can then perform your intended 
analysis. 
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APPENDIX 2 
 

RiskAMP 
 

This appendix provides an outline of steps that describe how to download, install and use the spreadsheet add-in 
called RiskAMP.  RiskAMP is software that works smoothly with Excel.  Once installed it actually appears as a 
separate tab on your Excel ribbon and is labeled, 'Monte Carlo.'  With a little practice the RiskAMP software will 
make a lot of sense to current Excel users and its plethora of functions and random distributions increase its 
functionality over competing software. 
 
In order to purchase download and install RiskAMP: 
 

1. Visit www.riskamp.com 
2. Use the navigation bar at the top of the site to navigate to the ‘Downloads’ tab. This takes you to a screen 

where you can download a free 30-day trial.  To purchase click on the ‘Purchase’ tab and explore your 
options.  

3. After downloading RiskAMP, follow the computer prompts to install the software. 
4. Once in Excel the RiskAMP software will appear in its on tab on the Excel ribbon and will be labeled as 

‘Monte Carlo’. 
 

If the values you wish to simulate come from a distribution, then follow the directions from part 1 through part 3.  
However, if the values you wish to simulate do not come from a distribution, then skip the directions in part 1 and 
start with part 2. 

 
Using RiskAMP Part 1:  First, let us assume that you know that your population comes from a certain distribution 
with certain parameters and that you want Excel to randomly choose values for your sample from that distribution 
with the specified parameters.  
 

1. In order to do this, you can use one of the numerous formulas that RiskAMP provides. The formula will 
always be of the form, =’DistributionName’Value() and the appropriate parameters will appear inside of 
the parentheses. 
a. Ex. If you want to pull values from a Normal distribution, then use the formula, =NormalValue().  For 

the Cauchy distribution, use the =CauchyValue() formula. Etc… 
b. To browse all of your options go to the Formulas tab on the Excel ribbon, choose Insert Function, 

select the RiskAMP Random Distributions category and scroll through the available options. 
2. Copy your formula down for as many rows as desired. 
 

Using RiskAMP Part 2: Running a Simulation 
 

1. In order to run a simulation simply click on the large green play button entitled ‘Run Simulation’ that 
appears on the Monte Carlo Tab. 

2. A separate window will appear.  Enter the number of simulations/iteration you want the program to run and 
then click ‘Start’.  *There is no need to select the portion of the sheet you wish to be simulated, the 
program senses what portions can be simulated and which are not. 

3. If, part way through a larger simulation you realize that you made an error somewhere, you can stop the 
simulation by pressing the ‘Esc’ button on your keyboard (which essentially pauses the simulation) and 
then closing the Monte Carlo Simulation window. 
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Using RiskAMP Part 3: Obtaining results from a simulation. 
 

Option 1: 
 
1. To obtain the mean, standard deviation, percentile etc… for any one variable, choose an appropriate empty 

cell and use the formula =SimulationMean(), = SimulationStandardDeviation(), =SimulationPercentile() 
etc… 

2. Within parentheses for the simulation mean and standard deviation, simply refer to the cell that contains the 
previously simulated value.  For the simulation percentile, after entering the cell reference, enter a comma 
followed by the specific percentile you wish the formula to return (i.e. 0.95 for the 95th percentile or 0.05 
for the 5th percentile). 

3. Copy that formula down for as many rows as you have simulated values. 
WARNING: The RiskAMP =SimulationStandardDeviation() function returns the population standard 
deviation, not the sample standard deviation. 

 
Option 2:  If you wish to incorporate regular Excel formulas, read through the following steps. 
 

1. To obtain the mean, standard deviation, percentile etc… for a variable, use the regular, =AVERAGE(), 
=STDEV.S(), or =Percentile.INC() etc… functions. 

2. Within the average and standard deviation functions, nest a SimulationValuesArray() formula that will 
reference the simulated value.  For the percentile functions, still nest the SimulationValuesArray() formula, 
however continue to indicate which percentile you wish the formula to return. 

3. Once again copy the functions down for as many rows as you have simulated values. 
 
Option 3: To obtain the complete raw values from each simulation using RiskAMP, use the following instructions.   
 

WARNING: This process becomes slow and tedious when large numbers of iterations are used. 
 
1. After running a simulation, make sure that you have plenty of blank space in the Excel sheet.  You need as 

many rows as you had iterations in the simulation, and as many columns as you have random values.  The 
result will be that every column you are about to generate contains the raw simulation values for a different 
random value. 

2. In your chosen cell, enter the function =SimulationValuesArray() with the appropriate cell reference in 
parentheses.  

3. Edit the cell reference so that the column reference is locked but the row reference remains fluid. I.e. if you 
are referencing cell C3, the cell reference should be $C3. 

4. Drag this function down so that there is a cell with a formula for each random value. 
5. Next, copy the cells and past transpose so that the column of functions is now one row of functions.  Now, 

each random value has its own column for raw simulation values. 
6. Let us say that you had 1,000 iterations.  Then in the first column select the cell that has the function inside 

of it then click and drag to highlight a total of 1,000 cells in that column. 
7. Then click into the formula bar for that first cell, and press CTRL + SHIFT + ENTER.  Brackets will 

appear around the function in the cell and the rest of the cells in your highlighted column will populate with 
the same function.  While the functions will all look the same, each cell is retrieving a different raw 
simulation value and now displays them. 

8. Finally, apply the standard Excel formulas (this time without the SimulationValuesArray() function nested 
inside) to obtain the mean, standard deviation, percentiles etc… of each column.  This will give you the 
mean, standard deviation, percentiles etc… of each random value. 
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NOTES 


