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ABSTRACT 

 

Statistics, econometrics, investment analysis, and data analysis classes often review the 

calculation of several types of averages, including the arithmetic mean, geometric mean, 

harmonic mean, and various weighted averages.  This note shows how each of these can be 

computed using a basic regression framework.  By recognizing when a regression model is 

computing one of these averages, students can properly interpret these types of regressions.  

Similarly, by seeing how these averages fit into a common framework, students can have a better 

understanding of the different calculations. 
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INTRODUCTION 

 

his note provides several regression-based examples, including the common arithmetic mean, the 

geometric mean, the harmonic mean, and various weighted averages, and shows the equivalence 

between the regression specifications and these measures of central tendency.  The teaching of these 

alternative measures of central tendency has been the focus of several recent papers (e.g., Graziani and Veronese 

(2009), Lann and Falk (2006)).  This paper presents alternative ways of finding many of these measures of central 

tendency that can assist in relating the descriptive statistics portion of a first-year statistics class to the bivariate 

modeling component typically found towards the end. While we are not advocating that the regression framework is 

computationally the most appropriate for computing central tendency, we do propose that students should be aware 

of these relations for purposes of properly interpreting regression coefficients and for better relating their knowledge 

of descriptive statistics to regression modeling.  

 

ARITHMETIC MEAN 

 

 The arithmetic mean is typically computed by summing a series and dividing by the observation count.  

This is equivalent to the expected value. A regression of the form 

 

yi = c + ui  (1) 

 

where c is a constant provides a computation of the arithmetic mean of yi as c
*
, the estimate of c.   

 

Theorem 1:  Given a regression of the form in (1), the ordinary least squares estimate of c is the arithmetic mean of 

yi. 

 

Proof:  Consider an equation like (1) and derive the least squares estimator of c.   

 

δE[(yi - c)(yi - c)]/δc =  

 

2*E(yi)- 2c= 0 → c
*
= E(yi) QED. 

 

T 
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Although this, in itself, may not seem very interesting and well known to most practitioners, it provides us 

a starting point for the later discussion. 

 

WEIGHTED ARITHMETIC MEAN 

 

The weighted arithmetic mean is typically computed by multiplying a target series by a weighting series, 

summing the terms of the product, and dividing by the sum of its weights. Often the weights are assumed to be in 

the unit simplex and can be summed to one.   

 

 The regression form is not quite as transparent.  Consider a regression of the form 

 

yi wi
θ/2

 = c wi
θ/2

 + ui  (2) 

 

where wi
θ/2

 is a weighting series.  (A common source of student confusion is to forget that since w is a series, not all 

elements wi are necessarily the same.)  

   

Theorem 2:  Given a regression of the form in (2), a least squares estimate of the parameter c will be the weighted 

mean of the target series yi where the weighting series is wi
θ 

 

Proof: Consider an equation like (2) and derive the least squares estimator of c.   

 

δE[(yi wi
θ/2

 - c wi
θ/2

)(yi wi
θ/2

 - c wi
θ/2

)]/δc =  

 

2*E(yi wi
θ
)- 2c*E(wi

θ
)= 0 → c

*
= E(yi wi

θ
)/ E(wi

θ
) QED. 

 

If θ = 0, this reduces to the standard arithmetic mean.  If θ = 1, then the estimated coefficient c
*
 will be the 

weighted average using the series w for weighting.  A common student error is to multiply the target series by w 

rather than w
1/2

, essentially using θ = 2, which would result in c
*
 representing a w-squared weighted average.  

 

Situations where data is analyzed using an implicit θ = 2 are sometimes found in real life but without any 

evidence that the analyst intended to use a squared-weighting for the computation.  Consider, for example, a real 

estate appraiser attempting to value 100 miles of potential hiking trails from abandoned railroad right-of-way.  If the 

appraiser were to regress selling prices of previous "comparable" transactions against the miles of each previous 

transaction, there might be a temptation to use the resulting regression coefficient as an estimate of the average price 

per mile without recognizing that it would actually be a w-squared weighted average.  This is similar to an analysis 

proposed in a recent 7th circuit US Court of Appeals decision by Judge Easterbrook (Guardian Pipeline, LLC v 

950.80 Acres of Land et al, 525 F.3d 554;2008 U.S. App. Lexis 9818). 

 

Typically, to use regression to calculate a weighted average one uses the square root of the initial weighting 

series w, which is the θ = 1 scenario. The case when θ = -1 is a common heteroskedasticity adjustment used with 

“weighted least squares” in advanced linear modeling classes. (An overview of weighted least squares is provided in 

Halcoussis (2005), p174-175.) 

 

GEOMETRIC MEAN 

 

 The geometric mean, Ψ, is usually defined as the n
th

 root of the product of n observations of a positive 

valued target series:      
n
i=1  

     = Ψ. 

 

Geometric means can be calculated by way of a regression when the regression is specified in the form 

 

ln(yi) = c + ui  (3) 

 

Theorem 3: Given a regression of the form (3), a least squares estimate of the parameter c will be the arithmetic 

mean of ln(y) by Theorem 1.  The antilog of c
*
 will be an estimate of the geometric mean.   
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Proof:     
n
i=1  

     = Ψ.  Taking logarithms,    (Ψ) = (1/n)*     
       = arithmetic mean of    (   . By (1) 

above, the regression    (    = c + u returns c
*
 as the arithmetic mean,    (Ψ). Therefore,    

   , the geometric 

mean. QED. 

 

The geometric mean will be given by e
c*

.  Geometric means are commonly used when working with a 

series of sequential rates, such as inflation rates.  The federal government often uses the geometric mean for 

adjusting various series for differing rates of inflation.  This process is referred to as "chain-link pricing." (Clayton 

and Giesbrecht, pp. 149-51.) 

 

Note that while an adjustment for the nonzero residuals would be needed if the regression were being used 

to forecast yi, such an adjustment would not impact the estimate of c
*
 and therefore is not appropriate here.   

 

HARMONIC MEAN 

 

The harmonic mean, ξ, is the reciprocal of the mean of the reciprocals of a series:  
  

 

  
 

 

  
     

 

  

  = ξ . 

Harmonic means can be computed using a regression of the form 

 

1/yi = c + ui  (4) 

 

Theorem 4:  Given a regression of the form (4), a least squares estimate of the parameter c will be the arithmetic 

mean of 1/yi.  The inverse of c
*
 will be an estimate of the harmonic mean.   

 

Proof:  c* is the E(1/yi), the arithmetic mean of 1/yi by Theorem 1.  Since ξ = 1/E(1/yi)  then by definition, ξ = 1/ c*. 

QED. 

 

WEIGHTED HARMONIC MEAN 

 

A generalization of the Harmonic Mean is the weighted harmonic mean, ξ’, which is the reciprocal of the 

weighted average of the weighted reciprocals of a series:  
           
  
  

 
  
  

     
  
  

  = ξ’ . 

 

Weighted harmonic means can be computed using a regression combining aspects of (2) and (4) as follows: 

 

wi
θ/2

/ yi = c wi
θ/2

 + ui  (5) 

 

Theorem 5: Given a regression of the form in (5), a least squares estimate of the parameter c will be the inverse of 

the weighted harmonic mean, ξ’. 

 

Proof: Consider an equation like (2) and derive the least squares estimator of c.   

 

δE[( wi
θ/2

 / yi - c wi
θ/2

)( wi
θ/2

 / yi - c wi
θ/2

)]/δc =  

 

2*E(wi
θ
/ yi)- 2c*E(wi

θ
)= 0 → c

*
= E(wi

θ
/ yi)/ E(wi

θ
).   

 

1/ c
*
= E(wi

θ
)/ E(wi

θ
/ yi) = ξ’. QED. 

 

Note that when θ = 0, the weighted harmonic mean reduces to ξ, the standard harmonic mean. 

 

While harmonic means are perhaps most commonly thought of in terms of physics problems (e.g., 

comparing average speed on a trip, computing effectiveness of multiple layers of insulation in an attic, computing 

equivalent resistance in multiple resistor circuits) some students may appreciate a financial application.  When one 

purchases stocks by investing a constant dollar amount each month regardless of the corresponding price of the 

stock, some months will result in purchasing more shares and others less.  The average price paid per share over 
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time could be computed by taking the total amount available to invest and dividing by the total number of shares 

purchased.  One can show that this is equivalent to computing the harmonic mean of the prices paid. 

 

An example using weighted harmonic means is to consider a company with two different accounting firms 

on retainer.  One accounting firm is paid $500 a month, another is paid $1000 a month.  The amount of services 

provided each month depends on the billing rates of specific staff.  The average price paid for each firm's services is 

its respective harmonic mean price.  The average price paid for an hour of accounting across the firms is the 

weighted harmonic mean of the firms' prices where the weights are the monthly expenditures per firm.   

 

CONCLUSION 

 

Several common variable transformations used in simple regression specifications are equivalent to 

computing different types of averages.  While the use of regression techniques for computing such measures of 

central tendency might be viewed as computational overkill, there may be certain circumstances when it is 

convenient to use a regression program for these computations.  More likely, an analyst might specify a regression 

equation that is a variation of one of these averages.  This might be intentional, but we have seen students and 

practitioners inadvertently propose regression modeling as an alternative to an average when, in fact, their 

specifications were equivalent to some form of average.  Finally, by presenting these basic statistical concepts 

within the concept of regression analysis, faculty may assist students to better relate the "end of the semester" 

ordinary least squares model to descriptive methods taught earlier in the semester. 
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