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ABSTRACT 

 

This paper develops a series of models for optimal tuition pricing for private colleges and 

universities.  The university is assumed to be a profit maximizing, price discriminating monopolist.  

The enrollment decision of student’s is stochastic in nature.  The university offers an effective 

tuition rate, comprised of stipulated tuition less financial aid, to each student based on the 

demographic characteristics of the student.  Initially, the applicant poll is assumed to be 

homogeneous.  Subsequently, the quality of the applicant pool is allowed to vary and the 

university’s tuition maximization problem is subject to quality and capacity constraints.  Lastly, 

we perform a simulation that allows an exploration of the risks associated with the university’s 

tuition, quality and capacity decisions. 
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1. INTRODUCTION 

 

he primary focus of this paper is the explicit incorporation of environmental uncertainty into the 

economic modeling of the higher-education tuition decision.  We argue that most of the existing 

literature explicitly ignores the implications of uncertainty at the theoretical level (for good reasons), 

and this brings many of the extant policy prescriptions into question.  The immediate requirements for confronting 

uncertainty deal with the specification of the appropriate objective function for the college or university, and the 

issues associated with the formulation of constraints.  Our solution is to suggest that in the absence of an appropriate 

composite utility function, a reasonable starting point is an expected profit maximizing strategy.  This is not the end 

of the process, but rather it represents only the beginning stage of the analysis.  We argue that further analysis (and 

simulation) is required to explore the uncertainty consequences of the decisions made. 

 

The existing literature often ducks the issue of identifying the appropriate objective function under 

uncertainty.  Even then, it exhibits considerable variability in the modeled objective function for the 

college/university.  One common theme is some appeal to the economic theory of the firm.  Unfortunately, the 

common appeal is to the theory of the firm under certainty and this ignores the necessary modifications associated 

with uncertainty. Jenny (1968) at first, likens the university to a firm, but then argues that the entity should be 

viewed as a „multi-firm‟, a collection of firm-like units with economic optimization rules sometimes secondary to 

other objectives.  In particular, Jenny points to the then prevalent balance-sheet divisions of current funds, student 

loan funds, endowment, other unexpendable and annuity funds, and plant funds, which he suggests are managed 

somewhat independently.  He also recognizes the income components where a similar multi-firm phenomenon 

exists.  While much of his discussion predates the decentralization literature in which the successful firm is required 

to develop decentralized objectives which are consistent with firm-wide optimization, Jenny goes on to argue that 

the result in practice is that: 

 

trustees are trying to maximize some vague trusteeship function subject to all sorts of vague constraints . . .
1 

 

Jenny proceeds to model the firm in a „satisficing‟ role where economic considerations are significant but cannot be 

quantified.   

 

Ehrenberg and Sherman (1984) consider the problem of an elite institution in which tuition revenue is not 

an issue.  They assume the university derives utility from „quality units‟ of different categories, where the utility 

T 
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function has standard concavity properties
2
.  They consider the objective function as unconstrained and their results 

are then formulated based upon elasticities. 

 

Bryan and Whipple (1995) use a net revenue maximization model based on an assumed range of elasticities 

to first approximate alternative possible net tuition maximizing levels given their current student body, and then re-

estimate the tuition elasticity effects on net `profit' using survey data over the indicated range of feasible choices.  

Their model ignores uncertainty, and neither does it consider quality or capacity issues. Perhaps because of these 

deficiencies, Bryan and Whipple go on to state: 

 

However, the output of the TENEP (=their optimization) model is only one factor in the tuition decision process.  

Net earnings maximization may not be the major objective of the institution, as nonprofit goals may have higher 

priority.
3 

 

They conclude that their model can prove useful by establishing breakeven levels of tuition after the 

imposition of the other priorities. 

 

Rothschild and White (1995) consider the social optimality of not explicitly pricing according to value 

added by the educational process.  They argue that their formulation of the societal objective function leads to a 

characterization of  

 

efficient prices which are also zero profit prices for the universities and thus are consistent with a competitive free 

entry equilibrium among the universities.
4 

 

While the Rothschild and White results are not directly applicable to this paper, they do go on to note that:  

 

We assumed that universities were profit maximizers and (implicitly) that they were subject to the usual forms of 

resource constraints.  But universities do not typically cover all their costs through tuition and other fees, and it is 

difficult to state what universities are maximizing or even who is doing the maximizing.
5 

 

They note that such ambiguities must be better understood before we will have a complete model of the 

social properties of the higher educational system.  In a seminal paper dealing with competitive insurance markets, 

Rothschild and Stiglitz
4
 (1976), to rationalize the use of expected profit maximization for their competitive 

insurance firm, remarked: 

 

Since the theory of the firm behavior under uncertainty is one of the more unsettled areas of economic theory, we 

cannot look to it for support of any assumption we might make . . .
6
. 

 

We will pick up on this point towards the end of this section.  

 

Martin (2004) considers the question of tuition discounting to an institution that wishes to maximize 

„prestige‟ by maximizing alumnus success in the long run.  He argues (and presents a formal model in a related 

paper Martin (2003)) that if „prestige‟ is the long run goal and if the institution is subject to economies of scale or 

scope, then: 

 

If the institution maximizes the human capital acquired by each student enrolled in the short run, then enrolling the 

highest quality student body consistent with the institution's quality reputation and its financial resources can 

maximize alumni success.  Hence, in the short run the institution maximizes the quality of each class enrolled.
7 

 

Martin argues that his model demonstrates the incentive compatibility of short run quality maximization 

(subject to a balanced budget) with long run prestige maximization.  His assumed objective is a prestige-utility 

function, which is related to alumni successes. 

 

The parallels to the theory of the firm in this literature miss many of the important issues associated with 

uncertainty.  In the theory of the firm under uncertainty, profit maximization is replaced by value maximization (an 
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inter-temporal extension) which can be shown to be Pareto optimal assuming that markets are perfect and complete, 

and firms behave competitively. Value maximization is related to the observation that the objective function of the 

firm should be to maximize the utility of its owners. In general there is no way to form a composite utility function 

representing the owners, and only under conditions of perfect competition (and perfect capital markets) does wealth 

maximization guarantee unanimity among owners
8
. 

 

A model of utility maximization may be appropriate for institutions that have such a deep applicant pool 

that generating revenues sufficient to cover the costs of operation are not in question. We believe that most 

institutions are not in such a position and must frequently cut costs if they do not bring in sufficient revenues. Hence 

the appropriate objective is some form of tuition maximization (or by duality cost minimization). 

 

The paper proceeds as follows: the next section details a sequence of models represent our first pass at 

modeling the institution's tuition choices.  Section 3 presents a simulation related to a simple version of our model.  

Section 4 concludes with some observations drawn from the models presented. 

 

2. THE MODEL 

 

This section details a sequence of economic models of expected profit (total tuition net of expenses) 

maximization for colleges and universities.  We begin with the unconstrained problem -- the college wants to set 

tuition such that total „profit‟ is maximized.  We accept the observation that many/most Colleges and Universities 

display some level of risk aversion in their decision process, but we argue that except for those schools with 

significant endowments, these decisions may be made at the institution's peril. It would be nice to have a utility 

function to maximize, but given the horizon of successful universities, this would seem to be fool's errand.  In the 

absence of such a utility function, we proceed with our simple model, assuming that it represents a close 

approximation to maximizing the probability of survival.  In most respects, our analysis resembles the economic 

models of monopoly and monopolistic competition.  We then move on to the issues of quality and capacity 

constraints.  Our main results are summarized at the end of the paper. 

 

2.1 The Objective Function 

 

It is well known in Economics and Finance that the incorporation of uncertainty imposes more stringent 

requirements on the specification of the objective function
9
.  For instance, the consumption decision is unique within 

monotonic transformations of the utility function under conditions of certainty.  Hence, we only need to characterize 

preferences within a somewhat broad class of functions to arrive at the appropriate optimization. Under uncertainty, 

the uniqueness is limited to linear transformations -- a much more restrictive requirement.  Thus we must be more 

precise in the specification of the objective function (assuming its non-linear) when uncertainty is a part of the 

problem.  This paper develops a model of optimal tuition policy assuming that the institution is a profit maximizer 

and the student's enrollment decision is probabilistic in nature.  Although many in academia may be loathe to treat 

the university as a profit maximizing firm, the institution's decision makers (president and board of trustees) may 

have good reason to do so. These include: 

 

 In the current academic environment, failure to adopt profit maximizing pricing may threaten the financial 

stability of the institution.  The institution may be forced to engage in profit maximizing behavior to 

survive. 

 Profits generated by the institution can be used to increase the endowment fund, which can provide a 

financial cushion against future uncertainties, support new infrastructure and provide funding for 

scholarships based on pure need. 

 

The second important feature of our model is the explicit incorporation of uncertainty.  We believe that the 

number of institutions that are certain in July about the number of fall matriculants are few indeed.  Modern decision 

theory tells us that decisions (at least in part) shape the probability distributions which govern future outcomes, and 

models which do not endogenize these effects are at best incomplete.  As a practical matter, it would come as no 

surprise to faculty members that because of contracts, choices to remain with a college, and transactions costs 
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associated with departing, many of the risks created by the tuition/matriculation decisions of colleges and 

universities are transferred in substantial part to the faculty. 

 

2.2 The Single Quality Class Model 

 

To develop the simplest aspects of the model we concentrate on a pool of homogeneous student applicants 

of quality.  The non-quality characteristics affect the predisposition of the student to attend the college because of 

considerations other than quality (i.e.\ family alumni status, locality, etc.).  The depth of the applicant pool is N and 

is assumed exogenous.  The college makes an offer to the applicant in the form of a net tuition T.
10

  The applicant 

accepts this offer with probability p, which is assumed to be a decreasing function of net tuition cost, a decreasing 

function of student quality, and an increasing function of the non-quality, predisposition characteristic(s):  
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The expected profit for the institution associated with this pool of students is N p (T - v) - F, where v is the 

variable cost associated with the student if they accept, F are the fixed costs of the institution, and N is the depth of 

the pool (assumed exogenous at this point).  The school chooses the net tuition offer to maximize expected profit.  

We assume that profit maximization occurs as an interior solution (0 < T < ∞).  In that case, the first order condition 

characterizing the solution is:  

 

(1) 0)( 



NpvT

T

p
N , 

 

which is independent of the depth of the student pool (N).  This equation indicates that tuition should be set at the 

level such that the expected profit associated with the additional dollar of tuition (p x $1) just offsets the expected 

net profit loss associated with the decrease in probability of receiving the net tuition [ -(T - v)(∂p/∂T)].  Another 

interpretation of the first order condition is that the probability elasticity of tuition should be set equal to minus one 

at the optimum.  This follows from a simple manipulation of (1): 
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where εp is the elasticity of the probability of matriculation with respect to net tuition
11

.  We can rule out the 

possibility that p is a globally increasing function of T because p is necessarily non-negative, and if the probability 

of attracting a student were an increasing function of net tuition, the optimal policy would be to set the tuition at 

infinity. 

 

According to equation (1), the level of variable costs tends to attenuate the level of net tuition.  For a given 

probability of enrollment and a given response to net tuition changes (∂p/∂T), the higher the level of variable costs, 

the higher will be the net tuition. 

 

2.2.A The Second Order Condition 

 

If the solution to the first order condition is to represent a(n interior) maximum, the second order condition 

requires that: 
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We have already assumed that p is decreasing in net tuition so the last term on the left hand side of (2) is 

negative. A sufficient condition for a maximum exists if the second derivative of the probability with respect to net 

tuition is either zero or negative (and the deal is profitable to the school).  However, if probabilities are to remain a 

non-negative function of tuition, then the second derivative must be positive.  A minimum may then not exist.  An 

example would be where the probability of matriculation diminishes to .5 for infinite tuition levels.  The optimal 

policy would be to charge an infinite tuition level and expected profits would be infinite.  From this example it 

seems clear that we must enforce the restriction (along with p(T) ≥ 0) that p(∞)=0), and the sufficient condition 

would then be  .2)(0
2

2

T

p
vT

T

p




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


  

This equation simply states that it is necessary that the second derivative (∂
2
p/∂T

2
) is of small magnitude 

when compared to (∂p/∂T). 

 

2.2.B Comparative Statics 

 

One question often posed by economists is how the appropriate instrument (net tuition) changes as the 

parameters (here the quality variable) change.  Because the optimal instrument is defined through the appropriate 

first order conditions, it is mathematically accurate to perturb the parameter and then adjust the instrument so that 

first order condition(s) is again satisfied.  A slight change (dα) in the parameter α would change the value of the first 

derivative (1) to:  
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In response, the institution would reset tuition.  By the assumed continuity of the partial derivatives, the 

offset is: 
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This change would restore the first derivative to zero.  The final equation becomes: 
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Solving for the appropriate change in T in response to a quality change yields: 
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The right hand side denominator is our second order condition and is therefore negative. Therefore, the sign 

of the response is the sign of the numerator.  In the numerator, the last term is negative.  If variable costs are not 

increasing in quality, the middle term is also negative or zero, and the first term depends upon how ∂p/∂T changes as 

α is increased.  We sign this response as negative indicating that the school would find it optimal to charge lower 

tuition to higher quality students. 
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2.3 Many Quality Classes 

 

Suppose that there are k quality classes and these are ordered with α1 < α2 < . . . < αk.  In each quality class 

there are Ni potential students.  We denote the net tuition for each class as Ti.
12

  In this setting, expected tuition profit 

is: 
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We rewrite the probability of matriculation as a function of net tuition and assume the following properties: 

 

(5) .0,0,0),,,( 















i

i

i

i

i

i
iiiii

pp

T

p
Tpp


  

 

Note that the characterization (5) explicitly assumes that the probability of a particular quality class is 

independent of tuition charged to other classes.  The first order conditions characterizing expected profit 

maximization are: 
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This is a set of first order conditions which must hold simultaneously for each of the k quality classes.  Note 

that the depth of each pool does not affect the solution, and the optimal level of net tuition for each quality pool 

satisfies the pool equivalent of (1). 

 

2.3. A The Quality Constraint 

 

The random nature of realized quality makes the specification of the quality constraint problematic. 

Realized quality is a fractional ratio based on random variables. Were we to require that an expected quality level be 

met, or met with some probability, the exact nature of the distribution would be required. We could argue that 

realized quality would be approximately normal based upon our simulation results reported in the next section and 

proceed in that vein using estimates for expected enrollment and standard deviation which embody the tuition choice 

consequences.  We find it more convenient to follow the somewhat simplistic, but slightly more consistent approach 

of requiring that the total expected quality points meet a certain level relative to the expected enrollment.  This 

undoes the ratio of random variables issue which obscured the explicit nature of the probability distribution.  We 

express the constraint as: 

 

(7) ΣNi pi αi  – N*  ≥ 0, 

 

where the summed component represents the total quality of the enrolled class, the quantity N* is the expected 

number of enrolled students, 
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and the second term on the left hand-side of (7) is the target total quality points for the enrolled number of students. 

 

We write the objective function for the tuition problem as: 
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The last parenthesis is associated with the quality constraint, (7), and the multiplier λ is the shadow cost of 

the (per student enrolled) quality constraint
13

.  The Kuhn-Tucker conditions associated with the optimization are: 
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(10) ΣNi pi αi  – N*  ≥ 0 

 

(11) λ(ΣNi pi αi  – N* ) = 0. 

 

Equation (10) is the average quality constraint.  Equation (11) is a Kuhn-Tucker equation which indicates 

that when the constraint is not binding (i.e. if ΣNi pi αi  – N*  > 0), the shadow price of the constraint is to be 

interpreted as zero.  This might be the case for an Ivy-League school which has adequate pool depths at even the 

highest quality levels.  In that case, equation (9) reduces to the set of equations represented by (6) because the 

problem is an effectively unconstrained optimization. 

 

When the quality constraint is binding, Equation (9) indicates that net tuition will be set at lower levels than 

in the unconstrained case for students whose quality level is above the desired average, and will be set above the 

unconditional optimal when the quality level is below the desired average.  For a student whose quality level is 

exactly at the desired quality, the shadow price term is zero.  Because we assume no interaction effects, the first 

order condition for those students will be exactly the same as in the unconstrained case, and the resulting tuition will 

be exactly the same.  This follows from the observation that the quantity λ is positive by construction, the 

probability derivative is negative, and thus the sign of the final term depends upon the difference between student 

quality and the desired average
14

.  The last term is positive for low quality students, indicating that their tuition 

would be above the unconstrained optimum, and is below for high quality students indicating that a discount to their 

tuition be offered to encourage matriculation. 

 

2.3.B Quantity/Capacity Constraints 

 

We now suppose the college faces a capacity constraint.  As noted in Martin (2002), there are at least three 

types of capacity in the modern College.  They are physical plant capacity, instructional capacity, and subsidy 

capacity (endowment cash flows to the operating divisions). There clearly is a long run issue associated with under-

enrollment given the capacities of the institution, but these might be thought to primarily threaten the college's long 

run survival.  This particular formulation embodies an expected capacity limit for the institution.  Let C be the 

maximum capacity.  The objective function is to maximize the following expression which represents expected 

profit subject to the capacity constraint: 
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where δ is the shadow price associated with the capacity constraint.  The associated first order conditions are: 
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As before, equation (13) is the capacity constraint.  Equation (14) is a Kuhn-Tucker equation which 

indicates that when the constraint is not binding, the shadow price of the constraint is to be interpreted as zero.  

Equation (12) is the first order condition associated with expected tuition profit maximization.  Note that a binding 

capacity constraint raises the net tuition to all groups but more so for more tuition sensitive pools.  In that case, 

equation (12) reduces to the set of equations represented by (6) because the problem is an unconstrained 

optimization. 

 

2.4 Summary 

 

In this section we have investigated a simple model of expected (net) tuition maximization for colleges and 

universities.  The model avoids the objective function issues discussed in the introduction.  In the next section we 

will employ the model in a simplified setting to focus on the risk and return trade-offs which are the consequences 

of this behavior for the institution. 

 

3. A LINEAR MODEL AND ITS SIMULATION 

 

The following section describes a simulation associated with a simplified version of the model previously 

developed.  The model is characterized by linear probabilities of matriculation. We do so with the explicit hope that 

these simple functions would prove estimable. The primary focus is on the variability of outcomes. 

 

3.1 A Single Quality Pool 

 

We begin the analysis with a single quality pool.  The college makes an offer to each of the N applicants in 

the form of a net tuition offer T.  This offer does not vary among applicants. The applicant accepts this offer with 

probability p, which is assumed to be a linear function of net tuition but not dependant on the identity of the 

individual: 

 

(15) p = a – bT,  0 < a ≤ 1, b > 0,  T < a / b, 

 

where a and b are assumed to be functions of the parameters α and β.  The acceptance or rejection of the offer by 

any pool member is assumed to be independent of the decision by any other pool applicant.  The actual profit, a 

random variable to the institution, is determined by the number of actual matriculants, n, and the net profit per 

student.  Let π denote this profit level, then π = n(T – v) – F, 

 

where v is the variable cost associated with the student if they accept and F are the fixed costs to the institution 

(independent of the number of enrollees) associated with that group.  Because n is the (only) source of randomness, 

and because n is binomially distributed under our assumptions, the expected profit for the institution is:  

 

(16) E(π) = Np(T – v) – F. 

 

The school chooses the net tuition offer to maximize expected profit (16).  We assume that expected profit 

maximization occurs at a T* where the probability of matriculating is nonnegative.  In that case, the first order 

condition characterizing the optimal net tuition is:  

 

(17) N (-b) (T - v) + N (a -bT) = 0, 
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which is independent of the depth of the student pool (N). It is easily verified that the solution to the first order 

condition is:  

 

(18) .
22

*
v

b

a
T   

 

Equation (18) indicates that the optimal tuition increases with the propensity to attend (a), and decreases 

with the tuition sensitivity of the applicant pool (b).  Equation (18) also indicates that the level of variable costs 

increases the net tuition by one-half its magnitude. Substituting (18) back into (15) yields the following probability 

of matriculation associated with the optimal tuition:  

 

(19) p* = (a - bv) / 2. 

 

This equation indicates that the real constraint on our parameter choices is (a - bv ≥ 0).  Any other choice of 

parameters implies a negative probability of matriculation and invalidates (16) which assumes that Np ≥ 0.  

Equation (19) is also prescriptive in that it indicates that a college should never court a group of students whose 

propensity to attend is less than the tuition sensitivity times the variable cost level. 

 

To illustrate our model, we suppose that the college is dealing with an applicant pool with the following 

characteristics: a=1.00, b=.0001, N=5000 and α=.25.  For simplicity, we assume there are no variable costs.  From 

(18), the optimal solution is to charge tuition of $5000 resulting in an expected enrollment of 2500 students, a 

probability of enrollment of .5, and expected revenue of $12.5MM.  The actual number of students would follow a 

binomial distribution with the stated mean and a variance of 1250.  This implies a standard deviation of roughly 

35.36 students.  Using the normal approximation, enrollment should fall in the 2431 to 2569 range approximately 95 

percent of the time.  Equivalently, the 95 percent confidence interval for realized „profit‟ would have a range of 

$12.155 MM to $12.845MM
15

. 

 

3.2 Two Quality Classes 

 

To make the specification more interesting, suppose that there are two quality classes which we shall label 

high quality and low quality.  The low quality pool has NL members, while the high quality pool has NH members.  

In this setting, expected net tuition is: 

 

E(π) = NLpL (TL – vL) – FL + NHpH (TH – vH) – FH. 

 

We continue with the linear probability model and let  

 

 pL =aL –bL TL , 

 

pH = aH – bH TH . 

 

Note that this specification denies any interaction of tuition (or matriculants) from the other quality pool 

(i.e. the tuition charged to the low quality pool does not affect the probability of matriculation for the high quality 

entrants). 

 

3.2.A The Unconstrained Solution 

 

If the college simply wishes to maximize expected net tuition, the first order conditions characterizing the 

optimal tuition levels are independently determined as: 

 

NL(-bL)(TL - vL) + NL(aL - bLTL) = 0 

 

NH(-bH)(TH – vH) + NH(aH – bHTH) = 0. 
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The depth of the pool does not affect the solution, and the optimal level of net tuition for each quality pool 

satisfies the pool equivalent of (18). 

 

For concreteness, we will assume that the parameters characterizing our two quality populations are given 

by:  

 

 

Group a b N α 

L 1.00 .0001 5000 .25 

H .60 .0001 2000 .75 

 

 

Fixed and variable costs are taken to be zero (vi = Fi = 0).  The first order conditions can be solved directly 

in this example and lead to the unconstrained solution to charge tuition of $5000 to Low Quality students (just as 

before) and $3000 to High Quality students.  The probabilities of matriculation are .5 for the low quality group and 

.3 for the high quality group.  This leads to expected matriculations of 2500 low quality students and 600 high 

quality students.  Both probability elasticities can be verified to be -1 at the optimal solution.  This tuition policy 

results in expected total profit of $14.3MM and an expected enrollment of 3100 students.  The student body quality 

level at this expected enrollment is .3468. 

 

As previously indicated, actual tuition (which is the sum of two binomial variates) is a random variable and 

its probability density can be approximated through simulation.  The actual distribution is a mixture of drawings 

from two separate populations.  Figure 3 portrays a histogram of 10,000 realizations of the tuition outcome and the 

associated normal approximation. Note the adequacy of the normal approximation. The average tuition revenue was 

$14.298MM while the sample standard deviation was $189,780
16

.  Figure 1 indicates that actual tuition varies 

between $13.6 and $15.0 million. 

 
Figure 1 
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The smooth curve visible in this figure is the density for a normal distribution with the mean and standard 

deviation displayed in the sample.  It is noteworthy that the standard deviation for tuition revenue has only increased 

slightly from its single population value of $176,800. 

 

Perhaps of more interest is the associated distribution of student quality.  Realized quality is defined as: 

 

HL

HL

nn

nn
Quality






75.25.
, 

 

and is hence a random variable.  The exact distribution is unclear to us, but Figure 2 portrays the quality realizations 

for the 10,000 random samples which generated the tuition distribution in Figure 1.  This suggests that the normal 

distribution is a reasonable approximation to the quality distribution.  

 
Figure 2 

 

The sample mean and standard deviation are .3468 and .0029.  As before, the smooth curve is the normal 

probability density with the appropriate mean and standard deviation.  The sample mean agrees well with the quality 

level of the expected enrollment
17

. 

 

3.2.B A Desired Quality Constraint 

 

In Section 2.3.A, we discussed the general issues associated with the specification of the quality constraint.  

In the next simulation we follow the simple path discussed there.  We assume the school wishes to set a per expected 

number of matriculants quality level at  .  The constraint is expressed as: 

 

NL pL αL + NH pH αH – N*  ≥ 0,  
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where the summed component represents the total expected quality points based upon expected enrollment.  The 

quantity N* is the expected number of enrolled students,  

 

N* = NL pL + NH pH,  

 

and the term N*  is the target total quality points for the number of students expected to enroll.  The objective 

function for the institution becomes: 

 

  







 



k

i

iii

k

i

iiiii NpNFvTNp
11

*)( Max . 

 

The last parenthesis is associated with the quality constraint, (ΣNi pi αi – N* ≥ 0, and the multiplier λ is 

the shadow cost of the (per student enrolled) quality constraint
18

.  The first order conditions associated with the 

optimization are: 
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(21) λ(ΣNi pi αi  – N* ) = 0. 

 

Continuing our example, suppose the school wishes to achieve a quality level of .5.  Using any available 

numerical optimization package (we used Solver in EXCEL and MatLab), the constrained solution is to charge a 

tuition of $7714 to low quality students and $286 to high quality students.  This results in a total expected profit of 

$9.1431 MM, an expected enrollment of 2286 students, and the desired average quality of .5
19

.  Figure 3 depicts the 

simulation results for net tuition receipts as a result of this policy.  

 
Figure 3 
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Note that the sample standard deviation for the simulation was $227,400.  This is greater than the standard 

deviation in the unconstrained case indicating that the imposition of the quality constraint reduced expected 

revenues to the college and increases the dispersion.  The shadow price of the quality constraint was a whopping -

$49.633MM.  At the margin (and the optimal solution), a .01 quality increase would decrease „profit‟ by 

approximately $496,000. 

 

The simulated distribution for student quality under this scenario is depicted in Figure 4.  

 
Figure 4 

 

 

The sample standard deviation is .0041 which is higher than the unconstrained case.  Again, the smooth 

curve denotes the comparable normal distribution. 

 

3.2.C An Expected Capacity Constraint 

 

In our previous example where quality was unconstrained, we saw that the optimal tuition for the lower 

quality group was $5000 and the expected enrollment was 2500 students.  The optimal tuition for the higher quality 

group was $3000 and the expected enrollment was 600 students.  If expected enrollment was constrained to 2500 

students (with no expected quality requirement), the optimal solution would be to charge tuitions of TL=$5857 and 

TH=$3857.  Those levels would result in total expected tuition of $13.78MM and an average quality of .336.  The La 

Grange multiplier is $1714, indicating that if the cost of an additional unit of capacity is less than $1714 it should be 

added.  Note that in this example, the capacity constraint reduces the average quality of the class.  Somewhat 

surprisingly, the capacity constraint increases both low and high quality tuition by the same dollar amount. 

 

While we have not explored them here, there are several possible alternative approaches to the capacity 

constraint formulation in this model.  Based upon our approach, the enrollment distribution could easily be 

simulated.  Different levels of expected enrollment could then be used to sort out the one which leads to a desirable 
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probability of neither overutilizing nor underutilizing capacity.  Alternatively, a penalty could be imposed in the 

simulation whenever enrollment exceeded capacity and the optimum could be directly simulated. 

 

3.3 Some Comparative Statics 

 

Some additional results associated with this sections two quality class case are discussed below.  The first 

set of comparative statics deals with the responses of tuitions, profits, and enrollments as the depth of the high 

quality pool is varied.  The results are based upon constraining expected quality to .5.  Figure 5 displays the results 

of varying the pool depth for the high quality students between 1000 and 5000 (keeping the number of low quality 

students fixed at 5000, and all other parameters remaining the same).  The figures indicate that T*L decreases as the 

pool depth for high quality students increases.  This is a sensible result given that the model indicates these students 

are charged a premium as a result of the quality constraint.  It is also the case that tuition decreases towards the 

$5000 profit maximizing level but does not reach it.  Tuition charged to the high quality class increases with the 

depth of the pool and moves towards the $2000 optimum.  The bottom panes in Figure 5 display the levels of 

expected enrollment and tuition profits based on the depth of the high quality pool.   

 

 
Figure 5 

 

 

We perform a similar experiment for variations in desired quality in Figure 6.  The top two diagrams depict 

the impact of changing the desired quality level from .25 to .75 on tuition charged to the low quality pool and the 

high quality pool.  Both tuition levels start out flat at $5000 and $3000 respectively, because the unconstrained 

solution produces an expected quality level of approximately .35.  Note that the school (monotonically) increases the 

tuition level to the low quality students to discourage their enrollment as desired quality is increased.  This tuition 

charge is not monotonic for the high quality students however.  At first, tuition is lowered and then starts to increase 

(at about  =.5).  Associated with this behavior are shrinking expected enrollment and expected profit.  
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Figure 6 

 

 

3.4 Summary 

 

This section has explored the use of a linear model to examine the nature of the uncertainties associate with 

tuition, quality, and capacity decisions.  The motivation for this model is its simplicity, potential estimability, and 

the opportunity it provides in a simulated environment to explore the risk implications of the decisions.  We have 

explored how the optimal solutions are affected by the pool depths and constraints.  The output from these 

comparative statics could be used in formulating long term objectives and strategies for the institution. 

 

4. CONCLUSION 

 

This paper has explored the use of an expected tuition profit model for decision making by the college or 

university.  We have not argued that this is the „correct‟ objective for the institution rather, our argument has been 

that in the absence of an objective function which reflects appropriate risk preferences, expected profit maximization 

is a reasonable starting point (especially for institutions facing financial difficulty).  We adopted this view because 

many constituencies share in the residual risks of the less well endowed colleges.  These include faculty, current and 

future students, and society. It is well established in the theory of the firm under uncertainty that appropriate utility 

functions representing the required blending of constituent preferences cannot generally be established even when 

the exact claims (risk-sharing) structure is apparent.  We note that no such claims structure is apparent for most 

colleges or universities. 

 

At some point, risk aversion and risk preferences must enter the analysis. We suggest that our model offers 

a starting point to presidents and directors or trustees, who wish to examine the risk consequences of their decisions. 

We point out that markets exist and always matter. To ignore the risk dimensions for some or all of the 

constituencies will lead to long run alternative economic choices by those units. 
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A final point which we have neither focused on, nor have an immediate solution for, has to do with the type 

of information or data available. It is often difficult to take information collected by admissions and financial aid 

departments and translate the information into model inputs. We view the problem as one of unfocused information 

gathering.  A model must be chosen and information gathering should be directed towards data usable in the context 

of the model, not the other way around.  An exception to this appears to be Ehrenberg (1984) where the university 

seems to have collected enough information for him to explore the elasticities in an unconstrained setting. 

 

NOTES 

 
1
See

 
page 272. 

 
2
See

 
page 203. 

 
3
See

 
page 569. 

 
4
See

 
page 576. 

 
5
See

 
page 583. 

 
6
See footnote 3 on page 631. 

 
7
See page 5. 

 
8
For a discussion and exploration of the first point, see Wilson (1968). 

 
10

This is a rationality assumption in that the student only cares about net cost and not its composition.  There may be 

tax implications which affect long run after-tax cost to students and the college should investigate this.  In the 

absence of any such effects, students do not suffer money illusion in the sense that higher tuition offset by higher 

scholarships do not make the college more desirable.  Nor do we accept the argument that high tuition is a quality 

signal.  The existence of such an equilibrium requires that significant penalties be imposed on institutions and 

managers that falsely signal (apart from mere failure).  We do not (casually) observe these penalties. A more 

legitimate criticism would seem to us to be that charging a high tuition (which will be discounted more), in the 

absence of appropriate name recognition, might well affect the matriculant's search pattern and lead to immediate 

removal of the institution from the search list. 

 
11

That is, εp = (∂p/p) / ∂T/(T – v) 

 
12

One can think of net tuition, Ti, as a stated overall tuition, T, less a discount (di) for each class, di ≥ 0.  As 

mentioned previously, the resulting solution is not unique. To get around this we assume that the discount increases 

monotonically with the index of the quality pool.  Furthermore, the overall tuition level is determined such that the 

low quality pool's discount is zero (i.e. T=TL).  More generally, we would let T ≥ Max{Ti},  then di = T – Ti 

 
13

That is, the limit of the decrease in expected profit from increasing the average quality from  to  + d . 

 
14

It appears that the sign of λ and α are related.  For simplicity, we will assume the α 's are drawn from 0 ≤ α ≤ 1.  

Furthermore, by the envelope theorem: 

   Δ Net Tuition Profit = - λ N* d  

so that λ may be interpreted as the negative of the change in total profit per enrolled student per unit of average 

quality. 

 
15

It should be observed that smaller schools (in terms of the pool depth) would appear to face greater relative 

uncertainty.  This is due to the fact that the expected tuition increases linearly with the depth of the pool while the 

standard deviation increase with the square root of N. 
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16
Assuming independence, the standard deviation should be $187,163. 

 
17

i.e. exactly to 4 decimal places. 

 
18

That is, the limit of the decrease in expected profit associated with increasing the average quality from   to 

 +d .  

 
19

If b is changed to .0003 in this example, the number of enrolled students actually increases in the constrained case 

from 3100 to 3273. Thus, the imposition of the constraint may increase space demand. 
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