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ABSTRACT 

 

We study service environments that can be modeled as stochastic finite-capacity double-ended 

queues, where supply and demand arrive in independent Poisson processes to be instantly paired-

off. In the case where throughput (output rate) is not a significant metric of system performance 

(as typically studied in the literature), we derive analytical results to gain managerial insights. We 

find that the operational decision on optimal supply/demand balance and the strategic decision on 

how to achieve that optimal balance can be decoupled and stratified. With the purpose of 

providing a managerial guide, we identify conditions for when to manipulate demand rather than 

supply, and vice versa. For the first time in the literature, we study throughput considerations in 

this context, and we analytically characterize the optimal strategy. Specifically, we show that it is 

optimal to manipulate either demand, or supply (and not both), and that the optimal system 

balance and the strategy on how to achieve it are strongly tied. Our findings can shed light on the 

managerial decision making process in these environments, and they can be used to revisit any 

governing strategies dictating management of demand (or supply) as a first course of action. 
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INTRODUCTION 

 

irms, especially in the service industry, are vulnerable to mismatch between demand and available 

supply due to the stochastic nature of one or both; excess demand means lost revenue, excess supply 

means waste of resources. What differentiates service environments is the requirement of perfect 

pairing between a demand arrival and supply availability for a service delivery to occur. Without a taxi cab, you 

have waiting customers; without customers, you have a line of waiting cabs. In other environments, such as 

telecommunication networks, computing (Parthasarathy et al., 1999), stock exchange, just-in-time assembly systems 

(Som et al., 1994), organ allocation (Zenios, 1999) etc., imbalances between demand and supply degrade the system 

performance through operational inefficiencies, rather than revenues lost. 

 

In this study, we investigate certain types of service environments and systems, where “requests for supply” 

and “supply availability” arrive in two separate stochastic streams, to be paired for the service request to be fulfilled. 

We model these systems using a synchronizing queue, where service requests and supply arrive from separate ends, 

and they leave the system in FIFO (first in, first out) fashion upon instant pairing-off. This type of queuing model, 

traditionally called “double-ended queues,” was first studied by Kendall (1951) using the taxi stand example, which 

was also studied using double-ended queues by and Kashyap (1966). A similar queue structure arises when pairs (or 

bulks) of customers are to be serviced at a time (Latouche, 1981; Hsu et al., 1993). 

 

In synchronization queues as studied in this paper, the system is unstable in the steady-state unless a 

mechanism for control is introduced. For example, Sasieni (1961), Perry & Stadje (1999), Frutos & Gallego (1999), 

Conolly et al. (2002), and Li & Jiang (2013) study customer impatience. Prabhakar et al. (2000) focus on the output 

process of double-ended queues with infinite queue capacities. The other common approach is to assume finite 

queue capacities. Bollapragada & Rao (2006) investigate the non-stationary behavior of capacitated double-ended 

queues in the inventory management context. Lander (1986) assumes equal demand and supply queue capacities (k) 
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and reports asymptotic findings as k approaches infinity. Takahashi et al. (2000) study the finite capacity case with 

phase-type supply process. While these papers give technical solutions to extensions of double-ended queuing 

systems, they do not address the managerial decision making process of matching supply and demand.  

 

We study the decision-making process for a non-symmetric, finite-queue system where there is 

supply/demand imbalance (mismatch). Mendoza et al. (2009) and Mendoza et al. (2014) study a similar case, 

addressing excess supply and excess demand cases, respectively. However, neither study provides insights on how 

to manage the supply/demand imbalance, nor do they address systems where throughput
1
 is a crucial aspect of 

system performance and systems that are profit centers (rather than cost centers). This paper fills the gap in the 

literature by 1) developing a unified framework of supply/demand imbalance, 2) providing managerial insights on 

strategies and policies in manipulating demand and supply in case of undesired imbalance, 3) addressing 

supply/demand systems where throughput is an important consideration, and those that are profit centers as well as 

those that are cost centers. 

 

The rest of the paper is organized as follows. Section 2 presents the double-ended queue model, its steady 

state solutions, and the system parameters that we address in this paper. In Section 3, we look at the case where the 

system is a cost center with no throughput considerations. In Section 4, we study supply/demand environments 

where throughput is considered an important performance metric. Section 5 draws conclusions and shows pointers 

for future research. 

 

THE MODEL 

 

We conceptualize a system where demand for a single type of supply (service, goods, etc.), and the supply 

(servers, items, etc.) to meet this type of demand both arrive one unit at a time in separate and independent 

stochastic processes. At the arrival of a demand (supply), it is paired with a supply (demand) waiting in line, after 

which both leave the system instantaneously; if there is no supply (demand), then it joins the queue on the demand 

(supply) side unless the queue is full, at which time it leaves the system. We assume finite demand and supply queue 

capacities of   and  , respectively. The system operates according to FIFO principle. It is easily seen that if the 

demand (supply) queue is non-empty, supply (demand) queue must be empty; they can be both empty, but they 

cannot be both non-empty. 

 

With the above description of the system, it is also seen that the definition of supply and demand is 

arbitrary. In fact, in many environments that operate in this fashion, there is either no notion of demand and supply, 

or both streams can be seen as demand (or supply). Consider assembly systems where components come together to 

form ``kits’’ to go into the main assembly line, the stock exchange where sell requests and buy requests are matched, 

or the taxi stand where customers are demanding taxi cabs while taxi drivers are demanding customers. In the light 

of this observation, we adopt a unified approach where we call the arrival process with higher rate, the demand 

process. 

 

We assume that both demand and supply arrival processes are stationary Poisson with known rates of   and 

 , respectively. According to the convention mentioned above, we assume, without loss of generality, that    . 

We define the state of the system,  , as demand queue length minus supply queue length. Since both of them cannot 

be positive at the same time, and given the queue capacities, we have                           . As a 

result, if the system is at a positive (negative)   state, then the demand (supply) queue is non-empty and the supply 

(demand) queue is empty. We denote the steady-state probability that system is in state   by   . 
 

Suppose that each unit of unmet demand costs the system   , and each unit of idle supply costs   . Suppose 

it costs the system   
  and   

  (  
  and   

 ) on the average per unit of demand (supply) rate increased and decreased, 

respectively. Therefore, the expected the cost of supply/demand imbalance,   , is given by  

 

                                                 
1 In queuing systems, throughput is the rate of output from the system. In our context, it refers to the rate of demand paired with supply. 
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and the total cost of efforts in balancing the system is a function of   and  : 

 

          
        

    
        

    
        

    
        

   (1) 

 

where                ,                 , and    and    indicate the current demand and supply rates, 

respectively.  

 

The steady-state balance equations for the system under investigation are straight-forward: 

 

                

 
                                           

 
                   

 

These equations lead to             ,       , where         is a measure of supply/demand imbalance; 

the smaller the  , the deeper the imbalance. Since steady-state probabilities must add up to 1, we find that 

 

   

 
 
 

 
 

 

       
     

            
    

 

     
    

                     

 

After substituting, we get 

 

      

 
 
 

 
                        

                     

                  
    

                       

        
    

    (2) 

 

In the rest of the paper, we first look at service environments where the main objective is to minimize the 

system cost due to supply/demand imbalance (Case I); then, we investigate systems where throughput is a crucial 

system performance metric (Case II). 

 

CASE I: COST CENTER WITHOUT THROUGHPUT CONSIDERATIONS 

 

When the system is a cost center and there are no throughput considerations, the goal is to minimize the 

total operational costs that arise due to mismatch between demand and supply:  

 

                  
 

One may argue that throughput is always of concern in any queuing system. However, there are cases where 

throughput does not play a significant role in the success of the queuing system (relative to implications of 

supply/demand mismatch), and it can be ignored. Good examples include any non-profit service center where 

customers wait for servers to be available, organ allocation to donors (Zenios, 1999), and tenant assignment to 



Journal of Service Science – 2014 Volume 7, Number 1 

Copyright by author(s); CC-BY 46 The Clute Institute 

public housing (Kaplan, 1987). In this section, we study such environments, which are what the current literature 

typically addresses. 

 

Observe from Eq. (2) that the expected cost of imbalance,      , is a function of ratio of demand and 

supply arrival rates ( ) only, and not of individual arrival rates. Therefore, the problem of minimizing    can be 

stratified: First, find the optimal   (denoted   ) that minimizes      ; then, find the values of   and   that 

minimizes        , subject to       , where         is as given in Eq. (1). We present this two-stage procedure 

below. 

 

Stage 1: Determine    that satisfies 

 

              
 

      

 

Stage 2: Determine    and    that satisfies 

 

                  
                  

        

 

If            , then the solution of Stage 1 suggests that the system is currently unable to meet the 

demand at a desired level. If      , then the optimal solution states that the system is being underutilized (relative 

to optimal) even though the demand rate is more than supply rate; note that this is possible due to the stochastic 

nature of demand and supply. If      , the system is already at optimal balance, and no balancing is needed.  

 

In the case of      , the optimal balance can be achieved either by increasing the supply rate, or by 

decreasing the demand rate, or by a combination. Recall that the unit cost of decreasing the demand rate (while 

keeping supply rate constant) is   
 . With the         constraint, it is easy to verify that each unit decrease of 

demand rate can be compensated by increasing the supply rate by   . Since each unit of supply rate increased costs 

  
 , the decision process is simplified: either decrease the demand rate by one unit with a cost of   

 , or increase the 

supply rate by    units with a cost of     
 ; a combination of decreasing the demand rate and increasing the supply 

rate at the same time can be optimal only if   
      

 . To summarize, we find that  

 

 If      
    

 , then the optimal strategy is to decrease the demand rate to         , keeping the supply 

rate at   ;  

 If         
    

 , then the optimal strategy is to increase the supply rate to        
 , keeping the 

demand rate at   ; 

 If       
    

    , then the system is indifferent between decreasing demand and increasing supply. 

 

Remark: Note that decreasing the demand rate beyond          would require decreasing the supply rate 

proportionately (since the optimal balance must be satisfied) as well, resulting in higher cost; similar argument goes 

for increasing the supply rate beyond        
 .  

 

Corollary: Consider now a special case where   
    

 , for which the optimal strategy translates to:  

 

 If     , decrease demand rate to            , rather than increasing the supply rate to  

       
    . 

 If        , increase supply rate to        
    , rather than decreasing the demand rate to  

           . 

 

Note that if     , the optimal balance calls for having a larger supply rate than demand rate, shifting the 

direction of imbalance; recall that currently, the demand rate is larger than the supply rate. As a result, if the unit 

cost of decreasing demand is equal to that of increasing supply, and     , then the optimal strategy is to decrease 
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the demand rate to less than the current supply rate (           ), rather than increasing the supply rate to 

larger than the current demand rate (       
    ). 

 

In case      , we use the same argument as above to reach the following decision process: either 

increase the demand rate by one unit with a cost of   
 , or decrease the supply rate by    units with a cost of     

 ; 

we are indifferent between the two options if   
      

 . In summary, we find that 

 

 If         
    

 , then the optimal strategy is to increase the demand rate to         , keeping the 

supply rate at   ;  

 If      
    

 , then the optimal strategy is to decrease the supply rate to        
 , keeping the demand 

rate at   ; 

 If       
    

    , then there is indifference between increasing demand and decreasing supply. 

 

Remark: With the same argument as above, increasing the demand rate beyond         , or decreasing the 

supply rate beyond        
  results in higher cost, and is therefore non-optimal. 

 

Corollary: Suppose   
   

     
   

    . If     , then the optimal strategy is to manipulate the demand rate 

only to achieve the optimal balance; if     , then the optimal strategy calls for adjusting only the supply rate to 

attain   . This result is reached by combining the findings for       and       cases. 

 

To summarize this section, we show that when the system is a cost center with no throughput 

considerations, the minimization of cost of imbalance and cost of balancing are decoupled, and the minimum total 

system cost (           ) can be achieved in a stratified decision process. While     is achieved by finding the 

optimal supply/demand balance (  ),     is achieved by figuring out how to achieve that optimal balance, either by 

manipulating demand, or by manipulating supply. From a decision-making point of view, (  ) is an operational 

decision, whereas the choice of how to achieve it is a strategic decision. In certain environments, industries and 

businesses, there may be a governing strategy that suggests manipulating demand (or, supply) as a first course of 

action. Our study can be used as a framework to revisit such strategies. 

 

In relation to the existing literature, this section complements and extends the work by Mendoza et al. 

(2009) and Mendoza et al. (2014) by providing a unified framework of queue imbalance in supply/demand systems, 

and by finding conditions on the optimal strategy of how to achieve the optimal queue balance. 

 

CASE II: SYSTEMS WITH THROUGHPUT CONSIDERATIONS 

 

In many supply/demand systems that can be modeled as a synchronization queue as studied in this paper, 

throughput is a very crucial aspect of system performance.  For example, consider parallel processing and data 

synchronization (Parthasarathy et al., 1999) in computing, communication protocols in telecommunication networks, 

and other systems where efficient operation of the system as well as high volume of output is greatly desired, such 

as stock exchange, and just-in-time assembly systems (Som et al., 1994).  

 

In order to incorporate the role of throughput in system performance, we assume in this section that there is 

a fixed unit net reward of   for each pairing of demand and supply. Therefore, the goal is to maximize total expected 

net rewards minus total expected costs.  

 

Remark: The modeling framework presented in this section also captures supply/demand systems where there is a 

fee (or, price) collected for each service provided (or, goods sold), and the demand rate is not sensitive to fee 

amount, and fee (or, price) is virtually fixed (for example, due to intense competition). Brokerage firms, bike sharing 

systems (Raviv & Kolka, 2013) and job placement services and agencies in various sectors can be given as example. 

 

The steady-state probability calculations carry over from Section 2, since the queuing system is modeled in 

the same way. We now calculate the throughput rate. Note that a successful pairing can occur only in one of two 

ways: 1) At a demand arrival when there is supply available (when    ), or 2) at a supply arrival when there is 
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demand waiting (when    ); since demand and supply arrival processes are independent Poisson, there is zero 

probability that a demand and supply arrival occurs at the same time. Thus, the mean throughput rate,  , is given by 

 

                    
 

 

 
 

 
                        

          
    

        

     
    

     (3) 

 

  

Total expected net rewards is equal to  

 

       (4) 

  

and the objective is to maximize total net rewards less total system cost, given by the following objective function: 

 

            (5) 

 

Observe that now the decision process cannot be readily decoupled, since   includes the rates of demand and supply 

individually (not just their ratio,  ). Furthermore, observe that there seems to be a trivial solution to the problem 

where both   and   are increased infinitely large, resulting in infinite objective function value. We show below how 

we avoid this triviality.  

 

First, combining Eq.’s (3) and (4), we show that the total expected net rewards can be written in two 

equivalent forms: 

 

Form 1                      

 
 
 

 
     

          

          
    

    
    

     
    

  (6) 

 

Form                        

 
 
 

 
     

        

          
    

    
    

     
    

  (7) 

 

In the first form, we eliminate   from the expression; in the second, we eliminate  . This enables us to look at the 

problem from two perspectives  in Form 1, the problem can be expressed as “finding the optimal   while keeping   

constant;” in form  , it can be viewed as “finding the optimal   while keeping   constant.”  

 

In Form 1, for a constant   to be optimal at any given   value, we need           at any fixed  . Using 

Eq. (2), and the fact that            from Eq. (2), we need                   for any fixed  . Note from Eq. 

(6) that  

 

    

   
 

 
 
 

 
   

          

          
    

  
    

     
    

    (8) 
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Note also that, since      , increasing   by one unit while fixing   requires increasing   by  . Therefore, 

 

    

   
   

      
   (9) 

 

Similarly, in Form 2, for a constant   to be optimal for any given  , we need          , or equivalently 

                 , since            from Eq. (2). From Eq. (7), we have 

 

    

   
 

 
 
 

 
   

        

          
    

  
    

     
    

    (10) 

 

and since      , we get 

 

    

   
 

 

 
   

    
   (11) 

 

Utilizing Eq.’s (8) through (11), we find that the conditions                   and          

         have equivalent requirements: 

 

  
    

   
 

    

   
    

    

   
 

    

   
  

 
 
 

 
       

      
  

          

          
    

     
    

   
      

   
    

    

 

From above, it is easy to verify that the right-hand side of the inequality for the     case greater than    
    

  . 

For the     case, we show the same as follows: 

 

   
      

  
          

          
    

      
  

          

          
    

    
      

    
   

 

    
    

     
  

   

          
    

  
            

        
  

 

    
    

            

 

As a result, to guarantee for any given   value that there is no incentive to increase   (in Form 1) and   (in 

Form 2) unilaterally, we need the following assumption, without which we have an unbounded problem: 

 

    
    

   (12) 

 

Using Form 1, and therefore keeping the demand rate constant at the current value   , suppose    
  is the 

optimal balance maximizing the objective function given in Eq. (5)Error! Reference source not found.. 
Recall that    is not a function of  . Therefore,    

  satisfies 
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where    
 follows from Eq. (6) by substituting    for  . Further, since we are keeping the demand rate at   , the 

optimal supply rate (  ) and the resulting cost of balancing (   
  ) is realized directly from Eq. (1): 

 

         
   

 

and 

 

   
     

         
     

 
   

         
     

 
  

 

As a result, the maximum objective function value using Form 1 (i.e. keeping the demand rate at   ) is equal to  

 

   
          

 
    

    

 

Similarly for Form 2, where we keep the supply rate at   , let    
  be the optimal balance such that 

 

        
 
         

         
        

 
          

 

where     is found by substituting    for   in Eq. (7). Then, the optimal demand rate (  ) and the resulting cost of 

balancing (   
  ) follow directly from Eq. (1): 

 

   
  
   
 
   

 

and 

 

   
     

   
  
   
 
     

 

   
   

  
   
 
     

 

  

 

Therefore, using Form 2 (i.e. keeping the supply rate at   ), the maximum objective function value is given by 

 

   
          

 
    

    

 

Consequently, we determine the following solution framework: 

 

 If    
     

 , then it is optimal to keep the demand rate constant and adjust the supply rate accordingly to 

achieve the optimal balance. Hence, the optimal solution is the         triplet given by 

             
                 

    

 

 If    
     

 , then it is optimal to keep the supply rate constant and manipulate the demand rate 

accordingly to attain the optimal balance. Thus, the optimal solution is  

             
     

  
   
 
         

 

The direct corollary from this result is that given the description of the supply/demand problem addressed, 

where throughput is an important consideration, and given a fairly mild assumption as in Eq. (12), the operational 

decision of coming up with the best supply/demand balance is linked with the strategy of attaining that optimal 

balance. Furthermore, we ascertain that the optimal strategy is either to manipulate demand while keeping supply 

constant, or to adjust the supply while keeping demand constant.  
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CONCLUSIONS 

 

In this paper, we study service environments that are stochastic supply/demand systems where demand and 

supply arrive in separate, independent streams according to Poisson distribution. Each demand (supply) arrival leave 

the system either when paired with a supply (demand), or when the associated queue is full; otherwise, they wait for 

a supply (demand) arrival in the demand (supply) queue. This type of queuing system has been referred to as 

double-ended queue, synchronization queue, or synchronizing queue in the literature.  

 

Many real-life environments, ranging from a taxi stand to data synchronization in computing, function in a 

similar manner. However, these supply/demand systems have different characteristics and objectives. In some 

systems, performance is measured almost exclusively by looking at operational inefficiencies that result from 

mismatch between demand and supply arrivals. One can give organ allocation to donors (Zenios, 1999), and tenant 

assignment to public housing (Kaplan, 1987) as examples. In many others, throughput of the system (the rate of 

demand paired with supply) is a crucial measure of system performance; e.g., data synchronization (Parthasarathy et 

al., 1999), and just-in-time assembly systems (Som et al., 1994). Interestingly, literature has not addressed 

throughput considerations in our context. 

 

We contribute to the existing literature in a number of ways. Firstly, building on the canonical double-

ended queuing model, we provide a unified treatment of supply/demand mismatch in cost centers, and show that the 

decision-making process in minimizing system cost is decoupled. Specifically, we show that the operational 

decision of finding the best system balance (  ) and the strategic decision of how to arrive at that optimal balance—

either by manipulating demand, or by manipulating supply—can be stratified. Further, as a first in the literature, we 

determine analytical results for when it is best to manipulate demand instead of supply, and vice versa. We also 

draw interesting corollaries for special cases.  

 

Furthermore, also first time in the literature, we investigate systems where throughput is a significant 

metric of system performance. In order to reflect the impact of this metric, we conceptualize a system where a 

constant reward is earned for each successful demand-supply pairing. We note that this generic framework also 

captures supply/demand systems where there is a fee (or, price) collected for each service provided (or, goods sold), 

and the demand rate is not sensitive to fee amount, and fee (or, price) is virtually fixed (for example, due to intense 

competition). Analytically studying the model, we provide a characterization of the optimal solution which states 

that the operational decision on optimal system balance and the strategic decision on how to attain the optimal 

balance (through either demand, or supply decisions) are strongly tied. In other words, a “manage only demand” or a 

“manage only supply” strategy may lead to suboptimal results if not used wisely. 

 

The framework and the findings we present in this paper can shed light on the managerial decision making 

process in these environments, and they can be used to revisit certain policies—dictating management of demand or 

supply as first action—that are held as part of firm strategy. 

 

We foresee two direct extensions of the modeling framework provided in this paper. First, in many service 

environments there are multiple interfaces between demand and supply, and it would be interesting to investigate 

whether our findings extend to such environments and if other valuable managerial insights can be drawn. Second, 

supply/demand systems where the demand is sensitive to price is of particular interest. In such environments, price 

can be used to regulate demand, and the relationship between price-elasticity and the resulting optimal strategies can 

provide an in-depth understanding on usage of pricing as a tactical means to attain desired system efficiency. 
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